Chapter 9
Trigonometric Ratios and Functions

Section 9-3

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

You can generalize the right-triangle definitions of trigonometric functions so that they apply to any angle in standard position.

Core Concept

General Definitions of Trigonometric Functions

Let θ be an angle in standard position, and let (x, y) be the point where the terminal side of θ intersects the circle $x^{2}+y^{2}=r^{2}$. The six trigonometric functions of θ are defined as shown.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y}, y \neq 0 \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x}, x \neq 0 \\
\tan \theta=\frac{y}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0
\end{array}
$$

These functions are sometimes called circular functions.

EXAMPLE 1 Evaluating Trigonometric Functions Given a Point

Let $(-4,3)$ be a point on the terminal side of an angle θ in standard position. Evaluate the six trigonometric functions of θ.

5) Core Concept

The Unit Circle

The circle $x^{2}+y^{2}=1$, which has center $(0,0)$ and radius 1 , is called the unit circle. The values of $\sin \theta$ and $\cos \theta$ are simply the y-coordinate and x-coordinate, respectively, of the point where the terminal side of θ intersects the unit circle.

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}=\frac{y}{1}=y \\
& \cos \theta=\frac{x}{r}=\frac{x}{1}=x
\end{aligned}
$$

It is convenient to use the unit circle to find trigonometric functions of quadrantal angles. A quadrantal angle is an angle in standard position whose terminal side lies on an axis. The measure of a quadrantal angle is always a multiple of 90°, or $\frac{\pi}{2}$ radians.

EXAMPLE 2 Using the Unit Circle

Use the unit circle to evaluate the six trigonometric functions of $\theta=270^{\circ}$.

Reference Angles

Core Concept

Reference Angle Relationships

Let θ be an angle in standard position. The reference angle for θ is the acute angle θ^{\prime} formed by the terminal side of θ and the x-axis. The relationship between θ and θ^{\prime} is shown below for nonquadrantal angles θ such that $90^{\circ}<\theta<360^{\circ}$ or, in radians, $\frac{\pi}{2}<\theta<2 \pi$.

Quadrant II

Degrees: $\theta^{\prime}=180^{\circ}-\theta$ Radians: $\theta^{\prime}=\pi-\theta$

Quadrant III

Degrees: $\theta^{\prime}=\theta-180^{\circ}$
Radians: $\theta^{\prime}=\theta-\pi$

Quadrant IV

Degrees: $\theta^{\prime}=360^{\circ}-\theta$
Radians: $\theta^{\prime}=2 \pi-\theta$

EXAMPLE 3 Finding Reference Angles

Find the reference angle θ^{\prime} for (a) $\theta=\frac{5 \pi}{3}$ and (b) $\theta=-130^{\circ}$.

Reference angles allow you to evaluate a trigonometric function for any angle θ. The sign of the trigonometric function value depends on the quadrant in which θ lies.

5) Core Concept

Evaluating Trigonometric Functions

Use these steps to evaluate a
trigonometric function for any angle θ :
Step 1 Find the reference angle θ^{\prime}.
Step 2 Evaluate the trigonometric function for θ^{\prime}.

Step 3 Determine the sign of the trigonometric function value from the quadrant in which θ lies.

Signs of Function Values

Quadrant II $\sin \theta, \csc \theta$: + $\cos \theta, \sec \theta:-$ $\tan \theta, \cot \theta:-$	Ay Quadrant I $\sin \theta, \csc \theta:+$ $\cos \theta, \sec \theta:+$ $\tan \theta, \cot \theta:+$
Quadrant III $\sin \theta, \csc \theta:-$ $\cos \theta, \sec \theta:-$ $\tan \theta, \cot \theta:+$	Quadrant IV ${ }^{x}$ $\sin \theta, \csc \theta:-$ $\cos \theta, \sec \theta:+$ $\tan \theta, \cot \theta:-$

EXAMPLE 4 Using Reference Angles to Evaluate Functions

Evaluate (a) $\tan \left(-240^{\circ}\right)$ and (b) $\csc \frac{17 \pi}{6}$.

EXAMPLE 5 Solving a Real-Life Problem

The horizontal distance d (in feet) traveled by a projectile launched at an angle θ and with an initial speed v (in feet per second) is given by

$$
d=\frac{v^{2}}{32} \sin 2 \theta . \quad \text { Model for horizontal distance }
$$

Estimate the horizontal distance traveled by a golf ball that is hit at an angle of 50° with an initial speed of 105 feet per second.

INTERPRETING MODELS

This model neglects air resistance and assumes that the projectile's starting and ending heights are the same.

