Chapter 6 Exponential and Logarithmic Functions

Section 6-7 Modeling with Exponential and Logarithmic Functions

Classifying Data

You have analyzed *finite differences* of data with equally-spaced inputs to determine what type of polynomial function can be used to model the data. For exponential data with equally-spaced inputs, the outputs are multiplied by a constant factor. So, consecutive outputs form a constant ratio.

EXAMPLE 1 Classifying Data Sets

Determine the type of function represented by each table.

a.	x	-2	-1	0	1	2	3	4
	у	0.5	1	2	4	8	16	32

b.	x	-2	0	2	4	6	8	10
	У	2	0	2	8	18	32	50

SOLUTION

a. The inputs are equally spaced. Look for a pattern in the outputs.

х	-2	-1	0	1	2	3	4
У	0.5	1	2	4	8	16	32
$\times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$							

- As x increases by 1, y is multiplied by 2. So, the common ratio is 2, and the data in the table represent an exponential function.
- b. The inputs are equally spaced. The outputs do not have a common ratio. So, analyze the finite differences.

The second differences are constant. So, the data in the table represent a quadratic function.

Writing Exponential Functions

You know that two points determine a line. Similarly, two points determine an exponential curve.

EXAMPLE 2 Writing an Exponential Function Using Two Points

Write an exponential function $y = ab^x$ whose graph passes through (1, 6) and (3, 54).

Data do not always show an *exact* exponential relationship. When the data in a scatter plot show an *approximately* exponential relationship, you can model the data with an exponential function.

EXAMPLE 3 Finding an Exponential Model

Year,	trampolines, y			
1	12			
2	16			
3	25			
4	36			
5	50			

A store sells trampolines. The table shows the numbers *y* of trampolines sold during the *x*th year that the store has been open. Write a function that models the data.

