Chapter 3 Quadratic Equations and Complex Numbers

Section 3-6 Quadratic Inequalities

Graphing Quadratic Inequalities in Two Variables

A quadratic inequality in two variables can be written in one of the following forms, where a, b, and c are real numbers and $a \neq 0$.

$$y < ax^2 + bx + c$$
 $y > ax^2 + bx + c$
 $y \le ax^2 + bx + c$ $y \ge ax^2 + bx + c$

The graph of any such inequality consists of all solutions (x, y) of the inequality.

Previously, you graphed linear inequalities in two variables. You can use a similar procedure to graph quadratic inequalities in two variables.

G Core Concept

Graphing a Quadratic Inequality in Two Variables

To graph a quadratic inequality in one of the forms above, follow these steps.

- Step 1 Graph the parabola with the equation $y = ax^2 + bx + c$. Make the parabola dashed for inequalities with < or > and solid for inequalities with \le or \ge .
- **Step 2** Test a point (x, y) inside the parabola to determine whether the point is a solution of the inequality.
- Step 3 Shade the region inside the parabola if the point from Step 2 is a solution. Shade the region outside the parabola if it is not a solution.

Remember to use the vertex formula $(x = -\frac{b}{2a})$ to graph a quadratic in Standard Form.

1

Graph $y < -x^2 - 2x - 1$.

SOLUTION

- Step 1 Graph $y = -x^2 2x 1$. Because the inequality symbol is <, make the parabola dashed.
- Step 2 Test a point inside the parabola, such as (0, -3).

$$y < -x^2 - 2x - 1$$

 $-3 < -0^2 - 2(0) - 1$
 $-3 < -1$

Step 3 Shade the region inside the parabola.

4

EXAMPLE 2

Graphing a System of Quadratic Inequalities

Check

LOOKING FOR

is on the y-axis).

Notice that testing a point

is less complicated when the x-value is 0 (the point

STRUCTURE

Check that a point in the solution region, such as (0, 0), is a solution of the system.

$$y < -x^{2} + 3$$

$$0 < -0^{2} + 3$$

$$0 < 3$$

$$y \ge x^{2} + 2x - 3$$

$$0 \ge 0^{2} + 2(0) - 3$$

$$0 \ge -3$$

Graph the system of quadratic inequalities.

$$y < -x^2 + 3$$

Inequality 1

$$y \ge x^2 + 2x - 3$$

Inequality 2

SOLUTION

- Step 1 Graph $y < -x^2 + 3$. The graph is the red region inside (but not including) the parabola $y = -x^2 + 3$.
- Step 2 Graph $y \ge x^2 + 2x 3$. The graph is the blue region inside and including the parabola $y = x^2 + 2x - 3$.
- Step 3 Identify the purple region where the two graphs overlap. This region is the graph of the system.

Graph the inequality.

$$\bigcirc$$
 1. $y \ge x^2 + 2x$ -

1. $y \ge x^2 + 2x - 8$ **2.** $y \le 2x^2 - x - 1$ **3.** $y > -x^2 + 2x + 4$

1. Graph the system of inequalities consisting of $y \le -x^2$ and $y > x^2 - 3$.

Χ

Solving Quadratic Inequalities in One Variable

A quadratic inequality in one variable can be written in one of the following forms, where a, b, and c are real numbers and $a \neq 0$.

$$ax^2 + bx + c < 0$$
 $ax^2 + bx + c > 0$ $ax^2 + bx + c \le 0$ $ax^2 + bx + c \ge 0$

You can solve quadratic inequalities using algebraic methods or graphs.

EXAMPLE 4 Solving a Quadratic Inequality Algebraically

Solve $x^2 - 3x - 4 < 0$ algebraically.

SOLUTION

First, write and solve the equation obtained by replacing < with =.

$$x^2 - 3x - 4 = 0$$
 Write the related equation.
 $(x - 4)(x + 1) = 0$ Factor.
 $x = 4$ or $x = -1$ Zero-Product Property

The numbers -1 and 4 are the *critical values* of the original inequality. Plot -1 and 4 on a number line, using open dots because the values do not satisfy the inequality. The critical x-values partition the number line into three intervals. Test an x-value in each interval to determine whether it satisfies the inequality.

$$(-2)^2 - 3(-2) - 4 = 6 \not\le 0$$
 $0^2 - 3(0) - 4 = -4 < 0$ \checkmark $5^2 - 3(5) - 4 = 6 \not\le 0$

So, the solution is -1 < x < 4.

Another way to solve $ax^2 + bx + c < 0$ is to first graph the related function $y = ax^2 + bx + c$. Then, because the inequality symbol is <, identify the x-values for which the graph lies below the x-axis. You can use a similar procedure to solve quadratic inequalities that involve \leq , >, or \geq .

EXAMPLE 5 Solving a Quadratic Inequality by Graphing

Solve $3x^2 - x - 5 \ge 0$ by graphing.

SOLUTION

The solution consists of the x-values for which the graph of $y = 3x^2 - x - 5$ lies on or above the x-axis. Find the x-intercepts of the graph by letting y = 0 and using the Quadratic Formula to solve $0 = 3x^2 - x - 5$ for x.

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-5)}}{2(3)}$$

$$a = 3, b = -1, c = -5$$

$$x = \frac{1 \pm \sqrt{61}}{6}$$
Simplify.

The solutions are $x \approx -1.14$ and $x \approx 1.47$. Sketch a parabola that opens up and has -1.14 and 1.47 as x-intercepts. The graph lies on or above the x-axis to the left of (and including) x = -1.14 and to the right of (and including) x = 1.47.

The solution of the inequality is approximately $x \le -1.14$ or $x \ge 1.47$.

Solve the inequality.

 $y = 3x^2 - x -$

6.
$$-3x^2 - 4x + 1 < 0$$
 7. $2x^2 + 2 > -5x$

7.
$$2x^2 + 2 > -5x$$