Chapter 6 Exponential and Logarithmic Functions

Section 6-5 Properties of Logarithms

Properties of Logarithms

You know that the logarithmic function with base b is the inverse function of the exponential function with base b. Because of this relationship, it makes sense that logarithms have properties similar to properties of exponents.

🔄 Core Concept

Properties of Logarithms

Let *b*, *m*, and *n* be positive real numbers with $b \neq 1$.

Product Property $\log_b mn = \log_b m + \log_b n$ Quotient Property $\log_b \frac{m}{n} = \log_b m - \log_b n$ Power Property $\log_b m^n = n \log_b m$

EXAMPLE 1 Using Properties of Logarithms

Use $\log_2 3 \approx 1.585$ and $\log_2 7 \approx 2.807$ to evaluate each logarithm.

a. $\log_2 \frac{3}{7}$	b. log ₂ 21	c. log ₂ 49

SOLUTION

	a. $\log_2 \frac{3}{7} = \log_2 3 - \log_2 7$	Quotient Property
	$\approx 1.585 - 2.807$	Use the given values of log ₂ 3 and log ₂ 7.
	= -1.222	Subtract.
	b. $\log_2 21 = \log_2(3 \cdot 7)$	Write 21 as 3 • 7.
	$= \log_2 3 + \log_2 7$	Product Property
	$\approx 1.585 + 2.807$	Use the given values of log_2 3 and log_2 7.
N	= 4.392	Add.
COMMON ERROR	c. $\log_2 49 = \log_2 7^2$	Write 49 as 7 ² .
Note that in general	$= 2 \log_2 7$	Power Property
$\log_b \frac{m}{n} \neq \frac{\log_b m}{\log_b n}$ and	$\approx 2(2.807)$	Use the given value log ₂ 7.
$-\log_b mn \neq (\log_b m)(\log_b n).$	= 5.614	Multiply.

Use $\log_6 5 \approx 0.898$ and $\log_6 8 \approx 1.161$ to evaluate the logarithm.

Rewriting Logarithmic Expressions

You can use the properties of logarithms to expand and condense logarithmic expressions.

EXAMPLE 2 Expanding a Logarithmic Expression

Expand $\ln \frac{5x^7}{y}$. **SOLUTION** $\ln \frac{5x^7}{y} = \ln 5x^7 - \ln y$

$$y = \ln 5 + \ln x^7 - \ln y$$
$$= \ln 5 + 7 \ln x - \ln y$$

Quotient Property Product Property

Power Property

EXAMPLE 3 Condensing a Logarithmic Expression

Condense $\log 9 + 3 \log 2 - \log 3$.

SOLUTION

$$\log 9 + 3 \log 2 - \log 3 = \log 9 + \log 2^3 - \log 3$$

$$= \log(9 \cdot 2^3) - \log 3$$
Product Property
$$= \log \frac{9 \cdot 2^3}{3}$$
Quotient Property
$$= \log 24$$
Simplify.

Expand the logarithmic expression.

5. log₆ 3x⁴

6.
$$\ln \frac{5}{12x}$$

Condense the logarithmic expression.

7. log x - log 9

8. ln 4 + 3 ln 3 - ln 12

Change-of-Base Formula

Logarithms with any base other than 10 or e can be written in terms of common or natural logarithms using the change-of-base formula. This allows you to evaluate any logarithm using a calculator.

Core Concept

Change-of-Base Formula

If a, b, and c are positive real numbers with $b \neq 1$ and $c \neq 1$, then

 $\log_c a = \frac{\log_b a}{\log_b c}$.

In particular, $\log_c a = \frac{\log a}{\log c}$ and $\log_c a = \frac{\ln a}{\ln c}$.

O

EXAMPLE 4 Changing a Base Using Common Logarithms

Evaluate log₃ 8 using common logarithms.

SOLUTION

In Example 4, log₃ 8 can be evaluated using natural logarithms.

 $\log_3 8 = \frac{\ln 8}{\ln 3} \approx 1.893$

ANOTHER WAY

Notice that you get the same answer whether you 🍙 use natural logarithms or 7 common logarithms in the

change-of-base formula.

$\log_3 8 = \frac{\log 8}{\log 3}$

 $\log_c a = \frac{\log a}{\log c}$

 $\approx \frac{0.9031}{0.4771} \approx 1.893$

Use a calculator. Then divide.

EXAMPLE 5 Changing a Base Using Natural Logarithms

Evaluate log₆ 24 using natural logarithms.

SOLUTION

$$\log_6 24 = \frac{\ln 24}{\ln 6}$$

$$\log_c a = \frac{\ln a}{\ln c}$$

$$\approx \frac{3.1781}{1.7918} \approx 1.774$$
Use a calculate

Inc

Use the change-of-base formula to evaluate the logarithm.

9. log₅ 8

D 10. log₈ 14

D 11. log₂₆ 9

12. log₁₂ 30

EXAMPLE 5

Changing a Base Using Natural Logarithms

Evaluate log₆ 24 using natural logarithms.

SOLUTION

$$\log_6 24 = \frac{\ln 24}{\ln 6}$$
 lo
 $\approx \frac{3.1781}{1.7918} \approx 1.774$ Us

$$\log_c a = \frac{\ln a}{\ln c}$$

Use a calculator. Then divide.

EXAMPLE 6

Solving a Real-Life Problem

For a sound with intensity I (in watts per square meter), the loudness L(I) of the sound (in decibels) is given by the function

$$L(I) = 10 \log \frac{I}{I_0}$$

where I_0 is the intensity of a barely audible sound (about 10^{-12} watts per square meter). An artist in a recording studio turns up the volume of a track so that the intensity of the sound doubles. By how many decibels does the loudness increase?

SOLUTION