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What	is	the	difference	between	mesh	and	nodal	analysis

Step	number	one	has	already	been	done	in	the	circuit	where	the	mesh	currents	are	labeled	with	the	red	loop	symbols.	As	step	number	2	suggests,	we	apply	KVL	for	each	mesh	of	the	circuit:	Equation	1:	-V1+I1×(R1+R2)-I2×R2=0	Equation	2:	V2-I1×R2+I2×(R2+R3)=0	In	our	case,	both	mesh	currents	I1	and	I2	are	present	across	the	resistor	R2,	in
both	equations	we	can	see	that	the	current	across	R2	is	considered	as	the	algebraic	sum	of	I1	and	I2.	In	the	following,	we	replace	the	parameters	by	their	value,	first	of	all,	we	express	I1	as	a	function	of	I2	thanks	to	the	first	equation:	We	substitute	this	term	in	Equation	2,	which	after	redistributing	the	terms,	leads	to	find	I2=-1/3	A.	We	put	this	value
in	the	expression	of	I1	to	find	I1=2/3	A.	

Finally,	we	can	give	the	required	current	I	to	drive	the	circuit	I=I1-I2=1	A.	Conclusion	We	have	presented	in	this	tutorial	two	methods	based	on	the	Kirchoff’s	Circuit	Laws	called	the	Nodal	Voltage	Analysis	(NVA)	and	the	Mesh	Current	Analysis	(MCA).	These	methods	are	more	efficient	to	analyze	circuits	because	they	lead	to	the	solution	faster	than
KCL	by	reducing	the	amount	of	mathematics	involved.	

Each	analysis	consists	of	a	series	of	steps	to	perform,	the	methods	are	presented	separately	at	the	beginning	of	their	respective	section.	Examples	are	also	given	in	order	to	show	how	to	analyze	resistive	circuits	with	these	two	methods.	We	can	note	that	for	reactive	circuits	with	inductors	and	capacitors,	the	NVA	or	MCA	analysis	leads	to	a	differential
equation	or	a	system	of	differential	equations	to	be	solved.	
Please	follow	and	like	us:	Sign	Up	Now	&Daily	Live	Classes250+	Test	seriesStudy	Material	&	PDFQuizzes	With	Detailed	Analytics+	More	BenefitsGet	Free	Access	Now	No	matter	how	many	nodes	you	have,	when	doing	nodal	analysis,	you	describe	the	currents	going	into	and	out	of	each	node.	As	you	walk	through	each	node,	you'll	end	up	with	1
linearly	independent	equation	that	describes	all	of	the	current	going	into	and	out	of	it.	In	nodal	analysis,	everything	that	goes	into	a	node	must	come	out	of	it.	When	you	finally	get	to	the	last	node	in	your	analysis,	it	should	become	obvious	that	none	of	the	inputs	or	outputs	to	that	node	may	be	tweaked	to	your	liking.	Every	single	input	(or	output)	to
this	node	already	has	some	other	node	determining	how	much	current	flows	into	or	out	of	it.	That	last	node	can't	be	linearly	independent	because	it's	dependent	upon	all	of	the	other	nodes.	You	can	think	of	this	like	water	pipes	where	voltage	sources	are	pumps,	and	resistors	are	narrow	parts	of	the	circuit.	In	a	circuit	(i.e.	closed	loop),	electrons	can
never	escape	from	the	system,	they	always	just	go	in	loops.	The	same	thing	would	occur	in	a	network	of	tubes	with	pumps	pushing	water	around	them	with	constrictions.	At	any	joint	where	3	or	more	tubes	connect,	what	flows	into	the	joint	will	be	equal	to	what	flows	out	of	the	joint.	If	you're	accounting/measuring	how	much	goes	into	and	out	of	every
joint,	when	you	get	to	the	last	one,	you'll	realize	that	you	don't	need	to	measure	the	amount	going	into	and	out	of	that	joint	or	node	because	you've	already	accounted	for	it	because	you	assume	that	your	pipes	aren't	leaking	and	you're	not	adding	any	water	to	the	network	of	pipes.	That's	basically	all	that	that	statement	is	saying.	Since	it's	a	closed	loop
system,	you	can't	add	or	remove	electrons,	so	the	last	node	can't	be	linearly	independent.	
It's	dependent	upon	all	of	the	other	nodes.	Kirchhoff's	current	law	is	the	basis	of	nodal	analysis.	In	electric	circuits	analysis,	nodal	analysis,	node-voltage	analysis,	or	the	branch	current	method	is	a	method	of	determining	the	voltage	(potential	difference)	between	"nodes"	(points	where	elements	or	branches	connect)	in	an	electrical	circuit	in	terms	of
the	branch	currents.	In	analyzing	a	circuit	using	Kirchhoff's	circuit	laws,	one	can	either	do	nodal	analysis	using	Kirchhoff's	current	law	(KCL)	or	mesh	analysis	using	Kirchhoff's	voltage	law	(KVL).	Nodal	analysis	writes	an	equation	at	each	electrical	node,	requiring	that	the	branch	currents	incident	at	a	node	must	sum	to	zero.	The	branch	currents	are
written	in	terms	of	the	circuit	node	voltages.	As	a	consequence,	each	branch	constitutive	relation	must	give	current	as	a	function	of	voltage;	an	admittance	representation.	For	instance,	for	a	resistor,	Ibranch	=	Vbranch	*	G,	where	G	(=1/R)	is	the	admittance	(conductance)	of	the	resistor.	Nodal	analysis	is	possible	when	all	the	circuit	elements'	branch
constitutive	relations	have	an	admittance	representation.	Nodal	analysis	produces	a	compact	set	of	equations	for	the	network,	which	can	be	solved	by	hand	if	small,	or	can	be	quickly	solved	using	linear	algebra	by	computer.	Because	of	the	compact	system	of	equations,	many	circuit	simulation	programs	(e.g.,	SPICE)	use	nodal	analysis	as	a	basis.	When
elements	do	not	have	admittance	representations,	a	more	general	extension	of	nodal	analysis,	modified	nodal	analysis,	can	be	used.	

Procedure	Note	all	connected	wire	segments	in	the	circuit.	These	are	the	nodes	of	nodal	analysis.	Select	one	node	as	the	ground	reference.	

The	choice	does	not	affect	the	element	voltages	(but	it	does	affect	the	nodal	voltages)	and	is	just	a	matter	of	convention.	Choosing	the	node	with	the	most	connections	can	simplify	the	analysis.	For	a	circuit	of	N	nodes	the	number	of	nodal	equations	is	N−1.	
Assign	a	variable	for	each	node	whose	voltage	is	unknown.	If	the	voltage	is	already	known,	it	is	not	necessary	to	assign	a	variable.	For	each	unknown	voltage,	form	an	equation	based	on	Kirchhoff's	Current	Law	(i.e.	add	together	all	currents	leaving	from	the	node	and	mark	the	sum	equal	to	zero).	
The	current	between	two	nodes	is	equal	to	the	voltage	of	the	node	where	the	current	exits	minus	the	voltage	of	the	node	where	the	current	enters	the	node,	both	divided	by	the	resistance	between	the	two	nodes.	If	there	are	voltage	sources	between	two	unknown	voltages,	join	the	two	nodes	as	a	supernode.	The	currents	of	the	two	nodes	are	combined
in	a	single	equation,	and	a	new	equation	for	the	voltages	is	formed.	Solve	the	system	of	simultaneous	equations	for	each	unknown	voltage.	Examples	Basic	case	Basic	example	circuit	with	one	unknown	voltage,	V1.	
The	only	unknown	voltage	in	this	circuit	is	V	1	{\displaystyle	V_{1}}	.	There	are	three	connections	to	this	node	and	consequently	three	currents	to	consider.	The	direction	of	the	currents	in	calculations	is	chosen	to	be	away	from	the	node.	Current	through	resistor	R	1	{\displaystyle	R_{1}}	:	(	V	1	−	V	S	)	/	R	1	{\displaystyle	(V_{1}-V_{S})/R_{1}}
Current	through	resistor	R	2	{\displaystyle	R_{2}}	:	V	1	/	R	2	{\displaystyle	V_{1}/R_{2}}	Current	through	current	source	I	S	{\displaystyle	I_{S}}	:	−	I	S	{\displaystyle	-I_{S}}	With	Kirchhoff's	current	law,	we	get:	V	1	−	V	S	R	1	+	V	1	R	2	−	I	S	=	0	{\displaystyle	{\frac	{V_{1}-V_{S}}{R_{1}}}+{\frac	{V_{1}}{R_{2}}}-I_{S}=0}	This	equation	can
be	solved	with	respect	to	V1:	V	1	=	(	V	S	R	1	+	I	S	)	(	1	R	1	+	1	R	2	)	{\displaystyle	V_{1}={\frac	{\left({\frac	{V_{S}}{R_{1}}}+I_{S}\right)}{\left({\frac	{1}{R_{1}}}+{\frac	{1}{R_{2}}}\right)}}}	Finally,	the	unknown	voltage	can	be	solved	by	substituting	numerical	values	for	the	symbols.	Any	unknown	currents	are	easy	to	calculate	after	all	the
voltages	in	the	circuit	are	known.	V	1	=	(	5		V	100	Ω	+	20		mA	)	(	1	100	Ω	+	1	200	Ω	)	=	14	3		V	{\displaystyle	V_{1}={\frac	{\left({\frac	{5{\text{	V}}}{100\,\Omega	}}+20{\text{	mA}}\right)}{\left({\frac	{1}{100\,\Omega	}}+{\frac	{1}{200\,\Omega	}}\right)}}={\frac	{14}{3}}{\text{	V}}}	Supernodes	In	this	circuit,	VA	is	between	two	unknown
voltages,	and	is	therefore	a	supernode.	In	this	circuit,	we	initially	have	two	unknown	voltages,	V1	and	V2.	The	voltage	at	V3	is	already	known	to	be	VB	because	the	other	terminal	of	the	voltage	source	is	at	ground	potential.	The	current	going	through	voltage	source	VA	cannot	be	directly	calculated.	Therefore,	we	cannot	write	the	current	equations	for
either	V1	or	V2.	However,	we	know	that	the	same	current	leaving	node	V2	must	enter	node	V1.	Even	though	the	nodes	cannot	be	individually	solved,	we	know	that	the	combined	current	of	these	two	nodes	is	zero.	

This	combining	of	the	two	nodes	is	called	the	supernode	technique,	and	it	requires	one	additional	equation:	V1	=	V2	+	VA.	The	complete	set	of	equations	for	this	circuit	is:	{	V	1	−	V	B	R	1	+	V	2	−	V	B	R	2	+	V	2	R	3	=	0	V	1	=	V	2	+	V	A	{\displaystyle	{\begin{cases}{\frac	{V_{1}-V_{\text{B}}}{R_{1}}}+{\frac	{V_{2}-V_{\text{B}}}{R_{2}}}+{\frac
{V_{2}}{R_{3}}}=0\\V_{1}=V_{2}+V_{\text{A}}\\\end{cases}}}	By	substituting	V	2	=	(	R	1	+	R	2	)	R	3	V	B	−	R	2	R	3	V	A	(	R	1	+	R	2	)	R	3	+	R	1	R	2	{\displaystyle	V_{2}={\frac	{(R_{1}+R_{2})R_{3}V_{\text{B}}-R_{2}R_{3}V_{\text{A}}}{(R_{1}+R_{2})R_{3}+R_{1}R_{2}}}}	Matrix	form	for	the	node-voltage	equation	In	general,	for	a
circuit	with	N	{\displaystyle	N}	nodes,	the	node-voltage	equations	obtained	by	nodal	analysis	can	be	written	in	a	matrix	form	as	derived	in	the	following.	For	any	node	k	{\displaystyle	k}	,	KCL	states	∑	j	≠	k	G	j	k	(	v	k	−	v	j	)	=	0	{\textstyle	\sum	_{jeq	k}G_{jk}(v_{k}-v_{j})=0}	where	G	k	j	=	G	j	k	{\displaystyle	G_{kj}=G_{jk}}	is	the	negative	of	the
sum	of	the	conductances	between	nodes	k	{\displaystyle	k}	and	j	{\displaystyle	j}	,	and	v	k	{\displaystyle	v_{k}}	is	the	voltage	of	node	k	{\displaystyle	k}	.	This	implies	0	=	∑	j	≠	k	G	j	k	(	v	k	−	v	j	)	=	∑	j	≠	k	G	j	k	v	k	−	∑	j	≠	k	G	j	k	v	j	=	G	k	k	v	k	−	∑	j	≠	k	G	j	k	v	j	{\textstyle	0=\sum	_{jeq	k}G_{jk}(v_{k}-v_{j})=\sum	_{jeq	k}G_{jk}v_{k}-\sum	_{jeq
k}G_{jk}v_{j}=G_{kk}v_{k}-\sum	_{jeq	k}G_{jk}v_{j}}	where	G	k	k	{\displaystyle	G_{kk}}	is	the	sum	of	conductances	connected	to	node	k	{\displaystyle	k}	.	We	note	that	the	first	term	contributes	linearly	to	the	node	k	{\displaystyle	k}	via	G	k	k	{\displaystyle	G_{kk}}	,	while	the	second	term	contributes	linearly	to	each	node	j	{\displaystyle	j}
connected	to	the	node	k	{\displaystyle	k}	via	G	j	k	{\displaystyle	G_{jk}}	with	a	minus	sign.	If	an	independent	current	source/input	i	k	{\displaystyle	i_{k}}	is	also	attached	to	node	k	{\displaystyle	k}	,	the	above	expression	is	generalized	to	i	k	=	G	k	k	v	k	−	∑	j	≠	k	G	j	k	v	j	{\textstyle	i_{k}=G_{kk}v_{k}-\sum	_{jeq	k}G_{jk}v_{j}}	.	It	is	readily	shown
that	one	can	combine	the	above	node-voltage	equations	for	all	N	{\displaystyle	N}	nodes,	and	write	them	down	in	the	following	matrix	form	(	G	11	G	12	⋯	G	1	N	G	21	G	22	⋯	G	2	N	⋮	⋮	⋱	⋮	G	N	1	G	N	2	⋯	G	N	N	)	(	v	1	v	2	⋮	v	N	)	=	(	i	1	i	2	⋮	i	N	)	{\displaystyle	{\begin{pmatrix}G_{11}&G_{12}&\cdots	&G_{1N}\\G_{21}&G_{22}&\cdots
&G_{2N}\\\vdots	&\vdots	&\ddots	&\vdots	\\G_{N1}&G_{N2}&\cdots	&G_{NN}\end{pmatrix}}{\begin{pmatrix}v_{1}\\v_{2}\\\vdots	\\v_{N}\end{pmatrix}}={\begin{pmatrix}i_{1}\\i_{2}\\\vdots	\\i_{N}\end{pmatrix}}}	or	simply	G	v	=	i	.	{\textstyle	\mathbf	{Gv}	=\mathbf	{i}	.}	The	matrix	G	{\displaystyle	\mathbf	{G}	}	on	the	left	hand	side	of
the	equation	is	singular	since	it	satisfies	G	1	=	0	{\displaystyle	\mathbf	{G1}	=0}	where	1	{\displaystyle	\mathbf	{1}	}	is	an	N	×	1	{\displaystyle	N\times	1}	column	matrix	containing	only	1s.	This	corresponds	to	the	fact	of	current	conservation,	namely,	∑	k	i	k	=	0	{\textstyle	\sum	_{k}i_{k}=0}	,	and	the	freedom	to	choose	a	reference	node	(ground).
In	practice,	the	voltage	at	the	reference	node	is	taken	to	be	0.	Consider	it	is	the	last	node,	v	N	=	0	{\displaystyle	v_{N}=0}	.	In	this	case,	it	is	straightforward	to	verify	that	the	resulting	equations	for	the	other	N	−	1	{\displaystyle	N-1}	nodes	remain	the	same,	and	therefore	one	can	simply	discard	the	last	column	as	well	as	the	last	line	of	the	matrix
equation.	This	procedure	results	in	a	(	N	−	1	)	×	(	N	−	1	)	{\displaystyle	(N-1)\times	(N-1)}	dimensional	non-singular	matrix	equation	with	the	definitions	of	all	the	elements	stay	unchanged.	See	also	Mesh	analysis	Ybus	matrix	Topology	(electrical	circuits)	Charge	conservation	Circuit	diagram	References	P.	Dimo	Nodal	Analysis	of	Power	Systems
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