FROM BENCH TO BEDSIDE: UNDERSTANDING ANTIMICROBIAL STEWARDSHIP, REPORTING, AND RESISTANCE #### Michelle Lee, PharmD Clinical Pharmacist Specialist - Infectious Diseases and Antimicrobial Stewardship Rhode Island Hospital Northeast Association for Clinical Microbiology and Infectious Disease 37th Annual Meeting September 24, 2024 ## **Disclosures** None ### **Outline** - Define and describe the impact of antimicrobial stewardship programs - 2. Discuss the role of clinical microbiologists in antimicrobial stewardship Identify emerging drug resistance and novel antibacterials ## Competing Tensions in Antimicrobial Use ### **Antimicrobial Use** Up to 50% of antibiotics prescribed are inappropriate. ### Common Misuses of Antibiotics - Empiric antimicrobial treatment with broad-spectrum antibiotics without clear evidence of bacterial infection - Treatment of a positive clinical culture in the absence of disease - Failure to narrow antibiotic therapy when a causative organism is identified - Prolonged prophylactic therapy - Excessive durations of therapy #### **Antibiotic Misuse** Reasons for unnecessary DOT in non-ICU patients over 2 weeks ~30% of all antibiotic days of therapy were unnecessary # What are the consequences of antibiotic misuse? ## Consequences of Antibiotic Misuse ## Clostridioides difficile Infection (CDI) - Antibiotic exposure is the single most important risk factor for the development of CDI - Patients who receive broad-spectrum antibiotics during hospitalization are at 3 times greater risk to develop CDI ## COVID-19 Impact on Antimicrobial Resistance | | Threat | Change in Rates or Number of Infections*** | | | | | | | |-------|--|--|----------|---------------|---------------|--|--|--| | | Tireat | 2020 vs. 2019 2021 vs. 202 | | 2022 vs. 2021 | 2022 vs. 2019 | | | | | * | Hospital-onset CRE | Increase | Increase | Stable | Increase | | | | | URGEN | Hospital-onset Carbapenem-
resistant <i>Acinetobacter</i> | Stable | Stable | | Increase** | | | | | , in | Clinical Cases of <i>C. auris</i> | Increase | Increase | Increase | Increase | | | | | | Hospital-onset MRSA | Increase | Stable | Decrease | Stable | | | | | *SOC | Hospital-onset VRE | Increase | Increase |
Stable | Increase | | | | | SERIC | Hospital-onset ESBL-
producing Enterobacterales | Increase | Stable |
Stable | Increase | | | | | ~ | Hospital-onset MDR
Pseudomonas aeruginosa | Increase | Increase | | Increase | | | | ^{*} Threat level for each pathogen, as categorized in CDC's Antibiotic Resistance Threats in the United States, 2019. ^{**} There was no statistically significant difference in rate of hospital-onset carbapenem-resistant *Acinetobacter* in 2020, 2021, and 2022 when compared to the previous year. However, there was a statistically significant increase in rate of hospital-onset carbapenem-resistant *Acinetobacter* in 2022 when compared to 2019. ^{***} Hospital-onset rates were described using multivariable models for all threats except *C. auris*. Please note that in above table, stable indicates there was no statistically significant increase or decrease, decrease indicates a statistically significant decrease where p<0.05, and increase indicates a statistically significant increase where p<0.05, for all threats except for *C. auris*. Increases or decreases in *C. auris* were indicated by changes in the number of clinical cases reported nationally without hypothesis testing. # How do we improve antimicrobial use and minimize resistance? # Antimicrobial Stewardship (AMS) Multidisciplinary approach to optimizing antimicrobials to maximize patient outcomes and decrease antimicrobial resistance - Ensuring patients are: - ✓ On the right antibiotic - ✓ At the right dose, route, and duration - ✓ For the right indication # Multidisciplinary Approach ID=infectious diseases # Antimicrobial Stewardship Program (ASP) Strategies #### Core Prospective audit and feedback Formulary restriction #### Supplemental Education Guidelines and clinical pathways Antimicrobial order forms De-escalation of therapy Dose optimization IV to PO conversion Computer surveillance and decision support # Impact of Antimicrobial Stewardship # Improving Antibiotic Use Improves Infection Cure Rates Clinical outcomes with and without antimicrobial stewardship # Improving Antibiotic Use Reduces Resistance P. aeruginosa susceptibilities before and after implementation of antibiotic restrictions # Improving Antibiotic Use Decreases *C. difficile* Rates # Improving Antibiotic Use Decreases Health Care Costs Cost of antimicrobials before, during, and after ASP # Clinical Microbiologists and Antimicrobial Stewardship ## AMS Activities by Microbiologists ### Essential - Perform timely, reliable, reproducible ID/AST - Promptly report unusual patterns of resistance - Create annual antibiograms - Implement cascade and/or selective reporting - Collaborate with ID physicians and pharmacists to update methods for AST ### Achievable - Provide specific comments to guide therapy on microbiology reports - Use RDT for targeted critical specimen types # Aspirational - Evaluate feasibility and perform AST to new drugs - Broaden use of RDT ## Antibiograms ### Enhanced antibiograms for institutional needs: - Patient location (e.g., ICU, outpatient) - Syndromic: select specimen types (e.g., blood, urine) - Patient population (e.g., surgical, pediatric) - Rolling - Aggregated - Antimicrobial agent combinations - Antimicrobial resistance markers # Empiric Combination Therapy for Pneumonia # Combination Antibiogram to Evaluate Cross-Resistance Combination antibiogram for *P. aeruginosa* isolates (% susceptible) | Antibiotic | Monotherapy | In Combination With | | | | | | | |-----------------------------|-------------|---------------------|----------|---------------|--------------|--|--|--| | | | Gentamicin | Amikacin | Ciprofloxacin | Levofloxacin | | | | | Ceftazidime | 84 | 94 | 99 | 95 | 94 | | | | | Imipenem | 84 | 94 | 99 | 94 | 92 | | | | | Cefepime | 90 | 96 | 99 | 95 | 94 | | | | | Meropenem | 89 | 96 | 99 | 95 | 94 | | | | | Piperacillin-
tazobactam | 83 | 95 | 99 | 95 | 93 | | | | # Antibiogram with Resistance Markers for Therapy Optimization #### Antibiograms as a function of resistance markers | Organism | Resistance | | % sus | ceptible | isolate | s | | | | | | | | | | |--|------------|-----|-------|----------|---------|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----| | | marker | n | SAM | TZP | czo | CRO | FEP | ETP | MEM | IMI | GEN | ТОВ | CIP | LVX | ATM | | Detroit Medical Center | | | | | | | | | | | | | | | | | E. coli | CTX-M | 58 | 5 | 84 | 0 | 3 | 22 | 100 | 100 | | 48 | 26 | 5 | | 10 | | | None | 326 | 52 | 99 | 75 | 98 | 99 | 100 | 100 | | 92 | 92 | 82 | | 99 | | K. pneumoniae | CTX-M | 28 | 0 | 57 | 0 | 4 | 4 | 96 | 100 | | 46 | 25 | 36 | | 25 | | | KPC | 6 | 0 | 0 | 0 | 0 | 33 | 0 | 0 | | 17 | 0 | 17 | | 17 | | | None | 106 | 83 | 97 | 84 | 94 | 99 | 100 | 100 | | 94 | 95 | 94 | | 93 | | K. oxytoca | KPC | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 100 | 100 | 0 | | 0 | | | None | 22 | 41 | 91 | 32 | 95 | 100 | 100 | 100 | | 100 | 100 | 100 | | 100 | | Proteus spp. | CTX -M | 4 | 25 | 100 | 0 | 0 | 50 | 100 | 100 | | 25 | 50 | 0 | | 100 | | | None | 53 | 79 | 96 | 11 | 94 | 100 | 100 | 100 | | 96 | 96 | 64 | | 100 | | Enterobacter spp. | CTX-M | 1 | R | 100 | R | R | 0 | 100 | 100 | | 0 | 0 | 0 | | 0 | | | None | 60 | R | 87 | R | R | 97 | 98 | 98 | | 95 | 95 | 93 | | 87 | | Citrobacter spp. | None | 10 | | 100 | R | R | 100 | 100 | 100 | | 100 | 100 | 100 | | 100 | | Acinetobacter spp. | OXA | 10 | 20 | | R | R | 20 | R | 20 | | 10 | 10 | 0 | | | | | None | 29 | 86 | | R | R | 79 | R | 93 | | 29 | 83 | 76 | | | | P. aeruginosa | None | 51 | | 82 | R | R | 88 | R | 86 | | 86 | 96 | 84 | | 75 | | | | | | | | | | | | | | | | | | | Iniversity of Maryland | | | | | | | | | | | | | | | | | Medical Center | | | | | | | | | | | 2110000000 | | | | | | E. coli | CTX-M | 14 | 21 | 93 | 0 | 0 | 0 | 99 | 100 | | 29 | | | 21 | 0 | | | None | 91 | 44 | 88 | 82 | 98 | 98 | 100 | 100 | | 83 | | | 70 | 100 | | K. pneumoniae | CTX-M | 7 | 0 | 43 | 0 | 0 | 14 | 100 | 100 | | 57 | | | 43 | 0 | | | KPC | 5 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | | 60 | | | 80 | 0 | | | None | 45 | 80 | 93 | 85 | 91 | 100 | 100 | 100 | | 98 | | | 100 | 95 | | K. oxytoca | None | 9 | 67 | 100 | 89 | 100 | 100 | 100 | 100 | | 100 | | | 100 | 100 | | Proteus spp. | None | 11 | 82 | 100 | 82 | 100 | 100 | 100 | 100 | | 100 | | | 64 | 100 | | Enterobacter spp. | CTX-M | 3 | R | 67 | R | R | 33 | 100 | 100 | | 33 | | | 67 | 33 | | | None | 31 | R | 65 | R | R | 80 | 100 | 100 | | 93 | | | 97 | 63 | | Citrobacter spp. | None | 6 | | 83 | R | R | 100 | 100 | 100 | | 83 | | | 83 | 83 | | Acinetobacter spp. | OXA | 5 | 60 | | R | R | 0 | R | | 0 | 40 | | 78 | | | | ACCOUNT ASSESSMENT OF STATE | None | 9 | 89 | | R | R | 89 | R | | 89 | 89 | | 89 | | | | P. aeruginosa | None | 43 | | 65 | R | R | 86 | R | 67 | 56 | 86 | | 58 | | 51 | # Escalation Antibiogram for Nonresponding Patients #### Antibiograms as a function of antimicrobial resistance # Reporting is Associated with Prescribing Patient-level antibiotic susceptibility reporting and association with directed antibiotic prescribing #### **Unadjusted Model** # Cascade and Selective Reporting Table 1A-1. Enterobacterales (excluding Salmonella/Shigella)a | Tier 1: Antimicrobial agents
that are appropriate for
routine, primary testing and
reporting | Tier 2: Antimicrobial agents that are
appropriate for routine, primary
testing but may be reported
following cascade reporting rules
established at each institution | Tier 3: Antimicrobial agents that are
appropriate for routine, primary
testing in institutions that serve
patients at high risk for MDROs but
should only be reported following
cascade reporting rules established
at each institution | Tier 4: Antimicrobial agents
that may warrant testing and
reporting by clinician request if
antimicrobial agents in other
tiers are not optimal because of
various factors | |---|--|---|---| | Ampicillin | | | | | Cefazolin | Cefuroxime | | | | Cefotaxime or ceftriaxone ^b | Cefepime ^c | | | | | Ertapenem | Cefiderocol | | | | Imipenem
Meropenem | Ceftazidime-avibactam | | | | | lmipenem-relebactam | | | | | Meropenem-vaborbactam | | | Amoxicillin-clavulanate
Ampicillin-sulbactam | | | | | Piperacillin-tazobactam | | | | | Gentamicin | Tobramycin | Plazomicin | | | | Amikacin | | | | Ciprofloxacin
Levofloxacin | | | | | Trimethoprim-
sulfamethoxazole | | | | | | Cefotetan
Cefoxitin | | | | | Tetracycline ^d | | | | | | | Aztreonam | | | | | Ceftaroline ^b | | | | | Ceftazidime ^b | | | | | Ceftolozane-tazobactam | | Urine Only | | | | | Cefazolin (surrogate for
uncomplicated UTI) ^e | | | | | Nitrofurantoin | | | | | | | Fosfomycin ^f (<i>Escherichia coli</i>) | | ## Comment Nudges Commensal respiratory flora Commensal respiratory flora only: No *S. aureus*/MRSA or *P. aeruginosa* De-escalation from anti-MRSA or anti-pseudomonal therapy Duration of anti-MRSA and antipseudomonal therapy Acute kidney injury ICU and hospital length of stay All-cause mortality ## Interpretation Guideline Changes Aminoglycoside breakpoint revisions from CLSI M100-Ed33 | | Enterobacterales | P. aeruginosa | |------------|------------------|---------------| | Gentamicin | Lowered | Deleted | | Tobramycin | Lowered | Lowered | | Amikacin | Lowered | Urine only | Table 1. Comparisons of unit-specific combination antibiograms for Gram-negative respiratory isolates by using 2022 vs. 2023 breakpoints and subgroup results for isolates with *P. aeruginosa* and non-*P. aeruginosa* | Isolates, agent | | | | | Isolat | es suscep | tible, % by | agent | | | | | |---|---|---------------------------------------|--------------|---------------|----------------------|----------------------|--------------------------------|-----------------------|-------------------|-----------------|----------------|------------------| | | Mono | therapy | Ami | kacin | Gent | amicin | Tobra | mycin | Levof | loxacin | Cipro | floxacin | | CLSI | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | | All isolates (221 isolates) | | | | dan | | distribution. | | To provide to | COLUMN TO SERVICE | CHANGE - | | | | Cefepime | 75.1 | 75.1 | 88.7 | 79.6 | 86.0 | 79.2 | 86.4 | 85.1 | 89.6 | 89.6 | 80.5 | 80.5 | | Meropenem | 80.1 | 80.1 | 86.9 | 81.4 | 85.5 | 81.4 | 86.0 | 84.6 | 94.1 | 94.1 | 82.8 | 82.8 | | Piperacillin-tazobactam | 62.9 | 62.9 | 85.5 | 74.7 | 83.3 | 74.2 | 84.2 | 81.9 | 88.7 | 88.7 | 77.4 | 77.4 | | Levofloxacin | 82.4 | 82.4 | | | | | | | | | | | | Ciprofloxacin | 71.5 | 71.5 | | | | | | | | | | | | Amikacin | 85.1 | 58.8 | | | | | | | | | | | | Gentamicin | 81.0 | 56.6 | | | | | | | | | | | | Tobramycin | 82.8 | 79.2 | Isolates, agent | | | | | Isolat | es suscep | tible, % by | agent | | | | | | Isolates, agent | | therapy | Ami | kacin | | es suscep
amicin | | agent
mycin | Levof | loxacin | Cipro | floxacin | | Isolates, agent | | | Ami
2022 | kacin
2023 | | | | | Levof
2022 | loxacin
2023 | Ciprol
2022 | floxacin
2023 | | CLSI | Monor | therapy | | 4 | Gent | amicin | Tobra | mycin | | | | | | CLSI
P. aeruginosa isolates (58 | Monor | therapy | | 4 | Gent | amicin | Tobra | mycin | | | | | | CLSI
P. aeruginosa isolates (58
Cefepime | Mono
2022
isolates) | therapy
2023 | 2022 | 2023 | Gent
2022 | amicin
2023 | Tobra
2022 | mycin
2023 | 2022 | 2023 | 2022 | 81.0 | | CLSI P. aeruginosa isolates (58 Cefepime Meropenem | Monor
2022
isolates)
67.2 | therapy
2023 | 94.8 | 67.2 | Gent
2022
93.1 | 2023
67.2 | Tobra
2022
98.3 | mycin
2023
94.8 | 81.0 | 81.0 | 81.0 | 81.0
89.7 | | CLSI
P. aeruginosa isolates (58
Cefepime
Meropenem
Piperacillin-tazobactam | Mono
2022
l isolates)
67.2
81.0 | therapy
 2023
 67.2
 81.0 | 94.8
98.3 | 67.2
81.0 | 93.1
96.6 | 2023
67.2
81.0 | 70bra
2022
98.3
100.0 | 94.8
96.6 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | | CLSI P. aeruginosa isolates (58 Cefepime Meropenem Piperacillin-tazobactam Levofloxacin | Monor
2022
6 isolates)
67.2
81.0
60.3 | 67.2
81.0
60.3 | 94.8
98.3 | 67.2
81.0 | 93.1
96.6 | 2023
67.2
81.0 | 70bra
2022
98.3
100.0 | 94.8
96.6 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | 2023 | | CLSI P. aeruginosa isolates (58 Cefepime Meropenem Piperacillin-tazobactam Levofloxacin Ciprofloxacin | Mono
2022
isolates)
67.2
81.0
60.3
75.9 | 67.2
81.0
60.3
75.9 | 94.8
98.3 | 67.2
81.0 | 93.1
96.6 | 2023
67.2
81.0 | 70bra
2022
98.3
100.0 | 94.8
96.6 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | | CLSI P. aeruginosa isolates (58 Cefepime Meropenem Piperacillin-tazobactam Levofloxacin Ciprofloxacin Amikacin Gentamicin | Monor 2022 isolates) 67.2 81.0 60.3 75.9 75.9 | 67.2
81.0
60.3
75.9
75.9 | 94.8
98.3 | 67.2
81.0 | 93.1
96.6 | 2023
67.2
81.0 | 70bra
2022
98.3
100.0 | 94.8
96.6 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | 81.0
89.7 | Humphries RM. AST News Update June 2023: New! CLSI M100-Ed33: Updated Aminoglycoside Breakpoints for Enterobacterales and *Pseudomonas aeruginosa*. https://clsi.org/about/blog/ast-news-update-june-2023-new-clsi-m100-ed33-updated-aminoglycoside-breakpoints-for-enterobacterales-and-pseudomonas-aeruginosa/. ## Preanalytical Guidance #### ED UC ordering before and after intervention ### RDT and ASP ## RDT and ASP at Lifespan Pre- and post-implementation of Accelerate Pheno® with ASP intervention for GNB | Outcome | Pre (N = 102) | Post (N = 162) | P Value | |---|---------------|----------------|---------| | Length of stay, days | 7 (5-11) | 5 (3-8) | <0.001 | | Duration of IV therapy, days | 8 (5-15) | 4 (3-7) | <0.001 | | Total duration of antibiotic therapy, days | 15 (14-17) | 13 (8-15) | <0.001 | | IV to PO conversion, n (%) | 62 (61%) | 126 (78%) | 0.003 | | Time to optimal therapy, hours | 64 (52-91) | 20 (12-31) | <0.001 | | Time to discontinuation of anti-MRSA therapy, days | 2 (1-3) | 1 (1-2) | 0.002 | | Time to discontinuation of anti-
pseudomonal beta-lactam, days | 3 (3-5) | 2 (1-2) | <0.001 | # Emerging Drug Resistance and Novel Antibacterials # Timeline of Antibiotic Development, Resistance, and Stewardship ### Mechanisms of Antimicrobial Resistance # Antibacterial Clinical Pipeline 7/2017 to 12/2023 # Changing Carbapenemase Epidemiology #### Carbapenemase trends in the US from 2019 to 2021 ^{*} Includes NDM type (87.9%) and IMP type (12.1%). ## CRE Activity of Novel β-Lactams | Antibiotic | Class | KPC | MBL | OXA-48 | |------------------------------------|---|-----|-----|--------| | Cefiderocol | Siderophore cephalosporin | Yes | Yes | Yes | | Ceftazidime-avibactam | 3 rd generation cephalosporin, DBO β-lactamase inhibitor | Yes | No | Yes | | Ceftazidime-avibactam + aztreonam | 3 rd generation cephalosporin, DBO β-lactamase inhibitor, monobactam | | Yes | | | Imipenem-cilastatin-
relebactam | Carbapenem, degradation inhibitor, DBO β-lactamase inhibitor | Yes | No | No | | Meropenem-vaborbactam | Carbapenem, boronate β-lactamase inhibitor | Yes | No | No | # **CRE Testing and Reporting** | Carbapenemase | CAZ-AVI | IMI-REL | MEM-VAB | Other | |--|--|--|--|--| | KPC alone | Test and report | Test and report | Test and report | | | OXA-48 alone | Test and report | Suppress or report as R or do not test | Suppress or report as R or do not test | | | KPC + OXA-48 | Test and report | Suppress or report as R or do not test | Suppress or report as R or do not test | | | MBL ± serine β-
lactamase | Suppress or report as R or do not test | Suppress or report as R or do not test | Suppress or report as R or do not test | Test and report cefiderocol or CAZ-AVI + aztreonam | | Carbapenem-R but negative for carbapenemases | Test and report | Test and report | Test and report | | ### Ceftazidime-Avibactam + Aztreonam # CDC's Antimicrobial Resistance Laboratory Network Expanded AST Program Digital printer creates custom AST panels for aztreonamavibactam MIC testing - O Southeast: Tennessee Public Health Laboratory | ARLN.health@tn.gov - Mid-Atlantic: Maryland Public Health Laboratory | MDPHL,arln@maryland.gov - Northeast: Wadsworth Center Labs | ARLNcoreNY@health.ny.gov #### **Broth Disk Elution Method** Uses disks as source of antimicrobials for broth dilution testing ## Non-Traditional Antibacterial Agents #### **Approved Agents** | | | 3 | | |--|------------------|---|---| | Agent | Approval | Administration | Indication | | SER-109
(Vowst TM
fecal
microbiota
spores, live-
brpk) | USFDA | Oral capsules | Prevention
of rCDI after
antibacterial
treatment
for rCDI | | RBX2660
(Rebyota®
fecal
microbiota,
live-jslm) | USFDA | Suspension
delivered by
enema | | | BB128
(Biomictra [™]
faecal
microbiota) | Australia
TGA | Suspension
delivered by
endoscopy or
enema | Restoration
of gut
microbiota
in rCDI | #### Agents in the Clinical Pipeline ### Conclusion - ASPs use a multidisciplinary approach to optimize antimicrobials, maximize patient outcomes, and decrease antimicrobial resistance - Clinical microbiologists are essential members of ASP - Novel antibacterials must be used judiciously - There is a critical need for innovative antibacterial agents # FROM BENCH TO BEDSIDE: UNDERSTANDING ANTIMICROBIAL STEWARDSHIP, REPORTING, AND RESISTANCE #### Michelle Lee, PharmD Clinical Pharmacist Specialist - Infectious Diseases and Antimicrobial Stewardship Rhode Island Hospital mlee13@lifespan.org Northeast Association for Clinical Microbiology and Infectious Disease 37th Annual Meeting September 24, 2024