Chapter 5 Rational Exponents and Radical Functions

Section 5-6 Inverse of a Function

Functions that undo each other are inverse functions.

To find the inverse function, switch x and y, and then solve for y.

EXAMPLE 1

Writing a Formula for the Input of a Function

Let f(x) = 2x + 3.

- **a.** Solve y = f(x) for x.
- **b.** Find the input when the output is -7.

Notice that these steps *undo* each other. Functions that undo each other are called **inverse functions**. In Example 1, you can use the equation solved for x to write the inverse of f by switching the roles of x and y.

$$f(x) = 2x + 3$$
 original function $g(x) = \frac{x - 3}{2}$ inverse function

Because inverse functions interchange the input and output values of the original function, the domain and range are also interchanged.

The graph of an inverse function is a *reflection* of the graph of the original function. The *line of reflection* is y = x. To find the inverse of a function algebraically, switch the roles of x and y, and then solve for y.

EXAMPLE 2 Finding the Inverse of a Linear Function

Find the inverse of f(x) = 3x - 1.

Find the inverse of the function. Then graph the function and its inverse.

4. f(x) = 2x

6.
$$f(x) = \frac{1}{3}x - 2$$

X	Y	X	Υ

Inverses of Nonlinear Functions

In the previous examples, the inverses of the linear functions were also functions. However, inverses are not always functions. The graphs of $f(x) = x^2$ and $f(x) = x^3$ are shown along with their reflections in the line y = x. Notice that the inverse of $f(x) = x^3$ is a function, but the inverse of $f(x) = x^2$ is *not* a function.

When the domain of $f(x) = x^2$ is *restricted* to only nonnegative real numbers, the inverse of f is a function.

You can use the graph of a function f to determine whether the inverse of f is a function by applying the horizontal line test.

G Core Concept

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

EXAMPLE 3 Finding the Inverse of a Quadratic Function

Find the inverse of $f(x) = x^2$, $x \ge 0$. Then graph the function and its inverse.

x	Υ	X	Y

EXAMPLE 4 Finding the Inverse of a Cubic Function

Consider the function $f(x) = 2x^3 + 1$. Determine whether the inverse of f is a function. Then find the inverse.

x	Υ	X	Y

EXAMPLE 5 Finding the Inverse of a Radical Function

Consider the function $f(x) = 2\sqrt{x-3}$. Determine whether the inverse of f is a function. Then find the inverse.

x	Υ	X	Y

Let f and g be inverse functions. If f(a) = b, then g(b) = a. So, in general,

$$f(g(x)) = x$$
 and $g(f(x)) = x$.

EXAMPLE 6 Verifying Functions Are Inverses

Verify that f(x) = 3x - 1 and $g(x) = \frac{x+1}{3}$ are inverse functions.