Chapter 5

Rational Exponents and Radical Functions
Section 5-6
Inverse of a Function

Functions that undo each other are inverse functions.
\(\left.$$
\begin{array}{c}\text { Input } \\
\begin{array}{l}\text { Function } \\
3\end{array} \\
f(x)=x+6\end{array}
$$ \longrightarrow \begin{array}{c}Output

9\end{array}\right]\)| Output |
| :---: |
| 3 |

To find the inverse function, switch x and y, and then solve for y.

EXAMPLE 1 Writing a Formula for the Input of a Function

Let $f(x)=2 x+3$.
a. Solve $y=f(x)$ for x.
b. Find the input when the output is -7 .

Notice that these steps undo each other. Functions that undo each other are called inverse functions. In Example 1, you can use the equation solved for x to write the inverse of f by switching the roles of x and y.

$$
f(x)=2 x+3 \quad \text { original function } \quad g(x)=\frac{x-3}{2} \quad \text { inverse function }
$$

Because inverse functions interchange the input and output values of the original function, the domain and range are also interchanged.

Original function: $f(x)=2 x+3$

x	-2	-1	0	1	2	
y	-1	1	3	5	7	
Inverse function: $g(x)=\frac{x-3}{2}$						
x	-1	1	3	5	7	
y	-2	-1	0	1	2	

The graph of an inverse function is a reflection of the graph of the original function. The line of reflection is $y=x$. To find the inverse of a function algebraically, switch the roles of x and y, and then solve for y.

EXAMPLE 2 Finding the Inverse of a Linear Function

Find the inverse of $f(x)=3 x-1$.

Find the inverse of the function. Then graph the function and its inverse.

- 4. $f(x)=2 x$
(6. $f(x)=\frac{1}{3} x-2$

X	Y

X	Y

Inverses of Nonlinear Functions

In the previous examples, the inverses of the linear functions were also functions. However, inverses are not always functions. The graphs of $f(x)=x^{2}$ and $f(x)=x^{3}$ are shown along with their reflections in the line $y=x$. Notice that the inverse of $f(x)=x^{3}$ is a function, but the inverse of $f(x)=x^{2}$ is not a function.

When the domain of $f(x)=x^{2}$ is restricted to only nonnegative real numbers, the inverse of f is a function.

You can use the graph of a function f to determine whether the inverse of f is a function by applying the horizontal line test.

G) Core Concept

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

EXAMPLE 3
 Finding the Inverse of a Quadratic Function

Find the inverse of $f(x)=x^{2}, x \geq 0$. Then graph the function and its inverse.

EXAMPLE 4 Finding the Inverse of a Cubic Function

Consider the function $f(x)=2 x^{3}+1$. Determine whether the inverse of f is a function. Then find the inverse.

EXAMPLE 5 Finding the Inverse of a Radical Function

Consider the function $f(x)=2 \sqrt{x}-3$. Determine whether the inverse of f is a function. Then find the inverse.

Let f and g be inverse functions. If $f(a)=b$, then $g(b)=a$. So, in general,

$$
f(g(x))=x \quad \text { and } \quad g(f(x))=x .
$$

EXAMPLE 6 Verifying Functions Are Inverses

Verify that $f(x)=3 x-1$ and $g(x)=\frac{x+1}{3}$ are inverse functions.

