Chapter 3
Quadratic Equations and Complex Numbers

Section 3-1

Solving Quadratic Equations

Simplifying Square Roots

Example 1 Simplify $\sqrt{8}$.

$$
\begin{aligned}
\sqrt{8} & =\sqrt{4 \cdot 2} & & \text { Factor using the greatest perfect square factor. } \\
& =\sqrt{4} \cdot \sqrt{2} & & \text { Product Property of Square Roots } \\
& =2 \sqrt{2} & & \text { Simplify. }
\end{aligned}
$$

Example 2 Simplify $\sqrt{\frac{7}{36}}$.

$$
\begin{aligned}
\sqrt{\frac{7}{36}} & =\frac{\sqrt{7}}{\sqrt{36}} \\
& =\frac{\sqrt{7}}{6}
\end{aligned}
$$

Quotient Property of Square Roots

Simplify the expression.

1. $\sqrt{27}$
2. $-\sqrt{112}$
3. $\sqrt{\frac{11}{64}}$
4. $\sqrt{\frac{147}{100}}$

Factoring Special Products

Example 3 Factor (a) $x^{2}-4$ and (b) $x^{2}-14 x+49$.

$$
\text { a. } \begin{aligned}
x^{2}-4 & =x^{2}-2^{2} \\
& =(x+2)(x-2)
\end{aligned}
$$

- So, $x^{2}-4=(x+2)(x-2)$.
b. $x^{2}-14 x+49=x^{2}-2(x)(7)+7^{2}$

$$
=(x-7)^{2}
$$

- So, $x^{2}-14 x+49=(x-7)^{2}$.

Write as $a^{2}-b^{2}$.
Difference of Two Squares Pattern

Write as $a^{2}-2 a b+b^{2}$.
Perfect Square Trinomial Pattern

Factor the polynomial.

10. $x^{2}-9$
11. $4 x^{2}-25$
12. $x^{2}+28 x+196$
13. $49 x^{2}+210 x+225$

Solving Quadratic Equations by Graphing

A quadratic equation in one variable is an equation that can be written in the standard form $a x^{2}+b x+c=0$, where a, b, and c are real numbers and $a \neq 0$.
A root of an equation is a solution of the equation. You can use various methods to solve quadratic equations.

STUDY TIP

Quadratic equations can have zero, one, or two real solutions.

Check

$$
\begin{array}{r}
x^{2}-x-6=0 \\
(-2)^{2}-(-2)-6 \stackrel{?}{=} 0 \\
4+2-6 \stackrel{?}{=} 0 \\
0=0 \\
x^{2}-x-6=0 \\
3^{2}-3-6 \stackrel{?}{=} 0 \\
9-3-6 \stackrel{?}{=} 0 \\
0
\end{array}=0
$$

EXAMPLE 1 Solving Quadratic Equations by Graphing

Solve each equation by graphing.
a. $x^{2}-x-6=0$
b. $-2 x^{2}-2=4 x$

SOLUTION

a. The equation is in standard form. Graph the related function $y=x^{2}-x-6$.

The x-intercepts are -2 and 3 .
\rightarrow The solutions, or roots, are $x=-2$ and $x=3$.
b. Add $-4 x$ to each side to obtain $-2 x^{2}-4 x-2=0$. Graph the related function $y=-2 x^{2}-4 x-2$.

The x-intercept is -1 .
\rightarrow The solutions, or roots is $x=-1$.

Solve the equation by graphing.

$$
x^{2}-8 x+12=0
$$

Solving Quadratic Equations Algebraically

When solving quadratic equations using square roots, you can use properties of square roots to write your solutions in different forms.

When a radicand in the denominator of a fraction is not a perfect square, you can multiply the fraction by an appropriate form of 1 to eliminate the radical from the denominator. This process is called rationalizing the denominator.

EXAMPLE 2 Solving Quadratic Equations Using Square Roots

Solve each equation using square roots.
a. $4 x^{2}-31=49$
b. $3 x^{2}+9=0$
c. $\frac{2}{5}(x+3)^{2}=5$

When the left side of $a x^{2}+b x+c=0$ is factorable, you can solve the equation using the Zero-Product Property.

Core Concept

Zero-Product Property
Words If the product of two expressions is zero, then one or both of the expressions equal zero.
Algebra If A and B are expressions and $A B=0$, then $A=0$ or $B=0$.

EXAMPLE 3 Solving a Quadratic Equation by Factoring

Solve $x^{2}-4 x=45$ by factoring.

EXAMPLE 4 Finding the Zeros of a Quadratic Function

Find the zeros of $f(x)=2 x^{2}-11 x+12$.

Remember that finding the x-intercept, finding the zeros, and finding the solutions all mean the same thing when refering to quadratic functions. Solve the equation by factoring.

D 8. $3 x^{2}-5 x=2$

Find the zero(s) of the function.
9. $f(x)=x^{2}-8 x$

Solving Real-Life Problems

To find the maximum value or minimum value of a quadratic function, you can first use factoring to write the function in intercept form $f(x)=a(x-p)(x-q)$. Because the vertex of the function lies on the axis of symmetry, $x=\frac{p+q}{2}$, the maximum value or minimum value occurs at the average of the zeros p and q.

EXAMPLE 5 Solving a Multi-Step Problem

A monthly teen magazine has 48,000 subscribers when it charges $\$ 20$ per annual subscription. For each \$1 increase in price, the magazine loses about 2000 subscribers. How much should the magazine charge to maximize annual revenue? What is the maximum annual revenue?

