
	

https://fepef.foaptoa.com/gdy?utm_term=tailwind+css+sample+sites


Tailwind	css	sample	sites

In	the	world	of	CSS	frameworks,	the	battle	for	the	best	approach	to	styling	web	applications	continues.	Some	choose	CSS	modules	with	SCSS	or	not,	others	prefer	CSS	in	JS,	and	still,	others	simply	install	Material	Design.	There	are	many	possibilities	and	depending	on	the	needs,	everyone	will	surely	find	something	for	themselves.	

In	this	article,	however,	I	would	like	to	focus	on	a	solution	that	is	completely	different	from	those	mentioned	earlier.	I’m	talking	about	a	framework	recently	gaining	publicity	–	Tailwind	CSS.In	this	article,	I’m	going	to	give	you	a	really	practical	overview	of	the	Tailwind	CSS	framework.	
And	with	the	framework	still	going	strong	and	only	recently	getting	the	biggest	2023	update	with	a	new	changelog	template,	it’s	very	much	worthing	learning	more	about	it.	What	exactly	are	you	going	to	get?What	you’ll	learn	–	the	complete	Tailwind	CSS	tutorialThe	festivities	include:	general	thoughts	on	the	framework,	including	its	intended
objectives	and	target	audience,	its	unique	approach	to	writing	CSS	that	may	confuse	some	pros,	the	usage	of	pseudoselectors	for	states,	handling	responsiveness	with	the	Tailwind	CSS	framework,	writing	a	whole	CSS	Tailwind	powered	web	app!,	customizing	the	CSS	tailwind	framework,	creating	your	own	classes	in	the	framework,	as	well	as
trimming	classes.Let’s	get	started.Tailwind	CSS	doesn’t	provide	ready-made	building	blocks	for	your	layouts	like	Bootstrap	or	Material	Design	but	also	does	not	focus	on	writing	everything	manually	offering	only	syntactic	sugar.	The	creators	themselves	refer	to	it	as	“utility	first”	because	what	you	mainly	get	in	it	is	a	set	of	existing	classes	that	control
individual	aspects	of	the	appearance	and	behaviour	of	your	application	elements.	Do	you	remember	mt-2	or	invisible	from	Bootstrap?	

Then	imagine	Tailwind	CSS	only	consists	of	this.As	I	already	mentioned,	styling	an	application	in	Tailwind	CSS	is	based	on	a	set	of	classes	which	are	modifying	one	or	two	CSS	attribute	each.	Each	element	will	have	a	lot	of	such	classes	assigned	to	it.	
This	may	seem	crazy	at	first,	but	it	works	pretty	well	in	practice.Paradoxically,	I’ve	noticed	that	people	who	know	CSS	very	well	have	the	most	difficulties	with	migrating	to	Tailwind	CSS.	Such	developers	may	get	discouraged	when	they	have	to	check	what	class	they	should	use	to	get	the	desired	effect.	After	all,	they	could	get	the	same	result	in	a
blink	of	an	eye	by	writing	CSS	attributes	manually,	which	they	know	perfectly	well.From	my	own	experience,	however,	I	will	say	that	it	is	worth	making	this	mental	shift,	because	after	learning	a	few	rules	governing	the	naming	of	classes	in	Tailwind	CSS,	your	work	will	significantly	speed	up,	and	styling	the	application	may	turn	out	to	be	faster	than
using	traditional	CSS.Let’s	see	how	it	looks	in	practice:You	have	several	classes	used	in	this	example.	Leks	check	them	one-by-one:	bg-green-300	–	this	class	sets	a	green	background	(this	the	bg	prefix).	The	value	300	in	the	name	is	just	the	shade	number.	border-green-600	–	it’s	similar	to	the	previous	class	but	it	sets	the	elements	borders	colour	to	a
slightly	darker	green.	border-b	–	this	class	does	nothing	more	than	set	the	border	to	be	visible	only	at	the	bottom	(“b”	stands	for	“bottom”)	p-4	and	m-4	those	two	classes	make	the	margin	and	padding	the	size	of	4	units.	In	Tailwind	CSS,	this	is	equivalent	to	16px.	rounded	–	finally,	this	sets	the	rounded	corners	for	the	element.With	all	those	classes	the
final	effect	will	look	like	this:If	you	don’t	like	the	round	corners,	you	can	always	adjust	them.	The	rounded	class	has	many	varieties,	such	as	rounded-sm	or	rounder-lg,	that	give	the	element	corners	a	smaller	or	larger	radius	of	rounding,	respectively.	It	is	also	possible	to	round	off	only	the	selected	corners.Also,	as	you	can	see,	it	is	impossible	to
describe	all	CSS	classes	and	their	varieties	here.	Tailwind	CSS	supports	all	popular	CSS	attributes	and	has	many	CSS	classes	to	handle	each	of	them.	Shadows,	borders,	grids,	flexboxes,	colours	and	fonts	–	all	of	this	is	well	supported.	If	you	are	interested,	I	encourage	you	to	explore	the	Tailwind	CSS	documentation.What	you	saw	above	are	the	easiest
ways	to	use	Tailwind	CSS	classes.	However,	styling	modern	applications	is	more	than	just	static	appearance.	Views	must	be	responsive	and	must	change	according	to	the	width	of	the	device	screen.	Elements	must	also	often	react	to	mouse	movement	and,	for	example,	highlight	when	hovering	over	them	with	the	cursor.All	such	responsiveness	and
different	states	of	various	elements	are	often	the	weakest	elements	of	many	low-level	CSS	frameworks.	Not	that	the	pure	CSS	was	any	better	(writing	media	queries	can	be	a	nightmare)	but	usually,	even	in	frameworks,	these	syntaxes	aren’t	exactly	elegant.You	don’t	need	a	crystal	ball	to	predict	that.	

	Check	out	our	“State	of	Frontend”	report	based	on	a	worldwide	survey	amongst	4500	developers.However,	Tailwind	CSS	is	different.	Here	you	operate	on	classes	and	if,	for	example,	you	want	a	class	to	be	active	only	when	the	user	hovers	the	cursor	over	the	button,	it’s	enough	to	precede	such	class	with	the	prefix	of	the	CSS	pseudoselector,	e.g.
hover:The	above	example	shows	how	the	hover	prefix	was	used	to	change	the	background	of	an	element.	Of	course,	Tailwind	CSS	supports	other	pseudo	selectors	as	well.	
When	it	comes	to	more	complex	cases	from	the	day-to-day	battlefield,	Tailwind	CSS	also	tries	to	help.	For	example,	you	can	very	easily	change	the	styles	of	the	descendants	of	the	selected	element.For	this	purpose,	you	just	use	the	group	class	in	the	element	that	is	to	be	hovered	over	and	the	group-hover	prefix	in	the	descendant:If	you	begin	to	worry
about	the	increasing	length	of	class	attributes	then	please	remain	calm.	We	will	try	to	remedy	this	a	bit	later.It	just	so	happens	that	handling	responsiveness	in	Tailwind	CSS	is	also	fabulously	simple.	If	you	want	some	classes	to	be	active	for	a	given	view,	you	precede	them	with	a	prefix	denoting	a	specific	screen	size,	e.g.	‘sm’	for	larger	phones,	md	for
tablets	and	lg	for	monitors.	The	class	without	prefix	will	then	only	be	used	for	the	smallest	screens.In	this	example,	you	have	created	a	block	–	the	larger	the	screen	on	which	you	display	it,	the	larger	its	margin.	Of	course,	nothing	prevents	you	from	adding	more	classes	to	an	element	at	the	same	time,	preceded	by	the	screen	size	prefix	or	some
pseudoselector.	Different	prefixes	can	also	be	concatenated	to	get	classes	like	lg:hover:shadow-md.Here	you	may	ask	yourself	since	Tailwind	CSS	supports	most	CSS	attributes	with	dozens	of	classes	and	each	class	can	be	preceded	by	one	or	more	prefixes,	will	my	application	not	grow	by	several	megabytes	after	adding	this	framework?And	that	is	a
very	good	question.	
It	turns	out	that	Tailwind	CSS	doesn’t	generate	all	possible	combinations	by	default.	Moreover,	it	has	the	tools	to	remove	unused	classes	and	thus	further	reduce	the	size	of	the	resulting	source	code.But	to	talk	about	it	in	detail,	we	need	to	explain	how	to	install	Tailwind	CSS	in	your	application	and	how	it	works	first.Tailwind	CSS	doesn’t	work	as	a
regular	CSS	library.	This	isn’t	just	a	collection	of	styles	that	you	include	in	our	CSS.	You	also	need	to	properly	transpile	your	code	using	Tailwind	classes	to	get	working	styles	as	a	result.While	there	are	several	ways	to	use	Tailwind	CSS,	the	recommended	method	is	the	PostCSS	preprocessor	and	a	dedicated	plugin	that	will	generate	the	styles	you
need.	The	aforementioned	preprocessor	works	like	other	tools	of	this	type,	e.g.	SCSS	or	LESS:	it	takes	your	code	and	with	the	help	of	appropriate	logic	transpiles	it	into	pure	CSS.	PostCSS	has	the	advantage	of	being	fully	extensible.	You	can	write	plugins	for	it	and	expand	its	capabilities	depending	on	your	needs.	This	is	a	situation	similar	to	Babel	or
Eslint.If	you	use	PostCSS,	the	exact	way	to	install	Tailwind	CSS	in	your	project	will	really	depend	on	the	technology	stack,	you	can	easily	find	the	right	instruction	for	installing	everything	on	the	Internet.	A	lot	is	also	covered	in	the	excellent	Tailwind	CSS	documentation.For	the	purposes	of	this	article,	I	will	discuss	how	to	install	the	CSS	framework	in
question	in	projects	generated	with	the	popular	Create	React	App	starter.	Assuming	that	the	project	itself	has	already	been	created,	you	can	proceed	to	install	the	necessary	libraries	in	the	appropriate	versions.	Then,	I’m	also	going	to	create	a	HTML	file	as	well	as	a	final	CSS	file.The	problem	with	CRA	is	that	this	tool	uses	PostCSS	internally	and
doesn’t	allow	to	override	its	preprocessor	configuration	in	any	built-in	way.	However,	this	isn’t	a	hopeless	situation	because	you	can	use	CRACO,	a	tool	for	easily	overwriting	all	CRA	settings.	So	install	CRACO	in	your	project:…	and	then	we	modify	the	commands	in	package.json	so	that	your	application	launched	with	the	help	of	this	tool:The	next	step
is	to	create	a	settings	file	for	CRACO	that	will	define	how	PostCSS	configuration	should	be	overwritten.	For	this	purpose,	in	the	main	folder	of	your	application,	create	the	craco.config.js	file	and	put	the	following	content	inside:In	the	code	above	we	added	two	plugins	to	the	PostCSS	configuration.	The	first	is	your	Tailwind	CSS	transpiler	to	generate
all	the	classes	you	need,	and	the	second	is	an	autoprefixer	that	will	ensure	all	CSS	attributes	will	be	generated	in	versions	for	all	browsers	you	should	support.Now	that	we	have	PostCSS	configured,	it’s	time	to	add	the	Tailwind	settings	file	itself.	The	fastest	way	to	do	this	is	to	generate	it	with	the	command:After	a	while,	the	tailwind.config.js	file	will
appear	in	the	main	folder	of	your	project	with	the	following	content:This	configuration	is	empty	for	now,	but	you	will	have	time	to	expand	it	a	bit	before	the	end	of	the	article.	Now	as	long	as	you	only	add	to	the	purge	field	the	files	in	which	you	are	going	to	use	the	Tailwind	classes.	You	can	use	the	glob	expressions:This	setting	allows	Tailwind	CSS	to
check	in	the	indicated	files	which	classes	you	actually	used	in	your	project	and	which	of	them	should	be	added	to	the	production	build	of	our	application.	

All	others	will	be	cut	out,	reducing	the	final	size	of	your	styles.For	this	mechanism	to	work	properly,	however,	you	must	remember	one	rule:	you	mustn’t	dynamically	concatenate	class	names	anywhere	in	the	code.That	is,	instead	of	doing	something	like	this:…you	should	always	use	uncut	names:Finally,	there	is	one	thing	left	to	do.	You	need	to
indicate	where	you	want	to	include	this	framework	in	your	application.	And	you	can	do	it	in	two	ways.	Either	by	adding	PostCSS	understandable	instructions	in	one	of	your	CSS	files:…or	import	the	all-in-one	set	into	a	JS/TS	file:The	latter	solution	is	preferable	if	your	stack	allows	you	to	directly	import	CSS	files	to	JS.	If	you	think	Tailwind	CSS	may	not
be	the	best	choice	for	you	because	you	are	afraid	it	will	limit	you	in	some	way,	you	can	sleep	well.	Since	all	Tailwind	classes	are	generated	during	the	build,	you	can	easily	modify	them	from	the	configuration	file.Let’s	take	a	look	at	such	adjustments	of	the	breakpoints	of	a	responsive	layout:With	the	above	code,	you	have	overwritten	the	default
Tailwind	breakpoints,	i.e.	sm,	md,	lg,	etc.,	and	created	your	own.	From	now	on,	in	your	application,	you	can	start	using	such	classes	as	tablet:font-weight	or	desktop:text-white,	that	are	activated	on	the	resolutions	indicated	in	the	configuration	file.	

If	you	need	to	use	classes	that	are	active	up	to	a	given	resolution	or	set	some	more	advanced	conditions,	then	everything	is	possible:For	more	examples	and	instructions	on	how	to	expand	the	breakpoint	list	without	overwriting	the	default	ones,	please	visit	the	official	documentation	pages.Another	aspect	of	Tailwind	CSS	that	many	of	you	will	want	to
customize	is	the	availability	of	colours.	The	easiest	way	to	do	this	is	by	creating	a	palette	from	ready-made	sets	of	shades.	For	example,	if	you	plan	to	use	red	and	yellow	and	a	few	other	primary	colours,	your	palette	could	look	like	this:Nothing	prevents	you	from	defining	your	own	shades	or	naming	the	colours	in	a	specific	way:After	such	a
reconfiguration	of	Tailwind	CSS,	you	can	refer	to	defined	shades	in	the	code	using	classes	such	as	bg-primary-light	or	text-secondary-dark.Ok,	what	if	you	want	to	further	modify	the	content	of	Tailwind’s	built-in	classes?	This	is	also	possible	and	it	is	also	done	from	the	configuration	file	level.	Let’s	assume	that	according	to	your	class	shadow-lg	casts
too	soft	shadows	for	your	taste	and	you	want	to	strengthen	this	effect	a	bit.	You	can	do	it	very	easily	by	modifying	the	appropriate	field	in	the	theme	settings:Note	how	we	have	overridden	the	styles	only	for	the	lg	variant,	and	left	the	rest	of	the	settings	default,	referring	to	the	default	theme.	
Of	course,	other	classes	can	also	be	modified	as	shown.One	more	thing!	I’ve	mentioned	at	the	beginning	of	the	article	that	by	default	Tailwind	doesn’t	generate	all	prefix	and	class	combinations.	For	example,	without	changing	the	settings,	you	cannot	use	the	active:shadow	class	in	your	application,	which	should	appear	on	the	button	when	it	is	clicked
(equivalent	to	button:active).	Tailwind	simply	doesn’t	generate	this	class	for	the	default	settings.	How	to	change	it?	
Pretty	straightforward.	That’s	why	there	is	a	variants	field	in	the	configuration,	to	set	additional	prefix	combinations	that	we	need.So	far,	you	have	only	modified	existing	class	sets.	Tailwind,	despite	being	a	very	universal	tool,	doesn’t	have	classes	for	absolutely	all	CSS	attributes	or	cases	of	their	use.	Tailwind	also	doesn’t	support	e.g.	CSS	attributes
which	are	not	yet	supported	in	all	browsers.	Can	Tailwind	help	you	to	create	your	own	classes?	As	it	turns	out	–	yes.You	can	order	Tailwind	to	generate	single	classes	or	whole	sets	of	classes	with	different	prefixes.	This	is	done	in	a	CSS	file	using	the	@layers	at-rule	For	example,	Tailwind	doesn’t	support	CSS	filters,	so	if	you	want	to	display	elements	in
shades	of	grey	on	your	website,	you	can	add	the	missing	filter	support	in	the	following	way:Thanks	to	this,	you	can	now	combine	your	filter-grayscale	and	filter-none	classes	with	the	hover	and	focus	prefixes	and	thus,	for	example,	make	colourful	pictures	only	when	they	are	indicated	by	the	cursor.Generating	classes	works	great.	But	in	this	form,	it
can	be	quite	a	chore	to	define	if	you	want	to	do	a	whole	range	of	classes	(e.g.	set	a	different	filter	power	in	the	range	from	0	to	100	in	increments	of	10).	Do	you	have	to	write	everything	manually	then?	Fortunately,	Tailwind	comes	to	your	aid	here	as	well.You	can	write	your	own	utility	plugin	for	this	framework	that	will	generate	definitions	for	a	whole
range	of	styles.To	add	such	a	plug,	you	have	to	go	back	to	your	configuration	file	and	import	a	file	in	the	plugins	field,	where	you	will	store	your	styles	generator.The	second	step	is	to	write	the	generator	itself	that	produces	all	the	class	descriptions	you	need.	In	my	scenario,	the	content	of	filter.tailwind.js	looks	like	this:When	you	look	at	it,	there	is
nothing	complicated	here.	First,	you	add	a	class	that	turns	off	grayscale	to	the	object,	i.e.	.filter-none.	Later	in	the	loop,	you	add	more	classes	from	.filter-grayscale-10	all	the	way	to	.filter-grayscale-100.	Finally,	the	prepared	data	is	sent	to	the	addUtilities	function,	indicating	in	the	second	parameter	that	the	created	classes	are	to	support	hover
prefixes	and	those	related	to	responsiveness.And	that’s	it.	All	10	classes	with	variants	with	different	prefixes	are	ready	for	use.	As	you	can	see,	writing	Tailwind	plugins	is	super	easy.	However,	before	you	start	doing	it,	I	suggest	that	you	always	check	if	there	is	any	ready-made	solution	on	the	Internet.	There	are	many	open-source	plugins	that	are	just
waiting	to	be	used,	such	as	webdna/tailwindcss-aspect-ratio,	which	I	highly	recommend.There	is	one	more	thing	that	I	promised	to	mention.	How	to	deal	with	long,	expanding	class	lists?	In	the	end,	sooner	or	later	this	will	happen	to	you:I	used	11	classes	to	describe	this	button,	and	in	fact,	not	much	is	going	on	here.	And	I	didn’t	even	take	care	of	the
button	responsiveness	yet!	It’s	hard	to	think	about	what	could	happen	with	much	more	complicated	web	components.Fortunately,	Tailwind	CSS	has	solutions	for	this.	First,	you	can	define	in	your	CSS	file	a	so-called	Tailwind	component	that	will	collect	several	atomic	classes	and	combine	them	into	one	more	complex	class.	There	are	two	at-rules	used
here:	@layer	and	@apply:If	you	don’t	like	creating	components	from	ready-made	classes,	you	can	go	back	to	writing	plugins.	Component	plugins	are	just	as	easy	to	write	as	utility	plugins,	and	they	allow	us	to	define	new	complex	styles	using	CSS	in	JS.Creating	components	has	another	advantage	over	using	atomic	classes	directly	in	your	HTML	code.
When	debugging	you	can	better	see	what	part	of	the	code	you	are	looking	at	because	there	are	more	telling	names.	Therefore,	as	I	practice	the	method,	I	always	create	components	to	make	the	application	code	more	readable	and	easier	to	develop.	Please	compare	those	two	buttons	yourself:	Sample	codeIs	it	worth	getting	more	interested	in	using
Tailwind	CSS?	Definitely.	
I	think	this	is	a	tool	every	web	developer	should	have	in	their	skills	toolbox.Why?	Even	if	you	think	that	this	framework	is	not	suitable	for	creating	large	dedicated	applications,	it	is	worth	knowing	it	for	building	quick	prototypes,	responsive	design,	interactive	elements,	large	screens	design,	navigation	bars	etc.	
Once	we	learn	its	class	nomenclature,	including	utility	classes,	Tailwind	CSS	will	immediately	speed	up	creating	each	project	and	allow	you	to	focus	on	business	values	​​instead	of	the	details	of	CSS	styling.	Among	other	CSS	frameworks,	Tailwind	CSS	really	stands	out	with	its	ability	to	deliver	business	value	quickly.Nevertheless,	I	believe	Tailwind	CSS
also	has	its	place	in	big	projects.	Developers	don’t	need	to	come	up	with	names	for	many	classes	and	aren’t	obliged	to	check	if	someone	else	created	any	utils	anymore.	When	you	use	Tailwind,	you	get	all	the	tools	right	away,	including	utility	first	classes,	custom	designs	etc.	Writing	code	with	Tailwind	CSS	is	really	straightforward!In	addition,
Tailwind	also	helps	you	use	a	defined	colour	palette	and	maintain	consistent	spacing	in	the	layout.	And	as	we	know:	the	bigger	the	project,	the	more	people	in	the	team,	the	harder	it	is	to	keep	such	things	in	check.	Therefore,	I	propose	to	give	this	framework	a	chance.	It	will	help	to	maintain	the	high	quality	of	the	code,	which	is	a	value	for	both
developers	and	business.PS:	I	didn’t	mention	it	before,	but	Tailwind	CSS	also	gives	your	app	a	dark	mode	for	free.Our	frontend	development	team	routinely	delivers	custom	solutions	in	technologies	such	as	React,	Vue.js,	or	TypeScript.	Check	out	the	portfolio	to	see	examples	complete	with	deliverables	and	project	achievements!	I	feel	like	an	idiot	for
not	using	Tailwind	CSS	until	now.If	I	had	to	recommend	a	way	of	getting	into	programming	today,	it	would	be	HTML	+	CSS	with	Tailwind	CSS.I	have	no	design	skills	and	with	Tailwind	I	can	actually	make	good	looking	websites	with	ease	and	it's	everything	I	ever	wanted	in	a	CSS	framework.Tailwind	CSS	is	the	greatest	CSS	framework	on	the	planet.I
started	using	@tailwindcss.	I	instantly	fell	in	love	with	their	responsive	modifiers,	thorough	documentation,	and	how	easy	it	was	customizing	color	palettes.Loved	it	the	very	moment	I	used	it.There’s	one	thing	that	sucks	about	@tailwindcss	-	once	you’ve	used	it	on	a	handful	of	projects	it	is	a	real	pain	in	the	ass	to	write	normal	CSS	again.Okay,	I’m
officially	*all*	in	on	the	@tailwindcss	hype	train.	
Never	thought	building	websites	could	be	so	ridiculously	fast	and	flexible.Okay,	@tailwindcss	just	clicked	for	me	and	now	I	feel	like	a	#!@%&$%	idiot.I've	been	using	@tailwindcss	the	past	few	months	and	it's	amazing.	I	already	used	some	utility	classes	before,	but	going	utility-first...	this	is	the	way.After	finally	getting	to	use	@tailwindcss	on	a	real
client	project	in	the	last	two	weeks	I	never	want	to	write	CSS	by	hand	again.	I	was	a	skeptic,	but	the	hype	is	real.I	didn't	think	I	was	going	to	like	@tailwindcss...	spent	a	day	using	it	for	a	POC,	love	it!	I	wish	this	had	been	around	when	we	started	our	company	design	system,	seriously	considering	a	complete	rebuild@tailwindcss	looked	unpleasant	at
first,	but	now	I’m	hooked	on	it.Once	you	start	using	tailwind,	there	is	no	going	back.I	use	@tailwindcss	for	every	single	project	because	it	removes	most	of	the	annoyances	of	css	and	is	multiple	times	quickerIt's	changed	the	trajectory	of	my	business.	I'm	able	to	design	better	looking,	better	performing,	and	more	accessible	components	in	1/3	of	the
time.My	first	tailwind	project	worked	great	but	what	really	kicked	ass	was	going	back	to	it	months	later	and	saving	so	much	time	making	new	changes.	I	knew	how	everything	fit	together	instantly.Tailwind	looked	like	pure	spaghetti	until	I	used	it	in	a	real	project.	Now	it's	the	only	way	I	make	websites.	Simple,	fast,	scalable.Tailwind	is	a	classic
example	of	why	you	need	to	put	preconceptions	aside	when	evaluating	tech.	The	experience	and	productivity	is	streets	ahead	of	what	you	might	have	believed	based	on	old	school	CSS	thinking!Tailwind	CSS	is	a	framework	like	no	other.	Rather	than	constraining	you	to	a	set	design,	it	gives	you	the	tools	and	the	standardization	to	build	exactly	what
you	want.I	remember	being	horrified	the	first	time	I	saw	utility	first	css.	But	these	past	months	using	Tailwind	on	an	increasing	number	of	projects	has	just	been	a	joyful	new	way	to	build	things	on	the	web.I	was	initially	skeptical	as	I	began	using	@tailwindcss,	until	I	now	needed	to	copy	a	@sveltejs	component	to	a	different	location	and	I	didn't	need	to
worry	about	any	of	my	styles	breaking.@tailwindcss	makes	you	better	at	CSS.	Change	my	mind.Awesome	stuff!	I'm	no	designer	or	front-end	developer;	until	I	found	Tailwind	last	year	I	hadn't	done	any	CSS	since	the	early	nineties.	Tailwind,	and	Tailwind	UI	mean	I	can	now	create	good	looking	front	ends	quickly,	which	is	super	empowering.	Crazy
impressive	project.I	admit	I	was	a	big	skeptic	of	@tailwindcss	until	last	year.	I	thought	"why	would	I	ever	type	a	million	classes	that	just	abstract	single	CSS	properties?"	By	now,	I	feel	like	I'm	twice	as	productive	when	building	UIs.	It's	really	amazing.I'm	nearing	completion	on	my	months-long	project	of	rewriting	my	company's	frontend	in	TypeScript
and	@tailwindcss.	Still,	every	time	I	re-implement	a	component,	I	think,	"Wow,	that	was	way	easier	this	time."	Tailwind	rocks.Co-Founder/CTO	@LaunchPathIncWith	the	amount	of	shipping	we	have	to	do,	skipping	the	conversion	of	brainwaves	to	CSS,	and	being	able	to	implement	at	the	speed	of	thought	using	Tailwind,	my	life	as	a	fullstack	developer
has	never	been	more	blissful.Tailwind	makes	it	easy	to	bring	new	developers	into	the	frontend	project	without	having	to	worry	about	the	mental	exercise	of	understanding	‘some’	developer’s	class	hierarchy	and	thought	process	behind	it.Tailwind	has	been	a	total	game-changer	for	our	dev	team.	It	allows	us	to	move	faster,	keep	our	UI	consistent,	and
focus	on	the	work	we	want	to	do	instead	of	writing	CSS.Have	been	working	with	CSS	for	over	ten	years	and	Tailwind	just	makes	my	life	easier.	It	is	still	CSS	and	you	use	flex,	grid,	etc.	but	just	quicker	to	write	and	maintain.Senior	Program	Manager	at	MicrosoftI’ve	been	writing	CSS	for	over	20	years,	and	up	until	2017,	the	way	I	wrote	it	changed
frequently.	It’s	not	a	coincidence	Tailwind	was	released	the	same	year.	It	might	look	wrong,	but	spend	time	with	it	and	you’ll	realize	semantic	CSS	was	a	20	year	mistake.Tailwind	makes	writing	code	feel	like	I’m	using	a	design	tool.Tailwind	CSS	is	bridging	the	gap	between	design	systems	and	products.	It’s	becoming	the	defacto	API	for	styling.Staff
Software	Engineer	@AlgoliaI	never	want	to	write	regular	CSS	again.	Only	@tailwindcss.I	came	into	my	job	wondering	why	the	last	dev	would	ever	implement	Tailwind	into	our	projects,	within	days	I	was	a	Tailwind	convert	and	use	it	for	all	of	my	personal	projects.Tailwind	made	me	enjoy	frontend	development	again	and	gave	me	the	confidence	that	I
can	realize	any	design	-	no	matter	how	complex	it	may	be.Tailwind	turned	me	into	a	complete	stack	developer.Tailwind	is	the	easiest	and	simplest	part	of	any	project	I	work	on.	I	can't	imagine	I'll	build	anything	big	without	it.Tailwind	CSS	has	alleviated	so	many	problems	we've	all	become	accustomed	to	with	traditional	CSS	that	it	makes	you	wonder
how	you	ever	developed	websites	without	it.Having	used	other	CSS	frameworks,	I	always	come	back	to	Tailwind	CSS	as	it	gives	me	the	ability	to	create	a	consistent	and	easy	to	use	design	system	in	my	projects.	Thanks	to	Tailwind	CSS	I	only	need	one	cup	of	coffee	to	get	started	on	a	new	project.I’ve	been	using	Tailwind	CSS	for	many	years,	and	yet
they	seem	to	still	amaze	us	every	year	with	the	updates.	It’s	aided	me	in	building	websites	super	quickly,	I	could	never	go	back	to	boring	old	CSS	classes!Tailwind	CSS	is	a	design	system	implementation	in	pure	CSS.	It	is	also	configurable.	It	gives	developers	super	powers.	It	allows	them	to	build	websites	with	a	clean	consistent	UI	out	of	the	box.	It
integrates	well	with	any	web	dev	framework	because	it‘s	just	CSS!	Genius.It’s	super	simple	to	slowly	migrate	to	Tailwind	from	e.g.	Bootstrap	by	using	its	prefix	feature.	Benefiting	from	its	features	while	not	having	to	spend	a	lot	of	time	upfront	is	amazing!I	wasn’t	comfortable	using	CSS	until	I	met	Tailwind.	Its	easy	to	use	abstraction	combined	with
excellent	documentation	are	a	game	changer!Head	of	Unplatform	@avivasolutionsTailwind	turns	implementing	designs	from	a	chore	to	a	joy.	
You'll	fall	in	love	with	building	for	the	web	all	over	again.Tailwind	CSS	helps	you	eject	from	the	complexity	of	abstracting	styles	away.	Having	styles	right	there	in	your	HTML	is	powerful,	which	gets	even	more	obvious	when	using	products	like	Tailwind	UI.If	Tailwind	is	like	Tachyons	on	steroids,	Tailwind	UI	is	like	Lance	Armstrong	winning	the	Tour	de
France	(seven	times).	
Without,	of	course,	the	scandal	and	shame.Being	burned	by	other	abandoned	CSS	frameworks,	my	biggest	fear	was	to	bet	on	yet	another	framework	that	may	disappear.	However,	I	gave	it	a	try	and	couldn’t	be	happier.	They	keep	improving	the	framework	in	meaningful	ways	on	a	regular	basis.	It	feels	very	much	alive.Getting	buy-in	on	Tailwind	CSS
from	our	entire	team	of	developers	took	some	time	and	discussion,	but	once	we	implemented	company	wide,	it	has	made	it	a	breeze	for	any	developer	to	jump	into	any	project	and	quickly	make	changes/enhancements.Tailwind	CSS	has	at	the	same	time	made	CSS	enjoyable	and	drastically	changed	how	I	build	out	products.	It's	rapid,	efficient	and	an
absolute	joy	to	work	with.Full	Stack	Developer	&	DesignerUsing	any	CSS	framework	other	than	Tailwind	seems	like	a	step	backward	in	web	development	at	this	point.	Absolutely	nothing	else	comes	close	to	making	me	as	productive	during	the	design	phase	of	development	than	Tailwind.Tailwind	has	completely	revolutionized	our	devops	pipeline.	The
CLI	works	consistently	no	matter	what	framework	is	in	place.President	&	CTO	@agilitycmsTailwind	is	like	a	really	nice	pair	of	socks.	You	think,	“okay,	how	good	can	a	pair	of	socks	be”.	Then	you	put	socks	on	and	you	are	like	“%@#!	these	are	socks”.Tailwind	unified	our	css	work	across	different	client	projects	more	than	any	other	methodology,	while
letting	us	keep	our	bespoke	designs,	and	even	improved	performance	and	stability	of	our	sites.Tailwind	is	the	only	way	to	work	with	CSS	at	scale.	Tailwind	CSS	has	single-handedly	been	the	biggest	and	most	impactful	change	for	our	team's	development	workflow.	
I'm	glad	I	live	in	a	universe	where	Tailwind	exists.Tailwind	solves	a	complex	problem	in	an	elegant	way.	It	provides	a	ready-to-use	UI,	all	while	not	compromising	on	enabling	developers	to	quickly	build	anything	imaginable.Skip	to	the	end.	Use	@tailwindcss.I	was	bad	at	front-end	until	I	discovered	Tailwind	CSS.	I	have	learnt	a	lot	more	about	design
and	CSS	itself	after	I	started	working	with	Tailwind.	Creating	web	pages	is	5x	faster	now.Full	Stack	Web	Developer	&	Tech	EducatorI	don't	use	it	but	if	I	would	use	something	I'd	use	Tailwind!With	Tailwind	I	can	offer	my	clients	faster	turnaround	times	on	custom	WordPress	themes,	both	for	initial	builds	and	for	future	revisions.Thanks	to
@tailwindcss,	CSS	started	to	make	sense	to	me.Core	Team	Member	@laravelphpTailwind	clicked	for	me	almost	immediately.	
I	can't	picture	myself	writing	another	BEM	class	ever	again.	Happy	user	since	the	first	public	release!	Productivity	is	at	an	all	time	high,	thanks	to	@tailwindcss.CSS	has	always	been	the	hardest	part	of	offering	a	digital	service.	It	made	me	feel	like	a	bad	developer.	Tailwind	gives	me	confidence	in	web	development	again.	Their	docs	are	my	first	port	of
call.I	thought	"Why	would	I	need	Tailwind	CSS?	I	already	know	CSS	and	use	Bootstrap",	but	after	giving	it	a	try	I	decided	to	switch	all	my	projects	to	Tailwind.DevOps	Engineer	&	Network	AdministratorThe	Tailwind	docs	are	its	real	magic.	It	is	actually	better	documented	than	CSS	itself.	
It’s	such	a	pleasure	to	use.I've	never	felt	more	confident	designing	and	styling	websites	and	web	apps	than	when	I've	used	Tailwind	CSS.Tried	it	once,	never	looked	back.	Tailwindcss	convert	since	0.7	and	it	just	keeps	getting	better	and	better.If	you	work	at	an	agency	and	deal	with	hundreds	of	unique	sites,	each	of	them	having	their	own	custom	CSS
is	a	nightmare.	Do	your	future	self	a	favor	and	use	Tailwind!Before	Tailwind	CSS	I	was	banging	my	head	against	the	wall	trying	to	make	sense	of	my	CSS	spaghetti.	Now	I	am	banging	my	head	against	the	wall	wondering	why	I	didn’t	try	it	earlier.	My	head	hurts	and	my	wall	has	a	big	hole	in	it.	But	at	least	using	CSS	is	pleasant	again!I	was	skeptical	at
first	and	resisted	for	a	long	time	but	after	doing	the	first	projects	with	Tailwind	CSS	this	year,	normal	CSS	just	feels	wrong	and	slow.Digital	Designer	&	DeveloperAfter	using	Tailwind	for	the	first	time,	I	wondered	why	I	used	anything	else.	It's	now	my	go-to	CSS	framework	for	any	application,	production	or	prototype.Tailwind	not	only	made	me	able	to
focus	on	building	great	UI’s	but	it	also	improved	my	overall	CSS	skills	by	having	such	a	wonderful	docs	site	when	I	needed	to	handwrite	CSS.Using	Tailwind	is	an	accelerant	for	rapid	prototyping	design	systems.	Strong	documentation,	helpful	community,	and	instant	results.Design	Operations	Lead	at	BetterCloudI	instinctively	hated	utility	CSS,	but
Tailwind	completely	converted	me.	It	reignited	my	excitement	for	front-end	development	and	implementing	custom	designs!Tailwind	CSS	bridges	the	gap	between	design	and	dev	more	than	anything	else.	It	reintroduces	context	to	development,	limits	cognitive	load	with	choice	architecture,	grants	access	to	a	token	library	out	of	the	box	and	is
incredibly	easy	to	pickup.	It	helped	my	design	career	so	much.Co-Founder	of	FeatureBoardWhen	I'm	working	on	a	project	that	isn't	using	Tailwind,	first	I	yell,	then	I	take	a	deep	breath,	then	I	run	npm	install	tailwindcss.Going	back	to	a	large	website	that	doesn't	use	Tailwind	is	like	hopping	out	of	a	Tesla	and	into	my	dad's	rusted	Minnesota	farm	truck.
Sure,	it	works,	but	the	clutch	is	slipping,	the	brakes	barely	work,	and	it's	filled	with	old	tires	we're	not	even	using	anymore.Senior	Front-End	Developer	@CrateandBarrelI	pushed	back	hard	at	the	mention	of	Tailwind	initially	due	to	the	number	of	classes	in	my	code	however	within	5	minutes	or	using	it	I	was	hooked	and	now	am	the	annoying	guy
pushing	Tailwind	on	anyone	who	will	listen.	It	has	simplified	my	dev	workflow	beyond	measurement.Head	Engineer	@SubscriptionBoxI	never	bothered	to	learn	vanilla	CSS	because	it’s	a	waste	of	time	—	why	bother	when	I	have	Tailwind	instead?	Turns	out	I	learned	a	ton	of	CSS	anyway	just	by	using	Tailwind.	It’s	such	a	perfect	middleground	between
thoughtful	abstraction,	while	still	letting	you	break	free.Tailwind	and	the	ecosystem	around	it	is	like	a	giant	turbocharger	for	web	agencies.	
It	helps	teams	of	developers	and	designers	develop	a	shared	language	and	system	of	constraints	that	speeds	up	the	entire	process.	It's	a	game-changer	for	efficient	teamwork.Tailwind	provides	the	style	of	bespoke	design,	the	constraint	of	a	design	system,	and	the	flexibility	to	make	it	infinitely	customizable,	without	being	shoehorned	into	making
every	website	look	like	it	was	cut	from	the	same	cloth.Tailwind	completely	changed	my	freelance	career	by	allowing	me	to	build	out	completely	custom	designs	really	fast	without	writing	any	CSS.Using	Tailwind	CSS	will	make	you	feel	like	you	just	unlocked	a	cheat	code.Every	developer	I’ve	convinced	to	give	Tailwind	a	try	has	come	back	and	said
they	are	never	going	back.	
Every.	Single.	One.


