Chapter 3

Quadratic Equations and Complex Numbers

Section 3-6
Quadratic Inequalities

Graphing Quadratic Inequalities in Two Variables

A quadratic inequality in two variables can be written in one of the following forms, where a, b, and c are real numbers and $a \neq 0$.

$$
\begin{array}{ll}
y<a x^{2}+b x+c & y>a x^{2}+b x+c \\
y \leq a x^{2}+b x+c & y \geq a x^{2}+b x+c
\end{array}
$$

The graph of any such inequality consists of all solutions (x, y) of the inequality.
Previously, you graphed linear inequalities in two variables. You can use a similar procedure to graph quadratic inequalities in two variables.

G. Core Concept

Graphing a Quadratic Inequality in Two Variables

To graph a quadratic inequality in one of the forms above, follow these steps.
Step 1 Graph the parabola with the equation $y=a x^{2}+b x+c$. Make the parabola dashed for inequalities with $<$ or $>$ and solid for inequalities with \leq or \geq.

Step 2 Test a point (x, y) inside the parabola to determine whether the point is a solution of the inequality.
Step 3 Shade the region inside the parabola if the point from Step 2 is a solution. Shade the region outside the parabola if it is not a solution.

Remember to use the vertex formula $\left(x=-\frac{b}{2 a}\right)$ to graph a quadratic in Standard Form.

Graph $y<-x^{2}-2 x-1$.

SOLUTION

Step 1 Graph $y=-x^{2}-2 x-1$. Because the inequality symbol is $<$, make the

Step 2 Test a point inside the parabola,

$$
\begin{gathered}
y<-x^{2}-2 x-1 \\
-3 \stackrel{?}{<}-0^{2}-2(0)-1
\end{gathered}
$$

parabola dashed. such as $(0,-3)$.

LOOKING FOR STRUCTURE

Notice that testing a point is less complicated when the x-value is 0 (the point is on the y-axis).

©

Check

Check that a point in the solution region, such as $(0,0)$, is a solution of the system.

$$
\begin{aligned}
& y<-x^{2}+3 \\
& 0<-0^{2}+3
\end{aligned}
$$

SOLUTION

 $y=-x^{2}+3$.$$
0<3
$$

$$
y \geq x^{2}+2 x-3
$$

$$
0 \stackrel{?}{\sum} 0^{2}+2(0)-3
$$ $y=x^{2}+2 x-3$.

$$
0 \geq-3
$$

EXAMPLE 2 Graphing a System of Quadratic Inequalities

Graph the system of quadratic inequalities.

$$
\begin{array}{ll}
y<-x^{2}+3 & \text { Inequality 1 } \\
y \geq x^{2}+2 x-3 & \text { Inequality 2 }
\end{array}
$$

Step 1 Graph $y<-x^{2}+3$. The graph is the red region inside (but not including) the parabola

Step 2 Graph $y \geq x^{2}+2 x-3$. The graph is the blue region inside and including the parabola

Step 3 Identify the purple region where the two graphs overlap. This region is the graph of the system.

$y \geq x^{2}+2 x-3$

Graph the inequality.

D 1. $y \geq x^{2}+2 x-8 \quad$ D 2. $y \leq 2 x^{2}-x-1 \quad$ D 3. $y>-x^{2}+2 x+4$
D 4. Graph the system of inequalities consisting of $y \leq-x^{2}$ and $y>x^{2}-3$.

Solving Quadratic Inequalities in One Variable

A quadratic inequality in one variable can be written in one of the following forms, where a, b, and c are real numbers and $a \neq 0$.
$a x^{2}+b x+c<0 \quad a x^{2}+b x+c>0 \quad a x^{2}+b x+c \leq 0 \quad a x^{2}+b x+c \geq 0$
You can solve quadratic inequalities using algebraic methods or graphs.

EXAMPLE 4 Solving a Quadratic Inequality Algebraically

Solve $x^{2}-3 x-4<0$ algebraically.

SOLUTION

First, write and solve the equation obtained by replacing $<$ with $=$.

$$
\begin{array}{rlrl}
x^{2}-3 x-4 & =0 & & \text { Write the related equation. } \\
(x-4)(x+1) & =0 & & \text { Factor. } \\
x=4 & \text { or } x & =-1 & \\
\text { Zero-Product Property }
\end{array}
$$

The numbers -1 and 4 are the critical values of the original inequality. Plot -1 and 4 on a number line, using open dots because the values do not satisfy the inequality. The critical x-values partition the number line into three intervals. Test an x-value in each interval to determine whether it satisfies the inequality.

$$
(-2)^{2}-3(-2)-4=6 \nless 0 \quad 0^{2}-3(0)-4=-4<0 \quad \int \quad 5^{2}-3(5)-4=6 \nless 0
$$

- So, the solution is $-1<x<4$.

Another way to solve $a x^{2}+b x+c<0$ is to first graph the related function $y=a x^{2}+b x+c$. Then, because the inequality symbol is <, identify the x-values for which the graph lies below the x-axis. You can use a similar procedure to solve quadratic inequalities that involve $\leq,>$, or \geq.

ㅇ
 EXAMPLE 5 Solving a Quadratic Inequality by Graphing

Solve $3 x^{2}-x-5 \geq 0$ by graphing.

SOLUTION

The solution consists of the x-values for which the graph of $y=3 x^{2}-x-5$ lies on

$y=3 x^{2}-x-5$ or above the x-axis. Find the x-intercepts of the graph by letting $y=0$ and using the Quadratic Formula to solve $0=3 x^{2}-x-5$ for x.

$$
\begin{array}{ll}
x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(3)(-5)}}{2(3)} & a=3, b=-1, c=-5 \\
x=\frac{1 \pm \sqrt{61}}{6} & \text { Simplify. }
\end{array}
$$

The solutions are $x \approx-1.14$ and $x \approx 1.47$. Sketch a parabola that opens up and has -1.14 and 1.47 as x-intercepts. The graph lies on or above the x-axis to the left of (and including) $x=-1.14$ and to the right of (and including) $x=1.47$.

The solution of the inequality is approximately $x \leq-1.14$ or $x \geq 1.47$.
Solve the inequality.
(
5. $2 x^{2}+3 x \leq 2$
6. $-3 x^{2}-4 x+1<0$
(1)
7. $2 x^{2}+2>-5 x$

