

Quickness is Key: Updates on FAST AST

NACMID Annual Meeting | September 24, 2024

Kristen Smith, PhD, D(ABMM) Lead Medical Advisor, bioMérieux

PIONEERING DIAGNOSTICS

DISCLOSURE & DISCLAIMER

- I am employed by bioMérieux
- This work contains quotations of original works that are attributed to the original authors and sources. In good faith, this work contains fair use of these copyrighted articles for educational purposes.
- bioMérieux has neither monetized this work nor sought any profit from its use.
- Copyright Disclaimer Under Section 107 of the Copyright Act 1976: Allowance is made for fair use for purposes such as criticism, comment, news reporting, teaching, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational, or personal use tips balance in favor of fair use.
- Any other use you may make of this work might constitute an infringement of copyright.
- I own stock in Labcorp Holdings, Inc.

OBJECTIVES

 Understand the evolution of susceptibility testing for bacteria

 Describe current methodologies use for Rapid AST

 Explain considerations for incorporation of Rapid AST into laboratory workflow

A HISTORIC PERSPECTIVE

"But I would like to sound one note of warning. Penicillin is to all intents and purposes nonpoisonous so there is no need to worry about giving an overdose and poisoning the patient.

"There may be a danger, though, in underdosage. It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to kill them, and the same thing has occasionally happened in the body."

Nobel Lecture, December 11, 1945

Alexander Fleming. New York Times. 26 June 1945

ANTIMICROBIAL EXPOSURE & RESISTANCE

Primary Driver Behind Antimicrobial Resistance

SO WHAT? AMR FACTS AND FIGURES

1.27M² DEATHS DIRECTLY ATTRIBUTABLE TO AMR IN 2019

\$100,000M³ POTENTIAL LOSS FOR GLOBAL ECONOMY BY 2050

 World Bank Press release, "By 2050, drug-resistant infections could cause global economic damage on par with 2008 financial crisis", September 20, 2016.
 Lancet. 2022 Feb 12;399(10325):629-655.

3. Tackling drug-resistant infections globally: Final report and recommendations, The Review on Antimicrobial Resistance, Chaired by Jim O'Neill, May 2016.

BY 2050 AMR IS LIKELY TO BECOME THE LEADING CAUSE OF GLOBAL MORTALITY

IMPACT OF COVID-19 ON AMR

COVID-19

2022

U.S. IMPACT ON ANTIMICROBIAL RESISTANCE

L CDC

2019 to 2020: 15% increase in resistant infections starting during hospitalization

- Carbapenem-resistant Acinetobacter (
 ^{78%})
- Antifungal-resistant Candida auris (⁶⁰%)*
- Carbapenem-resistant Enterobacterales (³⁵%)
- Antifungal-resistant Candida (²⁶%)
- ESBL-producing Enterobacterales (³²%)
- Vancomycin-resistant Enterococcus (
 (
 14%)
- Multidrug-resistant P. aeruginosa (³²%)
- Methicillin-resistant Staphylococcus aureus (¹³%)

*Candida auris was not included in the hospital-onset rate calculation of 15%. See Data Table and Methods for more information on this pathogen 8 CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2022.

EFFECTS OF ANTIBIOTIC USE

Other classes of drugs do not lose their effectiveness over time¹

Antimicrobial exposure is the primary driver behind antimicrobial resistance²

Resistance will eventually develop to all antibiotics¹

- Any previous exposure to antibiotics increases the risk of resistance³
- Every antibiotic exposure increases further risk of resistance⁴

Once a mechanism of resistance is established, it can be passed on to future generations of that specific bacteria¹

Translocation of plasmids between species amplifies resistance¹

Antibiotics save lives, but can also be harmful without good stewardship

• Each additional day of antibiotic exposure increases the risk of resistance⁵

- https://www.cdc.gov/drugresistance/about/how-resistance-happens.html
- J Antimicrob Chemother 2011; 66(8): 1600-8.
- Infect Control Hosp Epidemiol. 2013 Aug;34(8):809-17.

Antimicrob Agents Chemother. 2013; 51(10): 5131-3. Infect Control Hosp Epidemiol. 2012;8: 817-30.

NEW CDC DATA

MORE THAN HALF OF ANTIBIOTIC PRESCRIBING FOR SELECTED EVENTS IN HOSPITALS WAS NOT CONSISTENT WITH RECOMMENDED PRESCRIBING PRACTICES

ANTIBIOTIC PRESCRIBING WAS NOT SUPPORTED IN:

HOSPITAL PRESCRIBERS & PHARMACISTS CAN IMPROVE PRESCRIBING:

Optimize antibiotic selection

Re-assess antibiotic treatment when the results of diagnostic testing are available

Use the shortest effective duration of therapy

WHY DOES APPROPRIATE THERAPY MATTER?

RESEARCH ARTICLE

Open Access

CrossMark

Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: systematic review and meta-analysis

Gowri Raman^{1,2*†}, Esther Avendano^{1†}, Samantha Berger³ and Vandana Menon^{2,4}

• Meta-analysis of 57 studies in 60 publications:

- Appropriate antibiotic therapy (AAT) was associated with a lower risk of mortality and treatment failure
- Inappropriate antibiotic therapy was associated with > 3 fold of increased risk of mortality in septic patients
- "Technological advances for rapid diagnostics to facilitate AAT along with antimicrobial stewardship, surveillance, infection control, and prevention is needed."

IMPORTANCE OF APPROPRIATE THERAPY

- For patients with serious infections, such as bloodstream infections and sepsis, shortening time to effective antimicrobial therapy (TTET) has been associated with decreased mortality¹⁻⁷
- Delay in TTET has been demonstrated to be one of the key modifiable risk factors for mortality in patients with bloodstream infections⁷
- Collaboration between the lab and antimicrobial stewardship intervention maximizes the impact on TTET^{8,9}

- 1. Gutiérrez-Gutiérrez B. Lancet Infect Dis. 2017 Jul;17:726-34.
- 2. Bonine NGAm J Med Sci. 2019 Feb;357(2):103-110.
- 3. Perez KK. J Infect. 2014 Sep;69(3):216-25.
- 4. Babowicz F. AAC. 2021 May 18;65(6):e02364-20..
- 5. Lodise TP. Open Forum Infect Dis.2019 Jun; 6(6): ofz194.
- 6. Bassetti M. JAC Antimicrob Resist. 2022 Sep 13;4(5):dlac089.
- 7. Evans RN. BMC Infect Dis. 2020 Jul 25;20(1):545..
- 8. Timbrook TT. Clin Infect Dis. 2017;64:15-23.
- 9. Wenzler E. Am J Health Syst Pharm. 2018;75:1191-1202.

BIOMÉRIEUX

IMPORTANCE OF APPROPRIATE THERAPY

Original Investigation | Critical Care Medicine Trends in Empiric Broad-Spectrum Antibiotic Use for Suspected Community-Onset Sepsis in US Hospitals

Chanu Rhee, MD, MPH; Tom Chen, PhD; Sameer S. Kadri, MD, MS; Alexander Lawandi, MD; Christina Yek, MD; Morgan Walker, MD; Sarah Warner, MPH; David Fram, BA; Huai-Chun Chen, PhD; Claire N. Shappell, MD, MPH; Laura DelloStritto, MPH; Michael Klompas, MD, MPH; for the CDC Prevention Epicenters Program

- Retrospective, cross-sectional study looking at over 6 million hospitalizations from PINC AI Healthcare Database (25% of US inpatient admissions) between Jan. 2017 and June 2021
- Among patients with suspected community acquired sepsis 65.1% received anti MRSA or antipseudomonal beta-lactam therapy.
- Resistant organisms were only identified in 9.5% of cases.

THE GENOTYPIC VERSUS PHENOTYPIC CHALLENGE

- Genotypic resistance mechanism detection is impactful when positive.
- Negative genotypic resistance mechanism testing can be misleading to clinicians, particularly for gram-negative organisms.
- Frequency of false susceptibility when relying on genotypic screening alone.

Census Region	CRO NS (n)	CRO % VME	MEM NS (n)	MEM % VME	TZP NS (n)	TZP % VME
New England	42	42.9	4	25.0	23	60.9
Mid-Atlantic	255	12.2	116	3.5	166	9.6
East North Central	80	25.0	13	7.7	31	41.9
West North Central	27	33.3	0	N/A	8	75.0
South Atlantic	38	29.0	5	0.0	21	47.6
East South Central	51	27.5	1	0.0	12	66.7
West South Central	131	18.3	23	30.4	56	23.2
Mountain	23	26.1	2	0.0	7	57.1
Pacific	55	21.8	1	0.0	19	47.4
Overall	702	20.7	165	7.3	343	27.1

CRO – ceftriaxone; MEM – meropenem; NS – non-susceptible; TZP – piperacillin/tazobactam; VME – very major error

CRO/TZP NS isolates screened for CTX-M, KPC and NDM

MEM NS isolates screen for KPC and NDM

WHY DOES SPEED MATTER?

 40 – 70% of patients with blood stream infections are on incorrect therapy prior to lab results

Impacts:

- Time to targeted therapy
- Drug Toxicity
- Mortality
- Length of Stay
- Hospital Cost

Bonine NG, et al. Am J Med Sci. 2019 Feb;357(2):103-110 Bassetti M, et al. JAC Antimicrob Resist. 2022 Sep 13;4(5):dlac089 Lodise TP, et al. Open Forum Infect Dis. 2019 Apr 23;6(6):ofz194 Perez KK, et al. J Infect. 2014 Sep;69(3):216-25.

BIOMÉRIEUX

METHOD DEVELOPMENT TIMELINE

DILUTION GRADIENT

- Still considered the "Gold Standard"
- Very manual process
 - Automation available
- Requires pure culture
- Results ready in ~18 24 hours (organism dependent)
- Cost effective

DIFFUSION GRADIENT

- Very manual process
 - Automation available
- Requires pure culture
- Results ready in ~18 24 hours (organism dependent)
- Cost effective
- Consider fastidious organisms, biochemistry of antibiotics

Methods for AST - Phenotypic Conventional

Adapted from Gajic et al, Antibiotics 2022, Humphries et al JCM 2021

RETHINKING AN OLD FRIEND

- Can incubation methods/times be re-evaluated?
- Use 'young' cultures to set up KB
 - Results ready in 24-30h
 - Good categorical & quant agreement
 - Performed well across species and drugs
- Direct Disk Diffusion on Blood
 - M100 Ed. 24 Table 3F

1. Schumacher et al. *Eur J Clin Microbiol Dis.* 2018 2. CLSI M100 Ed. 34

RETHINKING AN OLD FRIEND

- Can incubation methods/times be reevaluated?
- Use 'young' cultures to set up KB
 - Results ready in 24-30h
 - Good categorical & quant agreement
 - Performed well across species and drugs
- Direct Disk Diffusion on Blood
 - M100 Ed. 24 Table 3F
- Organism ID needed for interps

TABLE 4 Comparison of disk diffusion testing with optimized, 6-h early growth method (EDD6) versus standard 24-h growth method with 100 clinical isolates^a (Table view)

					Discrepancies, n/n (%)		
Organism	R	s	Total	Agreement, n/n (%) ^b	Very major ^c	Major ^d	Minor ^e
A. baumannii	46	44	90	88/90 (97.8)	0/46 (0)	0/44 (0)	2/90 (2.2)
E. cloacae	33	87	120	114/120 (95)	0/33 (0)	0/87 (0)	6/120 (5)
E. coli	50	70	120	112/120 (93.3)	0/50 (0)	0/70 (0)	8/120 (6.7)
K. pneumoniae	49	71	120	119/120 (99.2)	0/49 (0)	0/71 (0)	1/120 (0.8)
MRSA	24	76	100	99/100 (99)	0/24 (0)	0/76 (0)	1/100 (1)
MSSA	10	90	100	100/100 (100)	0/10 (0)	0/90 (0)	0/100 (0)
P. aeruginosa	37	103	140	134/140 (95.7)	0/37 (0)	0/103 (0)	6/140 (4.3)
VRE	42	38	80	76/80 (95)	0/42 (0)	0/38 (0)	4/80 (5)
VSE	15	65	80	75/80 (93.8)	0/15 (0)	0/65 (0)	5/80 (6.2)
TOTAL	306	644	950	917/950 (96.5)	0/306 (0)	0/644 (0)	33/950 (3.5)

^a R, resistant; S, susceptible.

^b Categorical agreement between the early (EDD6) and standard growth methods.

^c Number of very major discrepancies divided by total resistant organisms as determined by the standard growth method.

^d Number of major discrepancies divided by total susceptible organisms as determined by the standard growth method.

^e Number of minor discrepancies divided by total organisms tested.

FLUORESCENCE IN-SITU HYBRIDIZATION (FISH)

Comparison of dark-field, universal, and target signals informs organism detection and identification.

ID and AST results

1. Acceleratediagnostics.com

NEXT GENERATION PHENOTYPING (NGP)

- Measures growth and viability through OD and fluorescence
- AST results only

1. Seluxdx.com

VOLATILE ORGANIC CHEMICAL DETECTION

VOCs are small metabolites produced during bacterial growth

- 1. Kuil SD. Antibiotics. 2022 11(6), 705
- 2. Weisskopf L. Nat Rev Microbiol. 2021 Jun;19(6):391-404.
- 3. bioMerieux.com

Methods for AST - Phenotypic Fast

Day 0

COMMERCIALLY AVAILABLE RAPID PHENOTYPIC ANTIMICROBIAL SUSCEPTIBILITY TESTING METHODS

 $\overrightarrow{}$

 \bigstar

Test	Test Results	Sample Type	Average Time to Results (hours)	Regulatory status	
Alfred 60/AST (Alifax®, Polverara, Italy)	AST-only	Gram-negative BC Gram-positive BC	4-6	CE-IVD	<u>Laser Light Scattering -</u> Alifax S.r.l.
ASTar [®] system (Q-linea, Uppsala, Sweden)	AST-only	Gram-negative BC	6	<u>US FDA</u> , CE-IVD	<u>ASTar in the lab Q-linea</u> (<u>qlinea.com)</u>
FASTinov (FASTinov SA, Porto, Portugal)	AST-only	Gram-negative BC Gram-positive BC	2	CE-IVD	FASTinov – ultra-rapid antibiotic susceptibility testing
LifeScale system (Affinity Biosensors, Santa Barbara, CA)	AST-only	Gram-negative BC	4.5	<u>US FDA</u> , CE-IVD	Rapid AST Test Results LifeScale from Affinity Biosensors
Next-Generation Phenotyping (NGP) system (Selux, Charlestown, MA)	AST-only	Gram-negative isolated colonies Gram-positive isolated colonies Gram-negative BC	5.5	<u>US FDA</u> , CE-IVD	Precision diagnostics for infectious diseases - Selux Diagnostics (seluxdx.com)
Pheno [®] system (Accelerate Diagnostics, Tucson, AZ)	ID + AST	Gram-negative BC Gram-positive BC	7	<u>US FDA</u> , CE-IVD	Accelerate Pheno® system (acceleratediagnostics.com)
QMAC-dRAST [™] (QuantaMatrix, Inc., Seoul, Republic of Korea)	AST-only	Gram-negative BC Gram-positive BC	6	CE-IVD, MDFS Korea	Sepsis Solution - dRAST QuantaMatrix
VITEK [®] REVEAL [™] (bioMérieux Marcy-l'Etoile, France)	AST-only	Gram-negative BC	5.5 - 6	<u>US FDA</u> , CE-IVD	VITEK REVEAL bioMérieux, Inc. (biomerieux.com)

MacVane, et al., Journal of Antimicrobial Chemotherapy, 2024

CHALLENGES

CHALLENGES FOR IMPLEMENTATION

Logistical

- Trained staff
- Shifts available
- Verification (regulatory/compliance)
- Training and validation of new system/workflow
- LIS Integration

CHALLENGES FOR IMPLEMENTATION

- Need for rapid pathogen ID for most methods
- Cost considerations
- Implementation
 - Does it replace previous method?
 - How often is it performed on same patient?
 - How are results reported?
- Antimicrobial Stewardship
 - Indirect patient impact / actionability
- Limited real-word evidence
- Others?

COMPLEXITY OF RAPID AST ADOPTION

	Defining Characteristics			
	Patient	Laboratory	Hospital	
	High severity / Critical (e.g., ICU Trauma)	Existing rapid ID (mol. or short culture MALDI)	Large Academic/Corporate hospitals (Tertiary/Quaternary care)	
LOW	High risk of MDR pathogen	24/7 microbiology lab coverage	24/7 Stewardship	
	Elevated rates of MDR	Existing lab automation	Highly resourced IT/Reporting	

COMPLEXITY OF RAPID AST ADOPTION

	Defining Characteristics			
	Patient	Laboratory	Hospital	
	Transplant	Existing rapid ID rapid AST (incl. LDT)	Small/Medium Academic/Community hospitals & State/County Facilities	
MEDIUM	Pediatrics	Non-systematic Rapid ID usage		
	Oncology/ Haemato-oncology	Single shift workflow	Single shift Stewardship	

COMPLEXITY OF RAPID AST ADOPTION

	Defining Characteristics			
	Patient	Laboratory	Hospital	
	General Medicine / Surgery	Conventional ID Workflow	Low ASP Resources/expertise	
HIGH	Non-critical	Centralized laboratory services	Send-out specialty testing	
	Low rates of MDR	Reference laboratory services	Critical access hospitals	

THANK YOU & QUESTIONS?

Kristen L. Smith, PhD, D(ABMM) (she/her/hers) Medical Advisor Lead, US Medical Affairs bioMérieux, Inc, <u>kristen.smith1@biomerieux.com</u> Mobile: +1-743-218-0185 <u>www.biomerieux.com</u>

