Chapter 2 Quadratic Functions

Section 2-1 Transformations of Quadratic Functions

Essential Question How do the constants a, h, and k affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

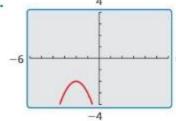
The parent function of the quadratic family is $f(x) = x^2$. A transformation of the graph of the parent function is represented by the function $g(x) = a(x - h)^2 + k$, where $a \neq 0$.

EXPLORATION 1 Identifying Graphs of Quadratic Functions

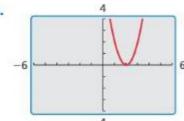
Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Then use a graphing calculator to verify that your answer is correct.

a.
$$g(x) = -(x-2)^2$$

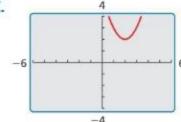
b.
$$g(x) = (x-2)^2 + 2$$

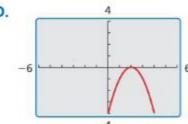

a.
$$g(x) = -(x-2)^2$$
 b. $g(x) = (x-2)^2 + 2$ **c.** $g(x) = -(x+2)^2 - 2$

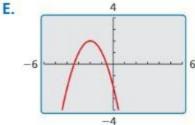
d.
$$g(x) = 0.5(x - 2)^2 - 2$$


e.
$$g(x) = 2(x-2)^2$$

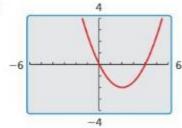
d.
$$g(x) = 0.5(x-2)^2 - 2$$
 e. $g(x) = 2(x-2)^2$ **f.** $g(x) = -(x+2)^2 + 2$


A.


B.



C.



D.

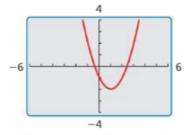
F.

REMEMBER:

VERTEX AND INTERCEPT FORMS OF A QUADRATIC FUNCTION

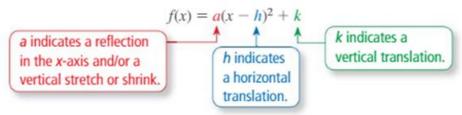
FORM OF QUADRATIC FUNCTION

CHARACTERISTICS OF GRAPH


$$Vertex form y = a(x-h)^2 + k$$

The vertex is (h,k).

The axis of symmetry is x = h.


Communicate Your Answer

2. How do the constants a, h, and k affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

Writing Transformations of Quadratic Functions

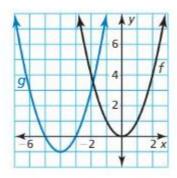
The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the **vertex**. The **vertex form** of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \ne 0$ and the vertex is (h, k).

Examples of Quzdratic Equations in different forms.

$$f(x) = x^2$$

$$f\left(x\right) = x^2 + 3x - 2$$

$$f(x) = -(x-2)^2 + 3$$

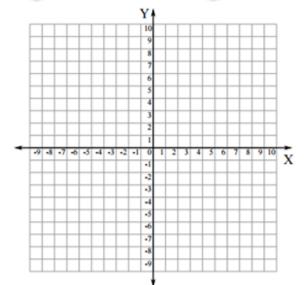

$$f(x) = (x-3)(x+2)$$

Describing Transformations of Quadratic Functions

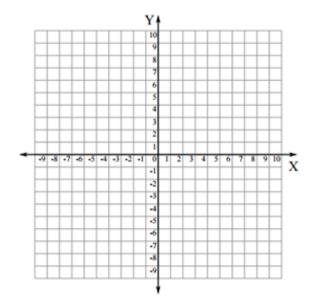
A quadratic function is a function that can be written in the form $f(x) = a(x - h)^2 + k$, where $a \neq 0$. The U-shaped graph of a quadratic function is called a parabola.

EXAMPLE 1 Translations of a Quadratic Function

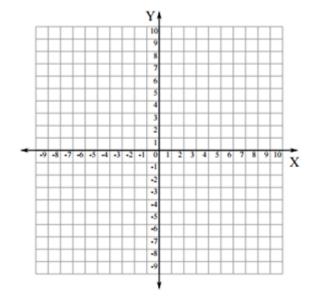
Describe the transformation of $f(x) = x^2$ represented by $g(x) = (x + 4)^2 - 1$. Then graph each function.

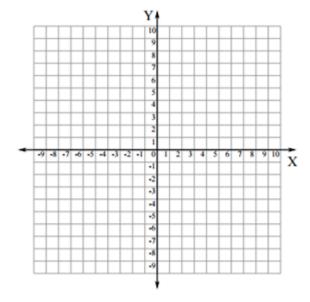


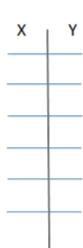
Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

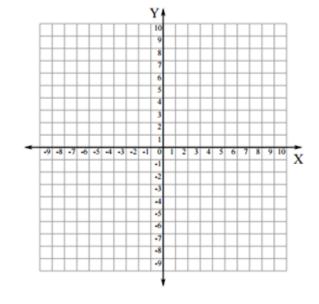

1.
$$g(x) = (x-3)^2$$

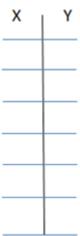
2.
$$g(x) = (x-2)^2 - 2$$
 3. $g(x) = (x+5)^2 + 1$


3.
$$g(x) = (x+5)^2 +$$




EXAMPLE 2 Transformations of Quadratic Functions


Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.


a.
$$g(x) = -\frac{1}{2}x^2$$

b.
$$g(x) = (2x)^2 + 1$$

EXAMPLE 3 Writing a Transformed Quadratic Function

Let the graph of g be a vertical stretch by a factor of 2 and a reflection in the x-axis, followed by a translation 3 units down of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.

EXAMPLE 4 Writing a Transformed Quadratic Function

Let the graph of g be a translation 3 units right and 2 units up, followed by a reflection in the y-axis of the graph of $f(x) = x^2 - 5x$. Write a rule for g.

- 7. Let the graph of g be a vertical shrink by a factor of $\frac{1}{2}$ followed by a translation 2 units up of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.
- 8. Let the graph of g be a translation 4 units left followed by a horizontal shrink by a factor of $\frac{1}{3}$ of the graph of $f(x) = x^2 + x$. Write a rule for g.