Chapter 1
 Linear Functions

Section 1-1
 Parent Functions and Transformations

EXPLORATION 1 Identifying Basic Parent Functions

Work with a partner. Graphs of eight basic parent functions are shown below, Classify cach function as consiant, linear, absolate value, quadrasic, sajatare mof, * cubic, reciprocal, or exponertial. Justify your reasoning.
a.

b.

c.

d.

e.

f.

g.

h.

Parent Functions

Family
Rule

Constant $f(x)=1$

Linear
$f(x)=x$

Absolute Value
$f(x)=|x|$
Quadratic

Domain All real numbers All real numbers All real numbers All real numbers
Range $y=1 \quad$ All real numbers $y \geq 0 \quad y \geq 0$

Describing Transformations

A transformation changes the size, shape, position, or orientation of a graph.
A translation is a transformation that shifts a graph horizontally and/or vertically but does not change its size, shape, or orientation.

EXAMPLE 2 Graphing and Describing Translations

Graph $g(x)=x-4$ and its parent function. Then describe the transformation.

REMEMBER

The slope-intercept form of a linear equation is $y=m x+b$, where m is the slope and b is the y-intercept.

A reflection is a transformation that flips a graph over a line called the line of reflection. A reflected point is the same distance from the line of reflection as the original point but on the opposite side of the line.

EXAMPLE 3 Graphing and Describing Reflections

REMEMBER

The function $p(x)=-x^{2}$ is written in function notation, where $p(x)$ is another name for y.

Graph the function and its parent function. Then describe the transformation.
D 2. $g(x)=x+3$
D 3. $h(x)=(x-2)^{2}$
($)$ 4. $n(x)=-|x|$

X	Y	

Another way to transform the graph of a function is to multiply all of the y-coordinates by the same positive factor (other than 1). When the factor is greater than 1 , the transformation is a vertical stretch. When the factor is greater than 0 and less than 1 , it is a vertical shrink.

EXAMPLE 4 Graphing and Describing Stretches and Shrinks

Graph each function and its parent function. Then describe the transformation.
a. $g(x)=2|x|$
b. $h(x)=\frac{1}{2} x^{2}$

SOLUTION

a. The function g is an absolute value function. Use a table of values to graph the functions.

\boldsymbol{x}	$\boldsymbol{y}=\|\boldsymbol{x}\|$	$\boldsymbol{y}=\mathbf{2}\|\boldsymbol{x}\|$
-2	2	4
-1	1	2
0	0	0
1	1	2
2	2	4

The y-coordinate of each point on g is two times the y-coordinate of the corresponding point on the parent function.

- So, the graph of $g(x)=2|x|$ is a vertical stretch of the graph of the parent absolute value function.
b. The function h is a quadratic function. Use a table of values to graph the functions.

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{y}={ }_{2}^{\mathbf{1}} \boldsymbol{x}^{\mathbf{2}}$
-2	4	2
-1	1	$\frac{1}{2}$
0	0	0
1	1	$\frac{1}{2}$
2	4	2

The y-coordinate of each point on h is one-half of the y-coordinate of the corresponding point on the parent function.

So, the graph of $h(x)=\frac{1}{2} x^{2}$ is a vertical shrink of the graph of the parent quadratic function.

Graph the function and its parent function. Then describe the transformation.

- 5. $g(x)=3 x$
(6. $h(x)=\frac{3}{2} x^{2}$
D 7. $c(x)=0.2|x|$

$$
\begin{array}{c|c}
X & Y \\
\hline & \\
\hline
\end{array}
$$

EXAMPLE 5 Describing Combinations of Transformations

Use a graphing calculator to graph $g(x)=-|x+5|-3$ and its parent function. Then describe the transformations.

