Chapter 8

Sequences and Series

Section 8-4
Finding Sums of Infinite Geometric Series

Partial Sums of Infinite Geometric Series

The sum S_{n} of the first n terms of an infinite series is called a partial sum. The partial sums of an infinite geometric series may approach a limiting value.

EXAMPLE 1 Finding Partial Sums

Consider the infinite geometric series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots
$$

Find and graph the partial sums S_{n} for $n=1,2,3,4$, and 5 . Then describe what happens to S_{n} as n increases.

SOLUTION

Step 1 Find the partial sums.

$$
\begin{aligned}
& S_{1}=\frac{1}{2}=0.5 \\
& S_{2}=\frac{1}{2}+\frac{1}{4}=0.75 \\
& S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \approx 0.88 \\
& S_{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \approx 0.94 \\
& S_{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32} \approx 0.97
\end{aligned}
$$

Step 2 Plot the points $(1,0.5),(2,0.75)$, $(3,0.88),(4,0.94)$, and (5, 0.97). The graph is shown at the right.

From the graph, S_{n} appears to approach 1 as n increases.

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_{1} and common ratio r is given by

$$
S=\frac{a_{1}}{1-r}
$$

provided $|r|<1$. If $|r| \geq 1$, then the series has no sum.

EXAMPLE 2 Finding Sums of Infinite Geometric Series

Find the sum of each infinite geometric series.
a. $\sum_{i=1}^{\infty} 3(0.7)^{i-1}$
b. $1+3+9+27+\cdots$
c. $1-\frac{3}{4}+\frac{9}{16}-\frac{27}{64}+\cdots$

EXAMPLE 3 Solving a Real-Life Problem

A pendulum that is released to swing freely travels 18 inches on the first swing. On each successive swing, the pendulum travels 80% of the distance of the previous swing. What is the total distance the pendulum swings?

EXAMPLE 4 Writing a Repeating Decimal as a Fraction

Write $0.242424 \ldots$ as a fraction in simplest form.

