Writing Transformations of Quadratic Functions

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the vertex. The vertex form of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \ne 0$ and the vertex is (h, k).

VERTEX AND INTERCEPT FORMS OF A QUADRATIC FUNCTION

FORM OF QUADRATIC FUNCTION

Vertex form $y = a(x-h)^2 + k$

CHARACTERISTICS OF GRAPH

The vertex is (h,k). The axis of symmetry is x = h.

$f(x) = a(x - h)^2 + k$ k indicates a a indicates a reflection h indicates vertical translation. in the x-axis and/or a a horizontal vertical stretch or shrink. translation.

G Core Concept

Horizontal Translations $f(x) = x^2$ $f(x - h) = (x - h)^2$ $y=(x-h)^2,$

- shifts left when h < 0
- shifts right when h > 0

Vertical Translations

- shifts down when k < 0
- shifts up when k > 0

Core Concept

Reflections in the x-Axis

Reflections in the y-Axis

 $f(x) = x^2$

 $y = x^2$ is its own reflection in the y-axis.

Horizontal Stretches and Shrinks

- · horizontal stretch (away from y-axis) when 0 < a < 1
- · horizontal shrink (toward y-axis) when a > 1

Vertical Stretches and Shrinks

- · vertical stretch (away from x-axis) when a > 1
- vertical shrink (toward x-axis) when 0 < a < 1

Core Concept

Standard Form

The graph $y = \alpha x^2 + bx + c$ is a parabola with these characteristics.

- The parabola opens up if a > 0 and opens down if a < 0. The parabola is wider than the graph of $y = x^2$ if |a| < 1 and narrower than the graph of $v = x^2$ if |a| > 1.
- The x-coordinate of the vertex is "
- The axis of symmetry is the vertical line $x = -\frac{b}{2a}$

Intercept form y = a(x-p)(x-q)

The x intercepts are p and q. The axis of symmetry is halfway between (p,0) and (q,0).

Standard Form Vertex

$$Vertex=\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

For both forms, the graph opens up if a > 0 and opens down if a < 0.

G Core Concept

Minimum and Maximum Values

For the quadratic function $f(x) = ax^2 + bx + c$, the y-coordinate of the vertex is the **minimum value** of the function when a > 0 and the **maximum value** when a < 0.

G Core Concept

Standard Equations of a Parabola with Vertex at the Origin Vertical axis of symmetry (x = 0)

Equation:
$$y = \frac{1}{4n}x^2$$

Focus:
$$(0, p)$$

Directrix:
$$y = -p$$

Horizontal axis of symmetry (y = 0)

Equation:
$$x = \frac{1}{4\rho}y^2$$

Directrix:
$$x = -p$$

G Core Concept

Standard Equations of a Parabola with Vertex at (h, k)Vertical axis of symmetry (x = h)

Equation:
$$y = \frac{1}{4p}(x - h)^2 + k$$

Focus:
$$(h, k+p)$$

Directrix:
$$y = k - p$$

Horizontal axis of symmetry (y = k)

Equation:
$$x = \frac{1}{4p}(y - k)^2 + h$$

Focus:
$$(h + p, k)$$

Directrix:
$$x = h - p$$

