Chapter 9
Trigonometric Ratios and Functions
Section 9-5
Graphing Other Trigonometric Functions

Exploring Tangent and Cotangent Functions

The graphs of tangent and cotangent functions are related to the graphs of the parent functions $y=\tan x$ and $y=\cot x$, which are graphed below.
$\longleftarrow x$ approaches $-\frac{\pi}{2} \longrightarrow \longmapsto x$ approaches $\frac{\pi}{2} \longrightarrow$

\boldsymbol{x}	$-\frac{\pi}{2}$	-1.57	-1.5	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	1.5	1.57	$\frac{\pi}{2}$
$\boldsymbol{y}=\boldsymbol{\operatorname { t a n } \boldsymbol { x }}$	Undef.	-1256	-14.10	-1	0	1	14.10	1256	Undef.
\longleftrightarrow	$\tan x$ approaches $-\infty \longrightarrow \longmapsto \tan x$ approaches $\infty \longrightarrow$								

Because $\tan x=\frac{\sin x}{\cos x}, \tan x$ is undefined for x-values at which $\cos x=0$, such as
$x= \pm \frac{\pi}{2} \approx \pm 1.571$.
The table indicates that the graph has asymptotes at these values.
The table represents one cycle of the
 graph, so the period of the graph is π.

You can use a similar approach to graph $y=\cot x$. Because $\cot x=\frac{\cos x}{\sin x}, \cot x$ is undefined for x-values at which $\sin x=0$, which are multiples of π. The graph has asymptotes at these values. The period of the graph is also π.

(3) Core Concept

Characteristics of $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$ and $\boldsymbol{y}=\cot \boldsymbol{x}$

The functions $y=\tan x$ and $y=\cot x$ have the following characteristics.

- The domain of $y=\tan x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
- The domain of $y=\cot x$ is all real numbers except multiples of π. At these x-values, the graph has vertical asymptotes.
- The range of each function is all real numbers. So, the functions do not have maximum or minimum values, and the graphs do not have an amplitude.
- The period of each graph is π.
- The x-intercepts for $y=\tan x$ occur when $x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$.
- The x-intercepts for $y=\cot x$ occur when $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}, \ldots$.

Graphing Tangent and Cotangent Functions

The graphs of $y=a \tan b x$ and $y=a \cot b x$ represent transformations of their parent functions. The value of a indicates a vertical stretch ($a>1$) or a vertical shrink ($0<a<1$). The value of b indicates a horizontal stretch $(0<b<1)$ or a horizontal shrink ($b>1$) and changes the period of the graph.

Core Concept

Period and Vertical Asymptotes of $\boldsymbol{y}=\boldsymbol{a} \tan \boldsymbol{b} \boldsymbol{x}$ and $\boldsymbol{y}=\boldsymbol{a} \cot \boldsymbol{b x}$

The period and vertical asymptotes of the graphs of $y=a \tan b x$ and $y=a \cot b x$, where a and b are nonzero real numbers, are as follows.

- The period of the graph of each function is $\frac{\pi}{|b|}$.
- The vertical asymptotes for $y=a \tan b x$ are at odd multiples of $\frac{\pi}{2|b|}$.
- The vertical asymptotes for $y=a \cot b x$ are at multiples of $\frac{\pi}{|b|}$.

Each graph below shows five key x-values that you can use to sketch the graphs of $y=a \tan b x$ and $y=a \cot b x$ for $a>0$ and $b>0$. These are the x-intercept, the x-values where the asymptotes occur, and the x-values halfway between the x-intercept and the asymptotes. At each halfway point, the value of the function is either a or $-a$.

EXAMPLE 1 Graphing a Tangent Function

Graph one period of $g(x)=2 \tan 3 x$. Describe the graph of g as a transformation of the graph of $f(x)=\tan x$.

EXAMPLE 2 Graphing a Cotangent Function

Graph one period of $g(x)=\cot \frac{1}{2} x$. Describe the graph of g as a transformation of the graph of $f(x)=\cot x$.

Graphing Secant and Cosecant Functions

The graphs of secant and cosecant functions are related to the graphs of the parent functions $y=\sec x$ and $y=\csc x$, which are shown below.

\vdash period: $2 \pi-1$

-period: $2 \pi-1$

- Core Concept

Characteristics of $y=\sec x$ and $y=\csc x$
The functions $y=\sec x$ and $y=\csc x$ have the following characteristics.

- The domain of $y=\sec x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
- The domain of $y=\csc x$ is all real numbers except multiples of π. At these x-values, the graph has vertical asymptotes.
- The range of each function is $y \leq-1$ and $y \geq 1$. So, the graphs do not have an amplitude.
- The period of each graph is 2π.

To graph $y=a \sec b x$ or $y=a \csc b x$, first graph the function $y=a \cos b x$ or $y=a \sin b x$, respectively. Then use the asymptotes and several points to sketch a graph of the function. Notice that the value of b represents a horizontal stretch or shrink by a factor of $\frac{1}{b}$, so the period of $y=a \sec b x$ and $y=a \csc b x$ is $\frac{2 \pi}{|b|}$.

EXAMPLE 3 Graphing a Secant Function

Graph one period of $g(x)=2 \sec x$. Describe the graph of g as a transformation of the graph of $f(x)=\sec x$.

EXAMPLE 4 Graphing a Cosecant Function

Graph one period of $g(x)=\frac{1}{2} \csc \pi x$. Describe the graph of g as a transformation of the graph of $f(x)=\csc x$.

