

Chapter 6

Exponential and Logarithmic Functions

Section 6-1

Exponential Growth and Decay Functions

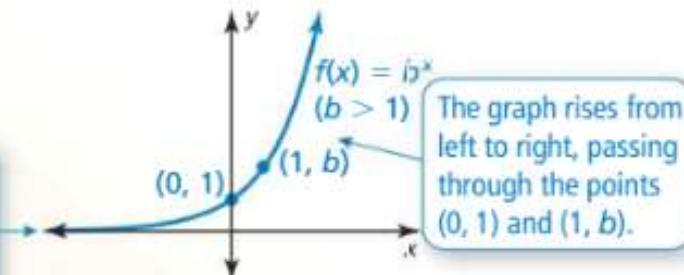
Exponential Growth and Decay Functions

Core Concept

Parent Function for Exponential Growth Functions

The function $f(x) = b^x$, where $b > 1$, is the parent function for the family of exponential growth functions with base b . The graph shows the general shape of an exponential growth function.

The x -axis is an **asymptote** of the graph. An **asymptote** is a line that a graph approaches more and more closely.



The graph rises from left to right, passing through the points $(0, 1)$ and $(1, b)$.

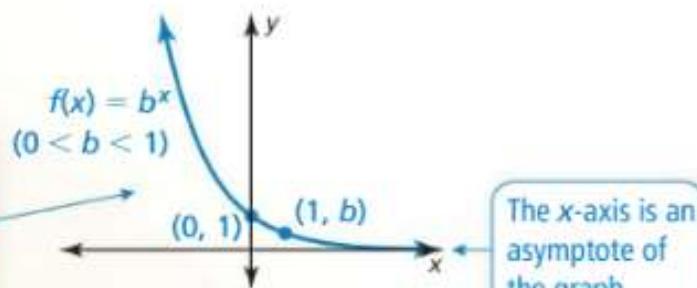
The domain of $f(x) = b^x$ is all real numbers. The range is $y > 0$.

Core Concept

Parent Function for Exponential Decay Functions

The function $f(x) = b^x$, where $0 < b < 1$, is the parent function for the family of exponential decay functions with base b . The graph shows the general shape of an exponential decay function.

The graph falls from left to right, passing through the points $(0, 1)$ and $(1, b)$.



The x-axis is an asymptote of the graph.

The domain of $f(x) = b^x$ is all real numbers. The range is $y > 0$.

EXAMPLE 1 Graphing Exponential Growth and Decay Functions

Tell whether each function represents *exponential growth* or *exponential decay*. Then graph the function.

a. $y = 2^x$

b. $y = \left(\frac{1}{2}\right)^x$

SOLUTION

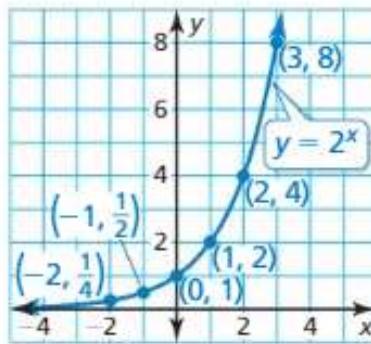
a. **Step 1** Identify the value of the base. The base, 2, is greater than 1, so the function represents exponential growth.

Step 2 Make a table of values.

x	-2	-1	0	1	2	3
y	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

Step 3 Plot the points from the table.

Step 4 Draw, from *left to right*, a smooth curve that begins just above the x -axis, passes through the plotted points, and moves up to the right.



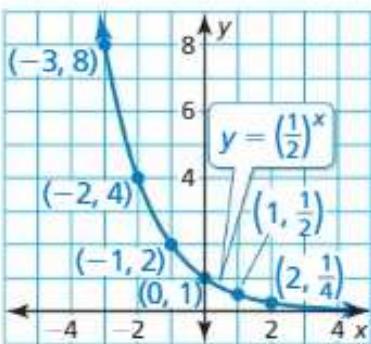
b. **Step 1** Identify the value of the base. The base, $\frac{1}{2}$, is greater than 0 and less than 1, so the function represents exponential decay.

Step 2 Make a table of values.

x	-3	-2	-1	0	1	2
y	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$

Step 3 Plot the points from the table.

Step 4 Draw, from *right to left*, a smooth curve that begins just above the x -axis, passes through the plotted points, and moves up to the left.



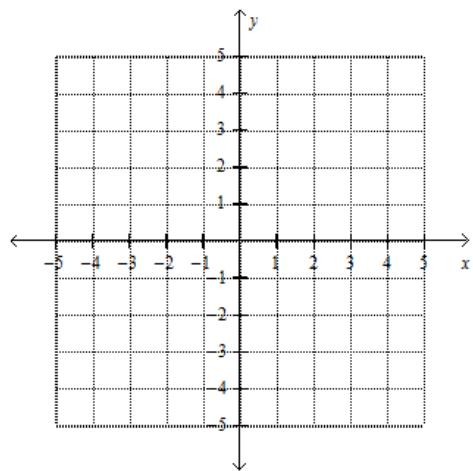
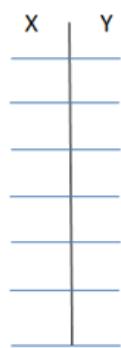
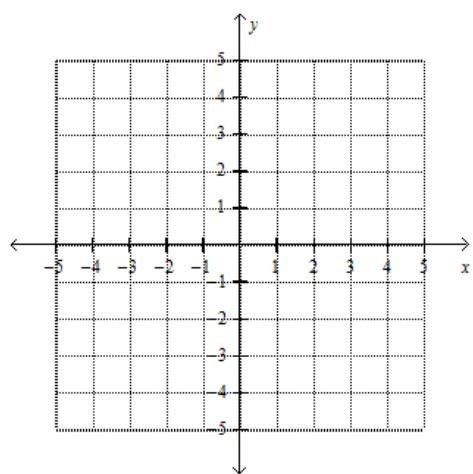
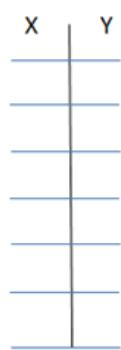
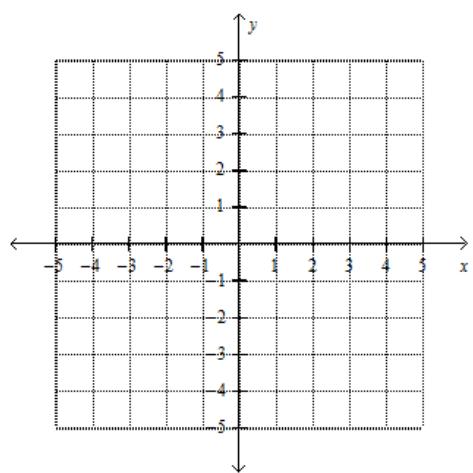
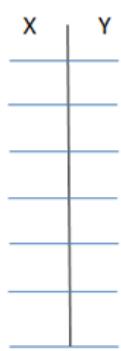
Tell whether the function represents *exponential growth* or *exponential decay*. Then graph the function.

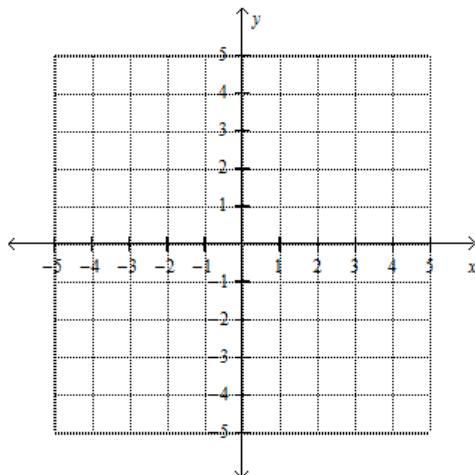
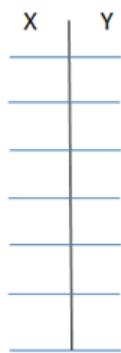
1. $y = 4^x$

2. $y = \left(\frac{2}{3}\right)^x$

3. $f(x) = (0.25)^x$

4. $f(x) = (1.5)^x$





Exponential Models

Some real-life quantities increase or decrease by a fixed percent each year (or some other time period). The amount y of such a quantity after t years can be modeled by one of these equations.

Exponential Growth Model

$$y = a(1 + r)^t$$

Exponential Decay Model

$$y = a(1 - r)^t$$

Note that a is the initial amount and r is the percent increase or decrease written as a decimal. The quantity $1 + r$ is the growth factor, and $1 - r$ is the decay factor.

EXAMPLE 2 Solving a Real-Life Problem

The value of a car y (in thousands of dollars) can be approximated by the model $y = 25(0.85)^t$, where t is the number of years since the car was new.

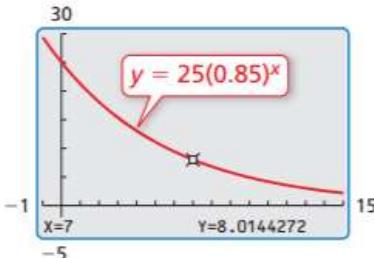
- Tell whether the model represents exponential growth or exponential decay.
- Identify the annual percent increase or decrease in the value of the car.
- Estimate when the value of the car will be \$8000.

SOLUTION

- The base, 0.85, is greater than 0 and less than 1, so the model represents exponential decay.
- Because t is given in years and the decay factor $0.85 = 1 - 0.15$, the annual percent decrease is 0.15, or 15%.
- Use the *trace* feature of a graphing calculator to determine that $y \approx 8$ when $t = 7$. After 7 years, the value of the car will be about \$8000.

REASONING QUANTITATIVELY

The percent decrease, 15%, tells you how much value the car *loses* each year. The decay factor, 0.85, tells you what fraction of the car's value *remains* each year.



EXAMPLE 3**Writing an Exponential Model**

In 2000, the world population was about 6.09 billion. During the next 13 years, the world population increased by about 1.18% each year.

- a. Write an exponential growth model giving the population y (in billions) t years after 2000. Estimate the world population in 2005.
- b. Estimate the year when the world population was 7 billion.

EXAMPLE 4**Rewriting an Exponential Function**

The amount y (in grams) of the radioactive isotope chromium-51 remaining after t days is $y = a(0.5)^{t/28}$, where a is the initial amount (in grams). What percent of the chromium-51 decays each day?

SOLUTION

Compound interest is interest paid on an initial investment, called the *principal*, and on previously earned interest. Interest earned is often expressed as an *annual* percent, but the interest is usually compounded more than once per year. So, the exponential growth model $y = a(1 + r)^t$ must be modified for compound interest problems.

Core Concept

Compound Interest

Consider an initial principal P deposited in an account that pays interest at an annual rate r (expressed as a decimal), compounded n times per year. The amount A in the account after t years is given by

$$A = P \left(1 + \frac{r}{n}\right)^{nt}.$$

EXAMPLE 5 Finding the Balance in an Account

You deposit \$9000 in an account that pays 1.46% annual interest. Find the balance after 3 years when the interest is compounded quarterly.