Chapter 4
 Polynomial Functions

Section 4-3
 Dividing Polynomials

Long Division of Polynomials

When you divide a polynomial $f(x)$ by a nonzero polynomial divisor $d(x)$, you get a quotient polynomial $q(x)$ and a remainder polynomial $r(x)$.

$$
\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}
$$

The degree of the remainder must be less than the degree of the divisor. When the remainder is 0 , the divisor divides evenly into the dividend. Also, the degree of the divisor is less than or equal to the degree of the dividend $f(x)$. One way to divide polynomials is called polynomial long division.

EXAMPLE 1 Using Polynomial Long Division

Divide $2 x^{4}+3 x^{3}+5 x-1$ by $x^{2}+3 x+2$.

Divide using polynomial long division.

D 1. $\left(x^{3}-x^{2}-2 x+8\right) \div(x-1)$

Synthetic Division

There is a shortcut for dividing polynomials by binomials of the form $x-k$. This shortcut is called synthetic division. This method is shown in the next example.

For Synthetic Division, the Divisor needs to be Linear

EXAMPLE 2 Using Synthetic Division

Divide $-x^{3}+4 x^{2}+9$ by $x-3$.

EXAMPLE 3 Using Synthetic Division

Divide $3 x^{3}-2 x^{2}+2 x-5$ by $x+1$.

Divide using synthetic division.

- 4. $\left(2 x^{3}-x-7\right) \div(x+3)$

Core Concept

The Remainder Theorem

If a polynomial $f(x)$ is divided by $x-k$, then the remainder is $r=f(k)$.

The Remainder Theorem tells you that synthetic division can be used to evaluate a polynomial function. So, to evaluate $f(x)$ when $x=k$, divide $f(x)$ by $x-k$. The remainder will be $f(k)$.

EXAMPLE 4 Evaluating a Polynomial

Use synthetic division to evaluate $f(x)=5 x^{3}-x^{2}+13 x+29$ when $x=-4$.

Use synthetic division to evaluate the function for the indicated value of x.
5. $f(x)=4 x^{2}-10 x-21 ; x=5$
(
6. $f(x)=5 x^{4}+2 x^{3}-20 x-6 ; x=2$

