Chapter 3 Quadratic Equations and Complex Numbers

Section 3-1 Solving Quadratic Equations

Simplifying Square Roots

Example 1 Simplify $\sqrt{8}$.

$$\sqrt{8} = \sqrt{4 \cdot 2}$$
 Factor using the greatest perfect square factor.
$$= \sqrt{4 \cdot \sqrt{2}}$$
 Product Property of Square Roots
$$= 2\sqrt{2}$$
 Simplify.
$$\sqrt{ab} = \sqrt{a \cdot \sqrt{b}}, \text{ where } a, b \ge 0$$

Example 2 Simplify $\sqrt{\frac{7}{36}}$.

$$\sqrt{\frac{7}{36}} = \frac{\sqrt{7}}{\sqrt{36}}$$
 Quotient Property of Square Roots
$$= \frac{\sqrt{7}}{6}$$
 Simplify.
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, \text{ where } a \ge 0 \text{ and } b > 0$$

Simplify the expression.

3.
$$\sqrt{\frac{11}{64}}$$

4.
$$\sqrt{\frac{147}{100}}$$

1

Factoring Special Products

Example 3 Factor (a) $x^2 - 4$ and (b) $x^2 - 14x + 49$.

a.
$$x^2 - 4 = x^2 - 2^2$$

= $(x + 2)(x - 2)$

So,
$$x^2 - 4 = (x + 2)(x - 2)$$
.

b.
$$x^2 - 14x + 49 = x^2 - 2(x)(7) + 7^2$$
 Write as $a^2 - 2ab + b^2$.
= $(x - 7)^2$ Perfect Square Trinomial 8

So,
$$x^2 - 14x + 49 = (x - 7)^2$$
.

Write as $a^2 - b^2$.

Difference of Two Squares Pattern

Perfect Square Trinomial Pattern

Factor the polynomial.

10.
$$x^2 - 9$$

11.
$$4x^2 - 25$$

13.
$$x^2 + 28x + 196$$

14.
$$49x^2 + 210x + 225$$

Solving Quadratic Equations by Graphing

A quadratic equation in one variable is an equation that can be written in the standard form $ax^2 + bx + c = 0$, where a, b, and c are real numbers and $a \neq 0$. A root of an equation is a solution of the equation. You can use various methods to solve quadratic equations.

Core Concept

STUDY TIP

Quadratic equations can have zero, one, or two real solutions.

Solving Quadratic Equations

By graphing Find the x-intercepts of the related function

$$y = ax^2 + bx + c.$$

Using square roots Write the equation in the form $u^2 = d$, where u is an

algebraic expression, and solve by taking the square root

of each side.

Write the polynomial equation $ax^2 + bx + c = 0$ in By factoring

factored form and solve using the Zero-Product Property.

EXAMPLE 1

Solving Quadratic Equations by Graphing

Solve each equation by graphing.

a.
$$x^2 - x - 6 = 0$$

b.
$$-2x^2 - 2 = 4x$$

SOLUTION

 The equation is in standard form. Graph the related function $y = x^2 - x - 6$.

The x-intercepts are -2 and 3.

The solutions, or roots, are x = -2 and x = 3.

b. Add -4x to each side to obtain $-2x^2 - 4x - 2 = 0$. Graph the related function $y = -2x^2 - 4x - 2$.

The x-intercept is -1.

The solutions, or roots is x = -1.

Solve the equation by graphing.

$$x^2 - 8x + 12 = 0$$

X	Υ

Solving Quadratic Equations Algebraically

When solving quadratic equations using square roots, you can use properties of square roots to write your solutions in different forms.

When a radicand in the denominator of a fraction is not a perfect square, you can multiply the fraction by an appropriate form of 1 to eliminate the radical from the denominator. This process is called rationalizing the denominator.

EXAMPLE 2 Solving Quadratic Equations Using Square Roots

Solve each equation using square roots.

a.
$$4x^2 - 31 = 49$$

b.
$$3x^2 + 9 = 0$$

c.
$$\frac{2}{5}(x+3)^2 = 5$$

When the left side of $ax^2 + bx + c = 0$ is factorable, you can solve the equation using the Zero-Product Property.

G Core Concept

Zero-Product Property

Words If the product of two expressions is zero, then one or both of the expressions equal zero.

Algebra If A and B are expressions and AB = 0, then A = 0 or B = 0.

EXAMPLE 3 Solving a Quadratic Equation by Factoring

Solve $x^2 - 4x = 45$ by factoring.

EXAMPLE 4 Finding the Zeros of a Quadratic Function

Find the zeros of $f(x) = 2x^2 - 11x + 12$.

Remember that finding the x-intercept, finding the zeros, and finding the solutions all mean the same thing when refering to quadratic functions.

Solve the equation by factoring.

8.
$$3x^2 - 5x = 2$$

Find the zero(s) of the function.

9.
$$f(x) = x^2 - 8x$$

Solving Real-Life Problems

To find the maximum value or minimum value of a quadratic function, you can first use factoring to write the function in intercept form f(x) = a(x - p)(x - q). Because the vertex of the function lies on the axis of symmetry, $x = \frac{p+q}{2}$, the maximum value or minimum value occurs at the average of the zeros p and q.

EXAMPLE 5 Solving a Multi-Step Problem

A monthly teen magazine has 48,000 subscribers when it charges \$20 per annual subscription. For each \$1 increase in price, the magazine loses about 2000 subscribers. How much should the magazine charge to maximize annual revenue? What is the maximum annual revenue?

