Chapter 7 Rational Functions

Section 7-1 Inverse Variation

Classifying Direct and Inverse Variation

y = ax

Type of Variation

1

You have learned that two variables x and y show direct variation when y = ax for some nonzero constant a. Another type of variation is called inverse variation.

G Core Concept

Inverse Variation

Two variables x and y show **inverse variation** when they are related as follows:

$$y = \frac{a}{x}, a \neq 0$$

The constant a is the constant of variation, and y is said to vary inversely with x.

EXAMPLE 1 Classifying Equations

Tell whether x and y show direct variation, inverse variation, or neither.

a.
$$xy = 5$$

b.
$$y = x - 4$$

c.
$$\frac{y}{2} = x$$

SOLUTION

Given Equation

a. $xy = 5$	$y = \frac{5}{x}$	inverse
b. $y = x - 4$	y = x - 4	neither

Solved for v

c.
$$\frac{y}{2} = x$$
 $y = 2x$ direct

Tell whether x and y show direct variation, inverse variation, or neither.

- 1. 6x = y
- **2.** xy = -0.25 **3.** y + x = 10

The general equation y = ax for direct variation can be rewritten as $\frac{y}{x} = a$. So, a set of data pairs (x, y) shows direct variation when the ratios $\frac{y}{x}$ are constant.

The general equation $y = \frac{a}{x}$ for inverse variation can be rewritten as xy = a. So, a set of data pairs (x, y) shows inverse variation when the products xy are constant.

EXAMPLE 2 Classifying Data

Tell whether x and y show direct variation, inverse variation, or neither.

a.	x	2	4	6	8
	у	-12	-6	-4	-3

).	x	1	2	3	4
	у	2	4	8	16

Writing Inverse Variation Equations

EXAMPLE 3 Writing an Inverse Variation Equation

The variables x and y vary inversely, and y = 4 when x = 3. Write an equation that relates x and y. Then find y when x = -2.

SOLUTION

$$y = \frac{a}{a}$$
 Write general equation for inverse variation.

$$4 = \frac{a}{3}$$
 Substitute 4 for y and 3 for x.

$$12 = a$$
 Multiply each side by 3.

The inverse variation equation is
$$y = \frac{12}{x}$$
. When $x = -2$, $y = \frac{12}{-2} = -6$.

The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when x = 2.

6.
$$x = 4, y = 5$$

7.
$$x = 6, y = -1$$

Q 6.
$$x = 4, y = 5$$
 Q 7. $x = 6, y = -1$ **Q** 8. $x = \frac{1}{2}, y = 16$

EXAMPLE 4 Modeling with Mathematics

The time t (in hours) that it takes a group of volunteers to build a playground varies inversely with the number n of volunteers. It takes a group of 10 volunteers 8 hours to build the playground.

- · Make a table showing the time that it would take to build the playground when the number of volunteers is 15, 20, 25, and 30.
- · What happens to the time it takes to build the playground as the number of volunteers increases?

