

Big Little Thinking (BLT) with Gen AI

This resource offers some pre-written prompts to apply Big Little Thinking (BLT) to almost any problem. Gen AI has revolutionised the ability to apply frameworks to understand problems in different ways. Prompt engineering with Gen AI allows users to apply Big Little Thinking (BLT) to almost any problem at any scale. This is particularly useful for educators working with problems at different levels of learning and teaching. To begin:

- 1. Cut and paste a suitable prompt into a text editor (e.g., MS Word)
- 2. Modify the highlighted parts of the prompt to focus on a problem and context of interest.
- 3. Paste the modified prompt into a Gen Al application (e.g., ChatGPT, Co-Pilot, Gemini).
- 4. Check the output
- 5. Modify the prompt or create new prompts to explore the problem in more detail.
- 1. Prompt to generate problems, related zygos (i.e., dyads), and scenarios by discipline and level of learning.

You are an expert <mark>teacher</mark> planning to help <mark>students</mark> think through <mark>global problems and social issues</mark>. Create a table with three columns.

- Column 1 is titled 'Level' and should contain rows for Early Childhood, Primary School, Middle School, Secondary School, and Tertiary levels of learning.
- Column 2 is titled 'Problem' and should contain brief descriptions of problems that are suitable to explore at each level.
- Column 3 is titled 'Zygo' and should identify three pairs or opposites (e.g., ecological-technological) that are central to understanding different perspectives on the problem.
- Column 4 is titled 'Scenario' and should briefly describe a real-world scenario related to the problem where people may value different sides of the pair.

BIGLIIL THINKING

2. Prompt to identify worked zygos relevant to a problem.

Identify 10 pairs (i.e., poles, tensions, or opposites) related to the problem of X. The pairs should be named as neutrally as possible such that one part is just as valuable as the other part. Then, construct a separate table with six cells (2 columns and 3 rows) for each pair according to the following rules:

- The left middle cell should contain the first term of the pair.
- The right middle cell should contain the second term of the pair.
- The left top cell should contain three synonymous terms or phrases that place the first term in a positive light.
- The right top cell should contain three synonymous terms or phrases that place the second term in a positive light.
- The left bottom cell should contain three synonymous terms or phrases that place the first term in a negative light.
- The right bottom cell should contain three synonymous terms or phrases that place the second term in a negative light.

3. Prompt to apply the whole BLT framework to a single problem.

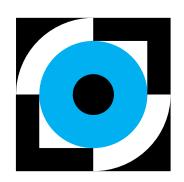
Please analyse the following problem using the table provided. The problem to be analysed is X.

Column 1 of the table (i.e., Framework) identifies and defines elements of the Big Little Thinking (BLT) framework.

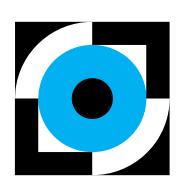
Column 2 of the table (i.e., Analyses) provides tasks and questions about the problem that are based on the elements of the framework. Please replace each task or question with your response.

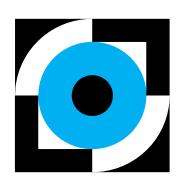
Column 3 of the table (i.e., Questions) provides a space to generate more specific questions about the problem that could encourage deeper understanding and better solutions. Please write an appropriate question related to each element.

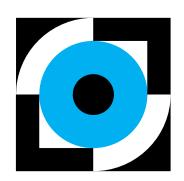
Column 4 of the table (i.e., Scenario) provides a space to describe a specific scenario with a fictional character where the analysis could be relevant.


Column 5 of the table (i.e., Reference) provides a space to cite an existing and authoritative article that could support further thinking about the problem related to the element.

BIG LITTLE TO THINKING


FRAMEWORK	ANALYSIS	QUESTION	SCENARIO	REFERENCE
PROBLEMS FOR THINKING				
Situations: A situation is any event or occurrence that implies a problem, generally consists of objects, agents, actions connected in and across place and time. A situation is the 'who, what, when, where' of a problem.	Identify a situation that is relevant to the problem.			
Problems: A problem is any situation that requires the coordination and creation of parts for a purpose. A problem is usually framed as a statement that identifies something as broken, missing, or misaligned.	Identify sub-problems related to the problem.			
Solutions: A solution is any coordination, configuration or creation of parts that helps to address a problem. A solution is usually framed as a statement that identifies something as helping, fixing or balancing.	Identify types of solutions related to the problem.			
WAYS OF THINKING				
Critical Thinking: Critical thinking tests knowledge through analysis and deconstruction.	What are some significant ways to think creatively about the problem?			
Creative Thinking: Creative thinking generates knowledge through novel assemblies and perspectives.	What are some significant ways to think creatively about the problem?			
Consilient Thinking: Consilient thinking explores deep connectivity between seemingly separate thoughts.	What are some significant ways to think consiliently about the problem?			


UNITS OF THINKING			
Propositions: A proposition is a truth claim about an association (e.g. cause, correlation, attribution) between an entity and a property.	What are the most contested claims that relate to the problem?		
Entities: An entity is any thing (object, action, or concept) that is the focus of thinking.	What are the most contested entities that relate to the problem?		
Properties : A property is a characteristic or attribute that defines a thing.	What are most contested properties that relate to the problem?		
Zygos: Zygos are essentially pairs, dyads, or poles that frame a spectrum of possibilities for properties (e.g., Big-Little, Black-White, Fast-Slow).	What are the most contested pairs or dyads that relate to the problem?		
DIMENSIONS FOR THINKING			
Meaning: Meaning represents the origin and expansion of all other dimensions. It raises ultimate questions about purpose and origins.	What are most foundational worldviews or paradigms that are conflicting in the problem?		
Space: Space represents the position and location of material entities.	What are the most significant geographical locations related to the problem?		
Time: Time represents chronological changes, developments, and differentiations.	What are the most significant time periods related to the problem?		


Fact: Facts are the description of properties of entities (i.e., objects, actions, concepts, and agents) without attempt to explicitly value those properties. Facts are represented by left-right zygos (e.g., Big-Little). Value: Values are judgements	What are the most significant facts that define or contribute to the problem? What are the most significant			
and interpretations of how descriptions are and should be felt and experienced. Values are represented by positivenegative zygos.	values that define or contribute to the problem?			
DOMAINS FOR THINKING				
Scope: Scope refers to the extent or spread of a domain. The big picture expands the domain. The little picture reduces the domain.	What is most contested about the scope of the problem?			
Scale: Scale represents the degree of detail, or resolution used to measure or observe a domain.	What is most contested about the scale of the problem?			
Significance: Significance represents the relevance or value of a thing observed within a domain. Different levels of importance may be ascribed to the 'same' thing.	What is most contested about the significance of the problem?			
Field: Field represents the nature or mode of inquiry that defines the domain. Problems and solutions can look and feel different through alternative disciplinary lenses.	What is most contested by different fields relating to the problem?			
DYNAMICS FOR THINKING				
General: General dynamics can describe any relationship between constituents of a zygo.	What are the most general dynamics that are significant to the problem?			

Combining: Question: Combining dynamics tend to reconcile or bring dyadic constituents together.	What are the most significant dynamics that bring positions together in relation to the problem?			
Separating: Separating dynamics tend to set dyadic constituents in opposition to each other.	What are the most significant dynamics that drive positions apart in relation to the problem?			
DEVELOPMENTS FOR THINKING	3			
Niladic: Thinking that is more absent, or <i>negating</i> .	How could the problem be described from the two niladic perspectives?			
Monadic: Thinking that is more singular, or <i>holistic</i> .	How could the problem be described from the two monadic perspectives?			
Dyadic: Thinking that is more binary oppositional, or dualising.	How could the problem be described from the two dyadic perspectives?			
Triadic: Thinking that is more middling, or <i>synthesising</i> .	How could the problem be described from the two triadic perspectives?			
Polyadic: Thinking that is more multiplying, or <i>differentiating</i> .	How could the problem be described from the two polyadic perspectives?			
Enigmatic: Thinking that is more supernatural, or metaphysical.	How could the problem be described from the two enigmatic perspectives?			
PROCESS FOR THINKING				
Initiate: Choose a topic and select a problem	Give an example of how to initiate awareness of the problem.			

Populate: Share experiences	Give an example of how to		
and opinions of the problem.	populate the problem with		
	details.		
Investigate: Select and apply	Give an example of how to		
BLT's units, dimensions,	investigate the problem in		
domains, dynamics, and	more depth using the		
developments to explore and	dimension, domains,		
refine the problem.	dynamics, and developments of BLT.		
Ideate: Imagine possible	Give an example of how to		
solutions to the problem.	ideate possible solutions to		
	the problem.		
Create: Create practicable	Give an example of how to		
solutions for the problem.	create a significant solution to		
	the problem.		
Actuate: Implement solutions	Give an example of how to		
to the problem.	implement a significant		
	solution to the problem.		
Evaluate : Review and evaluate	Give an example of how to		
solutions to the problem.	evaluate a significant solution		
	to the problem.		
Iterate: Repeat the process,	Give an example of how to		
change the process, or	critique or adapt the BLT		
reconceptualise the problem.	framework to improve		
	solutions to the problem.		
	מסוטנוטווא נט נוופ אוטטנפווו.		

