G Core Concept

Sequences

Range:

A **sequence** is an ordered list of numbers. A *finite sequence* is a function that has a limited number of terms and whose domain is the finite set $\{1, 2, 3, ..., n\}$. The values in the range are called the **terms of a sequence**.

Domain: 1 2 3 4 ... n Relative position of each term

Terms of the sequence

An *infinite sequence* is a function that continues without stopping and whose domain is the set of positive integers. Here are examples of a finite sequence and an infinite sequence.

Finite sequence: 2, 4, 6, 8 Infinite sequence: 2, 4, 6, 8, ...

A sequence can be specified by an equation, or *rule*. For example, both sequences above can be described by the rule $a_n = 2n$ or f(n) = 2n.

G Core Concept

Series and Summation Notation

When the terms of a sequence are added together, the resulting expression is a series. A series can be finite or infinite.

Finite series: 2+4+6+8

Infinite series: $2+4+6+8+\cdots$

You can use summation notation to write a series. For example, the two series above can be written in summation notation as follows:

Finite series: $2 + 4 + 6 + 8 = \sum_{i=1}^{4} 2i$

Infinite series: $2 + 4 + 6 + 8 + \cdots = \sum_{i=1}^{\infty} 2i$

For both series, the *index of summation* is i and the *lower limit of summation* is 1. The *upper limit of summation* is 4 for the finite series and ∞ (infinity) for the infinite series. Summation notation is also called **sigma notation** because it uses the uppercase Greek letter sigma, written Σ .

G Core Concept

Formulas for Special Series

Sum of *n* terms of 1: $\sum_{i=1}^{n} 1 = n$

Sum of first *n* positive integers: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Sum of squares of first *n* positive integers: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Rule for an Arithmetic Sequence

Algebra The nth term of an arithmetic sequence with first term a_1 and common difference d is given by:

$$a_n = a_1 + (n-1)d$$

Example The *n*th term of an arithmetic sequence with a first term of 3 and a common difference of 2 is given by:

$$a_n = 3 + (n-1)2$$
, or $a_n = 2n + 1$

G Core Concept

The Sum of a Finite Arithmetic Series

The sum of the first n terms of an arithmetic series is

$$S_n = n \left(\frac{a_1 + a_n}{2} \right).$$

In words, S_n is the mean of the first and nth terms, multiplied by the number of terms.

G Core Concept

Rule for a Geometric Sequence

Algebra The *n*th term of a geometric sequence with first term a_1 and common ratio r is given by:

$$a_n = a_1 r^{n-1}$$

Example The *n*th term of a geometric sequence with a first term of 2 and a common ratio of 3 is given by:

$$a_n = 2(3)^{n-1}$$

G Core Concept

The Sum of a Finite Geometric Series

The sum of the first n terms of a geometric series with common ratio $r \neq 1$ is

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right).$$

G Core Concept

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_1 and common ratio r is given by

$$S = \frac{a_1}{1 - r}$$

provided |r| < 1. If $|r| \ge 1$, then the series has no sum.

G Core Concept

Recursive Equations for Arithmetic and Geometric Sequences Arithmetic Sequence

 $a_n = a_{n-1} + d$, where d is the common difference

Geometric Sequence

 $a_n = r \cdot a_{n-1}$, where r is the common ratio