Chapter 8

Sequences and Series

Section 8-3

Analyzing Geometric Sequences and Series

Identifying Geometric Sequences

In a geometric sequence, the ratio of any term to the previous term is constant.
This constant ratio is called the common ratio and is denoted by r.

EXAMPLE 1 Identifying Geometric Sequences

Tell whether each sequence is geometric.
a. $6,12,20,30,42, \ldots$
b. $256,64,16,4,1, \ldots$

Writing Rules for Geometric Sequences

Core Concept

Rule for a Geometric Sequence
Algebra The nth term of a geometric sequence with first term a_{1} and common ratio r is given by:

$$
a_{n}=a_{1} r^{n-1}
$$

Example The nth term of a geometric sequence with a first term of 2 and a common ratio of 3 is given by:

$$
a_{n}=2(3)^{n-1}
$$

EXAMPLE 2 Writing a Rule for the \boldsymbol{n} th Term

Write a rule for the nth term of each sequence. Then find a_{8}.
a. $5,15,45,135, \ldots$
b. $88,-44,22,-11, \ldots$

EXAMPLE 3 Writing a Rule Given a Term and Common Ratio

One term of a geometric sequence is $a_{4}=12$. The common ratio is $r=2$. Write a rule for the nth term. Then graph the first six terms of the sequence.

Use the rule to create a table of values for the sequence. Then plot the points.

\boldsymbol{n}	1	2	3	4	5	6
$\boldsymbol{a}_{\boldsymbol{n}}$	1.5	3	6	12	24	48

EXAMPLE 4 Writing a Rule Given Two Terms

Two terms of a geometric sequence are $a_{2}=12$ and $a_{5}=-768$. Write a rule for the nth term.

Check

Use the rule to verify that the 2nd term is 12 and the 5 th term is -768 .

$$
\begin{aligned}
a_{2} & =-3(-4)^{2-1} \\
& =-3(-4)=12 \\
a_{5} & =-3(-4)^{5-1} \\
& =-3(256)=-768
\end{aligned}
$$

Finding Sums of Finite Geometric Series

The expression formed by adding the terms of a geometric sequence is called a geometric series. The sum of the first n terms of a geometric series is denoted by S_{n}.

G) Core Concept

The Sum of a Finite Geometric Series
The sum of the first n terms of a geometric series with common ratio $r \neq 1$ is

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

EXAMPLE 5 Finding the Sum of a Geometric Series

Find the sum $\sum_{k=1}^{10} 4(3)^{k-1}$.

[^0]
EXAMPLE 6 Solving a Real-Life Problem

You can calculate the monthly payment M (in dollars) for a loan using the formula

$$
M=\frac{L}{\sum_{k=1}^{t}\left(\frac{1}{1+i}\right)^{k}}
$$

where L is the loan amount (in dollars), i is the monthly interest rate (in decimal form), and t is the term (in months). Calculate the monthly payment on a 5 -year loan for $\$ 20,000$ with an annual interest rate of 6%.

USING

TECHNOLOGY
Storing the value of $\frac{1}{1.005}$ helps minimize mistakes and also assures an accurate answer. Rounding this value to 0.995 results in a monthly payment of $\$ 386.94$.

SOLUTION

Step 1 Substitute for L, i, and t. The loan amount is $L=20,000$, the monthly interest rate
is $i=\frac{0.06}{12}=0.005$, and the term is $t=5(12)=60$.
Step 2 Notice that the denominator is a geometric series with first term $\frac{1}{1.005}$ and common
ratio $\frac{1}{1.005}$. Use a calculator to find the series with first term $\frac{1}{1.005}$ and common
ratio $\frac{1}{1.005}$. Use a calculator to find the monthly payment.

$$
M=\frac{20,000}{\sum_{k=1}^{60}\left(\frac{1}{1+0.005}\right)^{k}}
$$

```
1/1.005 - R
    .9950248756
R((1-R^60)/(1-R)
)
51.72556075
20000/Ans
    386.6560306
```

So, the monthly payment is $\$ 386.66$.

[^0]: Check
 Use a graphing calculator to check the sum.
 sum (seq($4 * 3^{\wedge}(x-1$
), $x, 1,10$))
 118096

