Chapter 6 Exponential and Logarithmic Functions

Section 6-2 The Natural Base e

💪 Core Concept

The Natural Base e The natural base e is irrational. It is defined as follows:

As x approaches $+\infty$, $\left(1+\frac{1}{x}\right)^x$ approaches $e \approx 2.71828182846$.

EXAMPLE 1 Simplifying Natural Base Expressions

Simplify each expression.

b.
$$\frac{16e^5}{4e^4}$$

c.
$$(3e^{-4x})^2$$

SOLUTION

a.
$$e^3 \cdot e^6 = e^{3+6}$$

$$= e^{9}$$

b.
$$\frac{16e^5}{4e^4} = 4e^{5-4}$$

$$=4e$$

c.
$$(3e^{-4x})^2 = 3^2(e^{-4x})^2$$

$$= 9e^{-8x}$$

$$=\frac{9}{e^{8x}}$$

Simplify the expression.

$$2. \frac{24e^8}{8e^5}$$

3.
$$(10e^{-3x})^3$$

1

Natural Base Functions

A function of the form $y = ae^{rx}$ is called a *natural base exponential function*.

- When a > 0 and r > 0, the function is an exponential growth function.
- When a > 0 and r < 0, the function is an exponential decay function.

The graphs of the basic functions $y = e^x$ and $y = e^{-x}$ are shown.

EXAMPLE 2

Graphing Natural Base Functions

Tell whether each function represents *exponential growth* or *exponential decay*. Then graph the function.

a.
$$y = 3e^x$$

b.
$$f(x) = e^{-0.5x}$$

LOOKING FOR STRUCTURE

You can rewrite natural base exponential functions to find percent rates of change. In Example 2(b),

$$f(x) = e^{-0.5x}$$

$$= (e^{-0.5})^{x}$$

$$\approx (0.6065)^{x}$$

$$= (1 - 0.3935)^{x}.$$

So, the percent decrease is about 39.35%.

SOLUTION

a. Because a = 3 is positive and
 r = 1 is positive, the function is an exponential growth function.
 Use a table to graph the function.

x	-2	-1	0	1
у	0.41	1.10	3	8.15

b. Because a = 1 is positive and r = -0.5 is negative, the function is an exponential decay function. Use a table to graph the function.

х	-4	-2	0	2
У	7.39	2.72	1	0.37

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

4.
$$y = \frac{1}{2}e^x$$

5.
$$y = 4e^{-x}$$

6.
$$f(x) = 2e^{2x}$$

Solving Real-Life Problems

You have learned that the balance of an account earning compound interest is given by $A = P\left(1 + \frac{r}{n}\right)^{nt}$. As the frequency n of compounding approaches positive infinity, the compound interest formula approximates the following formula.

G Core Concept

Continuously Compounded Interest

When interest is compounded *continuously*, the amount A in an account after t years is given by the formula

$$A = Pe^{rt}$$

where P is the principal and r is the annual interest rate expressed as a decimal.

4

8

12

Year

16

You and your friend each have accounts that earn annual interest compounded continuously. The balance A (in dollars) of your account after t years can be modeled by $A = 4500e^{0.04t}$. The graph shows the balance of your friend's account over time. Which account has a greater principal? Which has a greater balance after 10 years?

MAKING CONJECTURES

You can also use this reasoning to conclude that your friend's account has a greater annual interest rate than your account.