Chapter 2

Quadratic Functions

Section 2-2

Characteristics of Quadratic Functions

THE GRAPH OF A QUADRATIC FUNCTION

Standard Form

The graph $y=a x^{2}+b x+c$ is a parabola with these characteristics.

- The x-coordinate of the vertex is $-\frac{b}{2 a}$.

VERTEX AND INTERCEPT FORMS OF A QUADRATIC FUNCTION

FORM OF QUADRATIC FUNCTION

Vertex form $y=a(x-h)^{2}+k$

Intercept form $y=a(x-p)(x-q)$
The x intercepts are p and q. The axis of symmetry is halfway between $(p, 0)$ and $(q, 0)$.

CHARACTERISTICS OF GRAPH

The vertex is (h, k).
The axis of symmetry is $x=h$.

Graph the function. Label the vertex and axis of symmetry.

- 1. $f(x)=-3(x+1)^{2}$4. $p(x)=-2 x^{2}-8 x+1$

Minimum and Maximum Values

For the quadratic function $f(x)=a x^{2}+b x+c$, the y-coordinate of the vertex is the minimum value of the function when $a>0$ and the maximum value when $a<0$.
$a>0$

$$
a<0
$$

5. Find the minimum value or maximum value of (a) $f(x)=4 x^{2}+16 x-3$ and Describe the domain and range of each function, and where each function is increasing and decreasing.

Graph the function. Label the x-intercepts, vertex, and axis of symmetry.
6. $f(x)=-(x+1)(x+5)$

D 7. $g(x)=\frac{1}{4}(x-6)(x-2)$

Solving Real-Life Problems

The parabola shows the path of your first golf shot, where x is the horizontal distance (in yards) and y is the corresponding height (in yards). The path of your second shot can be modeled by the function $f(x)=-0.02 x(x-80)$. Which shot travels farther before hitting the ground? Which travels higher?

