Chapter 7
 Rational Functions

Section 7-3
Multiplying and Dividing Rational Functions

Simplifying Rational Expressions

A rational expression is a fraction whose numerator and denominator are nonzero polynomials. The domain of a rational expression excludes values that make the denominator zero. A rational expression is in simplified form when its numerator and denominator have no common factors (other than ± 1).

G) Core Concept

Simplifying Rational Expressions

Let a, b, and c be expressions with $b \neq 0$ and $c \neq 0$.
Property $\frac{a C}{b \not \subset}=\frac{a}{b} \quad$ Divide out common factor c.
Examples $\begin{array}{ll}\frac{15}{65}=\frac{3 \cdot 8}{13 \cdot 5}=\frac{3}{13} & \text { Divide out common factor } 5 . \\ \frac{4(x+3)}{(x+3)(x+3)}=\frac{4}{x+3} & \text { Divide out common factor } x+3 .\end{array}$

Simplifying a rational expression usually requires two steps. First, factor the numerator and denominator. Then, divide out any factors that are common to both the numerator and denominator. Here is an example:

$$
\frac{x^{2}+7 x}{x^{2}}=\frac{x(x+7)}{x \cdot x}=\frac{x+7}{x}
$$

EXAMPLE 1 Simplifying a Rational Expression

Simplify $\frac{x^{2}-4 x-12}{x^{2}-4}$.

COMMON ERROR

Do not divide out variable terms that are not factors.
$\frac{x-6}{x-2} \neq \frac{-6}{-2}$

Multiplying Rational Expressions

The rule for multiplying rational expressions is the same as the rule for multiplying numerical fractions: multiply numerators, multiply denominators, and write the new fraction in simplified form. Similar to rational numbers, rational expressions are closed under multiplication.

C) Core Concept

Multiplying Rational Expressions

Let a, b, c, and d be expressions with $b \neq 0$ and $d \neq 0$.
Property $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad$ Simplify $\frac{a c}{b d}$ if possible.
Example $\quad \frac{5 x^{2}}{2 x y^{2}} \cdot \frac{6 x y^{3}}{10 y}=\frac{30 x^{3} y^{3}}{20 x y^{3}}=\frac{16 \cdot 3 \cdot x \cdot x^{2} \cdot y^{8}}{16 \cdot 2 \cdot x \cdot y^{3}}=\frac{3 x^{2}}{2}, \quad x \neq 0, y \neq 0$

EXAMPLE 2 Multiplying Rational Expressions

Find the product $\frac{8 x^{3} y}{2 x y^{2}} \cdot \frac{7 x^{4} y^{3}}{4 y}$.

EXAMPLE 3 Multiplying Rational Expressions

Find the product $\frac{3 x-3 x^{2}}{x^{2}+4 x-5} \cdot \frac{x^{2}+x-20}{3 x}$.

EXAMPLE 4 Multiplying a Rational Expression by a Polynomial

Find the product $\frac{x+2}{x^{3}-27} \cdot\left(x^{2}+3 x+9\right)$.

STUDY TIP

Notice that $x^{2}+3 x+9$
does not equal zero
for any real value of x.
So, no values must be
excluded from the domain
to make the simplified
form equivalent to
the original.

Dividing Rational Expressions

To divide one rational expression by another, multiply the first rational expression by the reciprocal of the second rational expression. Rational expressions are closed under nonzero division.

G) Core Concept

Dividing Rational Expressions

Let a, b, c, and d be expressions with $b \neq 0, c \neq 0$, and $d \neq 0$.
Property $\quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c} \quad$ Simplify $\frac{a d}{b c}$ if possible.
Example $\frac{7}{x+1} \div \frac{x+2}{2 x-3}=\frac{7}{x+1} \cdot \frac{2 x-3}{x+2}=\frac{7(2 x-3)}{(x+1)(x+2)}, x \neq \frac{3}{2}$

EXAMPLE 5 Dividing Rational Expressions

Find the quotient $\frac{7 x}{2 x-10} \div \frac{x^{2}-6 x}{x^{2}-11 x+30}$.

EXAMPLE 7 Solving a Real-Life Problem

The total annual amount I (in millions of dollars) of personal income earned in Alabama and its annual population P (in millions) can be modeled by

$$
I=\frac{6922 t+106,947}{0.0063 t+1}
$$

and

$$
P=0.0343 t+4.432
$$

where t represents the year, with $t=1$ corresponding to 2001. Find a model M for the annual per capita income. (Per capita means per person.) Estimate the per capita income in 2010. (Assume $t>0$.)

