Chapter 6

Exponential and Logarithmic Functions

Section 6-7

Modeling with Exponential and Logarithmic Functions

Classifying Data

You have analyzed finite differences of data with equally-spaced inputs to determine what type of polynomial function can be used to model the data. For exponential data with equally-spaced inputs, the outputs are multiplied by a constant factor. So, consecutive outputs form a constant ratio.

EXAMPLE 1 Classifying Data Sets

Determine the type of function represented by each table.

a. | \boldsymbol{x} | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 |

b.

\boldsymbol{x}	-2	0	2	4	6	8	10
\boldsymbol{y}	2	0	2	8	18	32	50

SOLUTION

a. The inputs are equally spaced. Look for a pattern in the outputs.

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}	0.5	1	2	4	8	16	32
$\times 2$							

As x increases by $1, y$ is multiplied by 2 . So, the common ratio is 2 , and the data in the table represent an exponential function.
b. The inputs are equally spaced. The outputs do not have a common ratio. So, analyze the finite differences.

\boldsymbol{x}	-2	0	2	4	6	8	10
y	2	0	2	8	18	32	50

first differences second differences

The second differences are constant. So, the data in the table represent a quadratic function.

Writing Exponential Functions

You know that two points determine a line. Similarly, two points determine an exponential curve.

EXAMPLE 2 Writing an Exponential Function Using Two Points

Write an exponential function $y=a b^{x}$ whose graph passes through $(1,6)$ and $(3,54)$.

Data do not always show an exact exponential relationship. When the data in a scatter plot show an approximately exponential relationship, you can model the data with an exponential function.

EXAMPLE 3 Finding an Exponential Model

Year, \boldsymbol{x}	Number of trampolines, \boldsymbol{y}
1	12
2	16
3	25
4	36
5	50
6	67
7	96

A store sells trampolines. The table shows the numbers y of trampolines sold during the x th year that the store has been open. Write a function that models the data.

