Chapter 4
 Polynomial Functions

Section 4-4

Factoring Polynomials

Factoring Polynomials

Previously, you factored quadratic polynomials. You can also factor polynomials with degree greater than 2 . Some of these polynomials can be factored completely using techniques you have previously learned. A factorable polynomial with integer coefficients is factored completely when it is written as a product of unfactorable polynomials with integer coefficients.

EXAMPLE 1 Finding a Common Monomial Factor

Factor each polynomial completely.
a. $x^{3}-4 x^{2}-5 x$
b. $3 y^{5}-48 y^{3}$
c. $5 z^{4}+30 z^{3}+45 z^{2}$

Special Factoring Patterns

Sum of Two Cubes

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad \begin{aligned}
64 x^{3}+1 & =(4 x)^{3}+1^{3} \\
& =(4 x+1)\left(16 x^{2}-4 x+1\right)
\end{aligned}
$$

Difference of Two Cubes

$$
\begin{aligned}
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \quad 27 x^{3}-8 & =(3 x)^{3}-2^{3} \\
& =(3 x-2)\left(9 x^{2}+6 x+4\right)
\end{aligned}
$$

EXAMPLE 2 Factoring the Sum or Difference of Two Cubes

Factor (a) $x^{3}-125$ and (b) $16 s^{5}+54 s^{2}$ completely.

For some polynomials, you can factor by grouping pairs of terms that have a common monomial factor. The pattern for factoring by grouping is shown below.

$$
\begin{aligned}
r a+r b+s a+s b & =r(a+b)+s(a+b) \\
& =(r+s)(a+b)
\end{aligned}
$$

EXAMPLE 3 Factoring by Grouping

Factor $z^{3}+5 z^{2}-4 z-20$ completely.

An expression of the form $a u^{2}+b u+c$, where u is an algebraic expression, is said to be in quadratic form. The factoring techniques you have studied can sometimes be used to factor such expressions.

LOOKING FOR STRUCTURE

The expression $16 x^{4}-81$ is in quadratic form because it can be written as $u^{2}-81$ where $u=4 x^{2}$.

READING

In other words, $x-k$ is a factor of $f(x)$ if and only if k is a zero of f.

G) Core Concept

 The Factor TheoremA polynomial $f(x)$ has a factor $x-k$ if and only if $f(k)=0$.

EXAMPLE 5 Determining Whether a Linear Binomial Is a Factor

Determine whether (a) $x-2$ is a factor of $f(x)=x^{2}+2 x-4$ and (b) $x+5$ is a factor of $f(x)=3 x^{4}+15 x^{3}-x^{2}+25$.

EXAMPLE 6 Factoring a Polynomial

Show that $x+3$ is a factor of $f(x)=x^{4}+3 x^{3}-x-3$. Then factor $f(x)$ completely.

ANOTHER WAY

Notice that you can factor
$f(x)$ by grouping.

$$
\begin{aligned}
f(x)= & x^{3}(x+3)-1(x+3) \\
= & \left(x^{3}-1\right)(x+3) \\
= & (x+3)(x-1) . \\
& \left(x^{2}+x+1\right)
\end{aligned}
$$

Because the x-intercepts of the graph of a function are the zeros of the function, you
 can use the graph to approximate the zeros. You can check the approximations using the Factor Theorem.

EXAMPLE 7 Real-Life Application

During the first 5 seconds of a roller coaster ride, the function $h(t)=4 t^{3}-21 t^{2}+9 t+34$ represents the height h (in feet) of the roller coaster after t seconds. How long is the roller coaster at or below ground level in the first 5 seconds?

