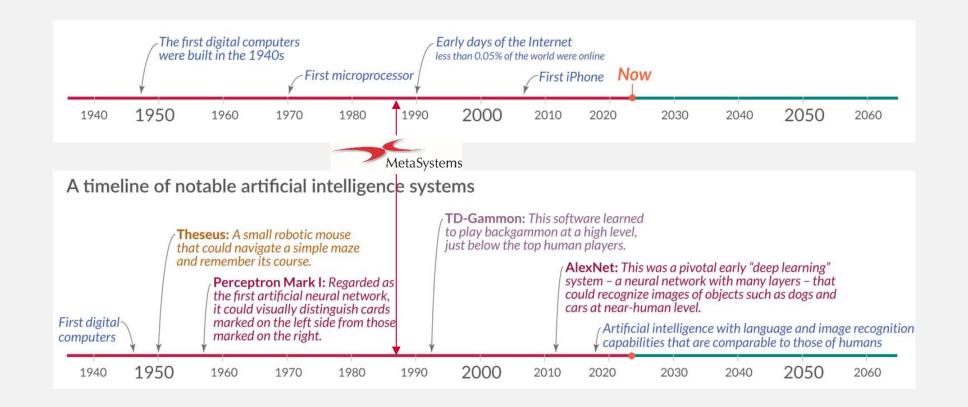
AI ASSISTED DIGITAL MICROSCOPY IN MICROBIOLOGY

Mert Corbaci, PhD DNN Applications Engineer MetaSystems Group, Inc.



AI ASSISTED DIGITAL MICROSCOPY IN MICROBIOLOGY

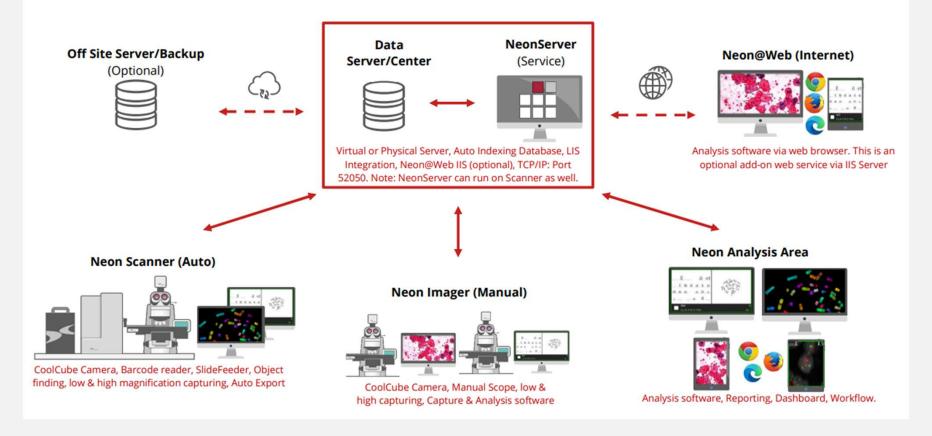
- MetaSystems
- Automation in Microbiology and Microscopy
- Challenges & Limitations
- Al Assisted Microscopy
- Benefits, Challenges, Limitations

COMPUTERS & ARTIFICIAL INTELLIGENCE

METASYSTEMS

A BRIEF HISTORY

- **I** 1983 How to Find Metaphases
- 1985 Metafer
- 1986 MetaSystems
- 1991 Ikaros (Karyotyping software)
- 1995 MetaSystems Boston Office
- 2002 High throughput
- 2010 Whole Slide Stitching
- 2013 Collaboration with Copan, first microbiology application
- 2016 Neon Database Management Software
- 2021 Patented AI Assisted Karyotyping


METASYSTEMS SCANNER

High Level Architecture

DIGITAL MICROBIOLOGY

Aspects of digital microbiology in the diagnostic process

Process	Aspect	Example
Pre-analytics	Quality control	What is the sample quality? — Automated measurement and feedback regarding the correct filling of blood culture bottles.
		 Automated assessment of sample contamination including species and clinical score
	Diagnostic stewardship	Which additional diagnostic test should be ordered?
	Diagnostic stewardship	 Suggestion based on a digital twin, smartphone app, or chatbot
Analytics	Quality control	How reliable is the analytical performance of a test?
, indigeneous	Quanty control	- Surveillance of reagent lots performance with internal and external controls and automated
		reporting in connection to specific used lots of time
	Imaging	Are there bacteria on the microscope slide?
	0	- Automated image acquisition with a microscope and scan for pathogen-like structures and
		category
	Plate reading	Is there bacterial growth on the plate?
		- Automated image acquisition and scan for colonies and subsequent identification
		(telebacteriology)
	Expert system	Does the detected resistance profile make sense?
		 Medical validation of antibiotic resistance profiles with expert database
	Public Health	Is there a potential outbreak?
		 Automated screening for pathogen similarities, e.g., resistance profile or automated bioinformatics
Post-analytics	Highlight important	Is there a potential bacterial phenotype?
	data	 Detection of resistance by analysing MALDI-TOF spectra
	Sepsis treatment	What is the best treatment for the patient?
		 Prediction of sepsis, and best treatment, e.g., volume and antibiotics for the patient

Source: Egli, A., Schrenzel, J., & Greub, G. (2020). Digital Microbiology. Clinical Microbiology and Infection, 26(10), 1324–1331. https://doi.org/10.1016/j.cmi.2020.06.023

CHALLENGES OF AUTOMATION

HISTORICAL IMPEDIMENTS TO AUTOMATION IN MICROBIOLOGY

Microbiology is too complex to automate.

- Specimen types: blood, sterile body fluids, tissues, urine, catheter tips, other prosthetic devices, respiratory tract specimens
- Transportation, variety of vessels
- Processing: concentrated, macerated, digested, decontaminated, sonicated prior to being plated, or plated directly;
 - plating can be quantitative, semiquantitative, or nonquantitative
- No machine can replace a human in the microbiology laboratory.
 - Machines cannot operate fast enough
 - Decision-making, critical-thinking
- Cost of automation can be too high.
- Microbiology laboratories are too small for automation.

Bourbeau, P. P., & Ledeboer, N. A. (2013a). Automation in clinical microbiology. *Journal of Clinical Microbiology*, *51*(6), 1658–1665. https://doi.org/10.1128/jcm.00301-13

CHALLENGES OF AUTOMATION

HISTORICAL IMPEDIMENTS TO AUTOMATION IN MICROBIOLOGY

- Microbiology is too complex to automate.
- No machine can replace a human in the microbiology laboratory.
- Cost of automation.
- Microbiology laboratories are too small for automation.

Driving forces for automation

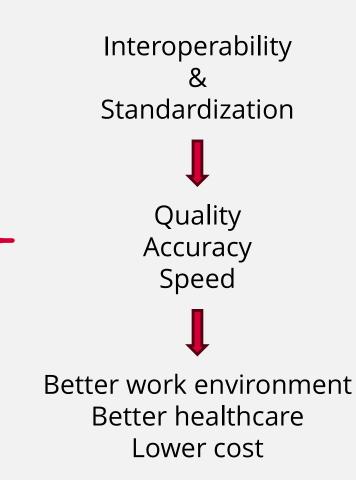
- Increasing test volumes
- 24/7 labs
- Staff shortages
- Advancement of technology

Bourbeau, P. P., & Ledeboer, N. A. (2013a). Automation in clinical microbiology. *Journal of Clinical Microbiology*, *51*(6), 1658–1665. https://doi.org/10.1128/jcm.00301-13

WHOLE > $\sum(PARTS)$

- Sample collection
- Accessioning
- Sample preparation
- Processing
- Data acquisition
- Analysis/identification
- Resulting/reporting

WHOLE > $\sum(PARTS)$

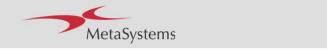

- Sample collection
- Accessioning
- Sample preparation
- Processing
- Data acquisition
- Analysis/identification
- Resulting/reporting

Interoperability & Standardization

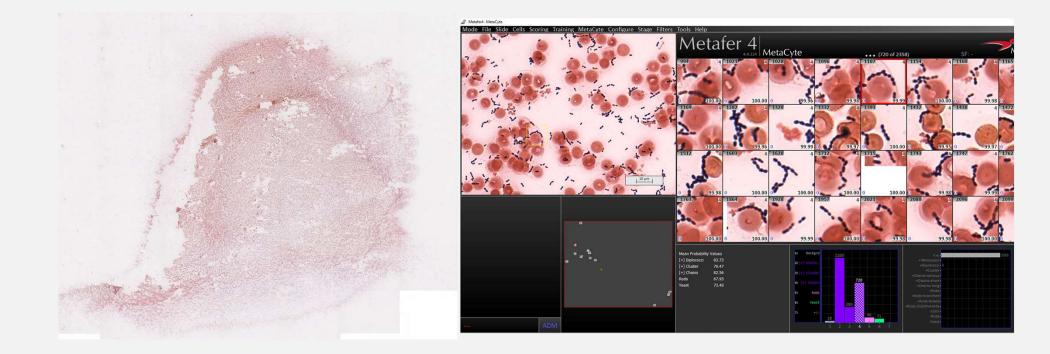
WHOLE > $\sum(PARTS)$

- Sample collection
- Accessioning
- Sample preparation
- Processing
- Data acquisition
- Analysis/identification
- Resulting/reporting

DIGITAL MICROSCOPY


- Data acquisition
- Storage
- Quality control
- Analysis
- Security and protection
- Interoperability/interconnection
- Reporting and visualization

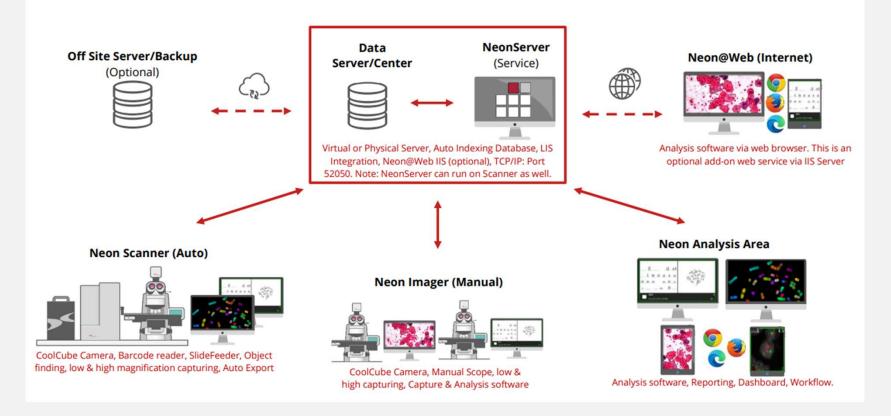
- Hardware
- **S**oftware
- Infrastructure
- Cybersecurity


- 12 MP images
- Multiple focus planes (z-stack)

~ 500 MB – 1 GB raw data per slide
Containing patient demographics

• Imaging 3 mins average

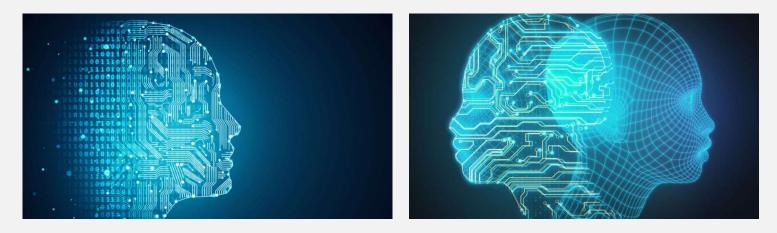
DIGITAL MICROSCOPY



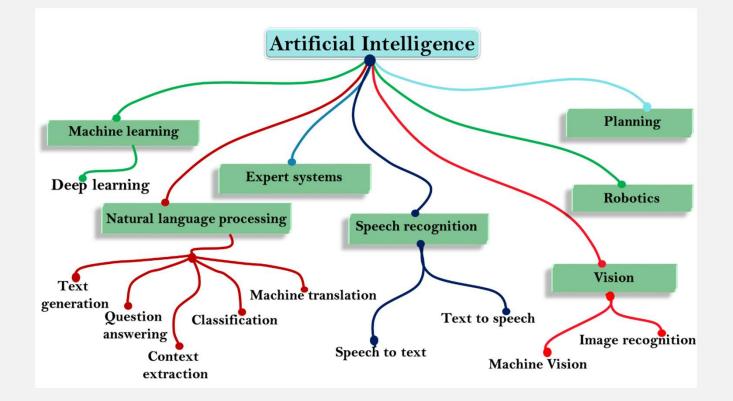
DIGITAL MICROSCOPY

Ikar Neon	OS 6.3.3					न Report	More ▼ 🛛 🙎 ADM ▼ 🧕	👮 Microbiolog	ay v	M	etaSyste
nboard	Q Search					🍸 State 🔻	T Department T T Specimen	▼ Ţ Virtua	I Slides 🔻 📔	* • •)
es	Case	State	Department	Specimen	Created +	Scans Result	Comment	Patient No	Birthdate	Checke	
reate Case	OPLH2018	Created			10/20/2020 13:43:01			483968	10/23/1980		Open (
	OPLH2012	Captured	Parasitology		10/20/2020 13:42:04			475839	07/13/1978		
atistics	OPLH2020	Reviewed			10/20/2020 08:17:38			5463786	08/20/1977		1
	OPLH2019	Captured	Parasitology	Stool	10/20/2020 08:16:00			567497	06/14/1966		
arch	OPLH2007	In Review	Parasitology	Stool	10/20/2020 08:13:32	1 O&P Positive		476893	10/17/1979		
	GR-MGI-060801	Captured	Bacteriology		06/08/2020 12:40:54						
oups ents	OP204564	Captured	Parasitology	Stool	05/26/2020 14:52:53			563258	05/26/1976		
	OP204585	In Review	Parasitology	Stool	05/26/2020 14:52:53	1 OP Positive	Giardia	563258	05/26/1976		
	OP204569	Captured	Parasitology	Stool	05/26/2020 12:51:55		D. Frag.	466415	03/10/1963		-
	(OP204583	Captured	Parasitology	Stool	05/26/2020 12:51:55			466415	03/10/1963		
olems	GR204065	Captured	Bacteriology	Wound	05/26/2020 10:35:19		G+ Cocci, G- rods, VSlide	828961	04/01/1989		
	O AR204863	Captured	Mycobacteria		05/22/2020 17:21:21		AuramineO - S	394603	05/26/1985		ර
	O GRD20492	In Review	Bacteriology	Sputum	05/22/2020 16:49:18		DNN G+ Diplococci, G+ Clusters	484207	04/04/1964		
	O ZN204869	In Review			05/22/2020 11:11:03		Ziehl-Neelsen	526348	05/26/1970		
	O AR204869	In Review	Mycobacteria		05/22/2020 11:07:11		AuramineO - S	457658	02/01/1984		
	OP209467	Checked	Parasitology	Stool	05/22/2020 10:32:10	1 O&P Positive	Blasto, E. Nana	865395	12/05/1979	ADM	
	OP209494	Checked	Parasitology	Stool	05/22/2020 10:32:10			865395	12/05/1979	ADM	
	AR208586	Captured	Mycobacteria		05/22/2020 10:25:30		AuramineO - W	480716	12/05/1960		
	GR204593	Checked	Bacteriology	Blood	05/22/2020 09:56:12		G+ Cocci Chains	157691	05/22/1981	ADM	
	0 185018625012	In Review		Blood	05/22/2020 09:54:05		G+ cocci short chains	361063	07/17/1968		
	O GR200395	In Review	Bacteriology	Blood	05/22/2020 09:47:31		G+ Cocci Chains	798523	06/13/1979		
	OP205772	Checked	Parasitology	Stool	05/21/2020 13:23:08	1 O&P Positive	D. Frag.	751682	07/05/1965	ADM	
	O HS20003363	In Review	Cyto		03/02/2020 14:57:56				06/08/1947		-

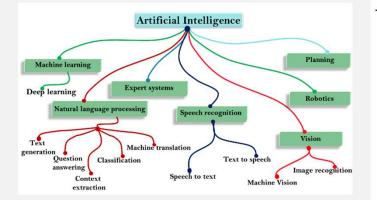
High Level Architecture



ARTIFICIAL INTELLIGENCE


ARTIFICIAL INTELLIGENCE (AI)

- Computer systems able to perform tasks that normally require human intelligence (visual perception, speech recognition, translation between languages, decision-making etc.)
- Theory and development of computers systems able to perform tasks that normally require human intelligence
- Computer Science, Statistics, Neuroscience, Psychology



ARTIFICIAL INTELLIGENCE (AI)

ARTIFICIAL INTELLIGENCE (AI)

Aspects of digital microbiology in the diagnostic process

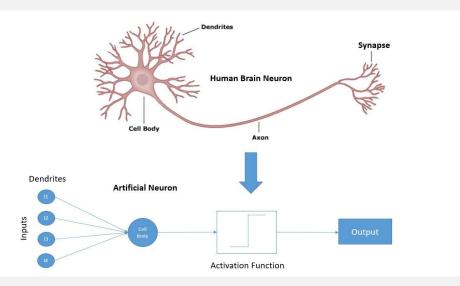
Process	Aspect	Example
Pre-analytics	Quality control	What is the sample quality? — Automated measurement and feedback regarding the correct filling of blood culture bottles. — Automated assessment of sample contamination including species and clinical score
	Diagnostic stewardship	Which additional diagnostic test should be ordered? — Suggestion based on a digital twin, smartphone app, or chatbot
Analytics	Quality control	How reliable is the analytical performance of a test? — Surveillance of reagent lots performance with internal and external controls and automated reporting in connection to specific used lots of time
	Imaging	 Are there bacteria on the microscope slide? Automated image acquisition with a microscope and scan for pathogen-like structures and category
	Plate reading	Is there bacterial growth on the plate? — Automated image acquisition and scan for colonies and subsequent identification (telebacteriology)
	Expert system	Does the detected resistance profile make sense? — Medical validation of antibiotic resistance profiles with expert database
	Public Health	Is there a potential outbreak? — Automated screening for pathogen similarities, e.g., resistance profile or automated bioinformatics
Post-analytics	Highlight important data Sepsis treatment	Is there a potential bacterial phenotype? — Detection of resistance by analysing MALDI-TOF spectra What is the best treatment for the patient? — Prediction of sepsis, and best treatment, e.g., volume and antibiotics for the patient

MACHINE LEARNING (ML)

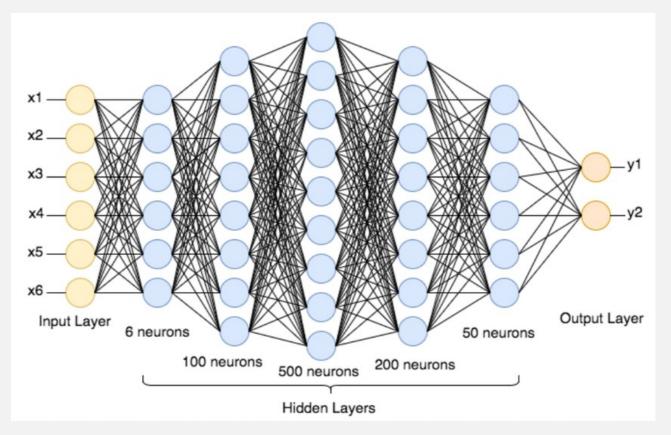
- Computation learning using algorithms to learn from and make predictions on data
- Gives computers the ability to learn without bring explicitly programmed
- the use and development of computer systems that are able to learn and adapt without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data.
- In classical machine learning, an expert manually designs features that can be used to distinguish objects-of-interest by different parameters, e.g., shape, color, or texture. In this process called feature engineering, the expert transfers knowledge to the algorithm.

Artificial Intelligence

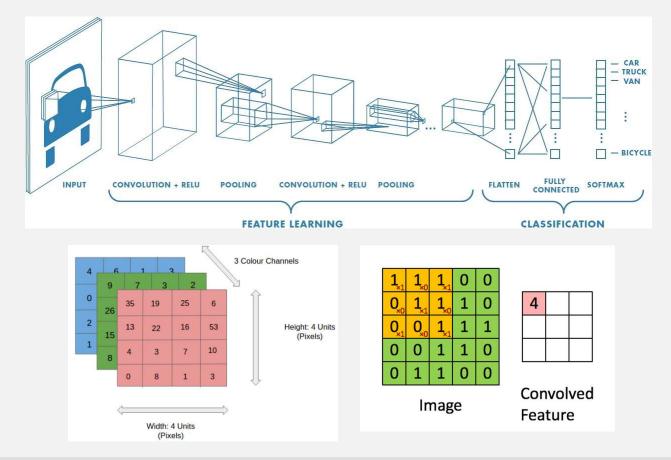
Machine Learning

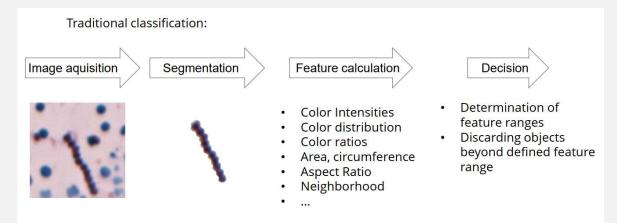

Artificial Intelligence

Enables a machine to mimic human behavior


Machine Learning Distinguishing features engineered by human developer

> **Deep Learning** Distinguishing features acquired by Deep Neural Network (DNN)


- Machine learning algorithms with brainlike logical structure of algorithms called artificial neural networks
- Biomimetics

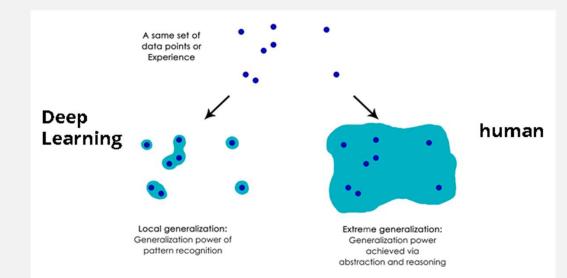

MACHINE LEARNING

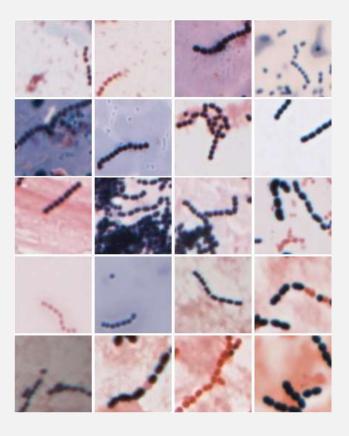
Traditional classification:

Feature engineering

- Dark
- Elongated
- Made of small round objects
- Certain size
- ...

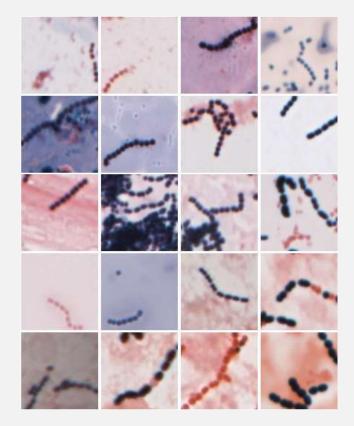
The programmer "describes" the object, transfers knowledge to the algorithm.


Deep Learning: "Neuronal net" just learns that THIS image HAS TO BE "Grampositive Chain" = Learning by examples.

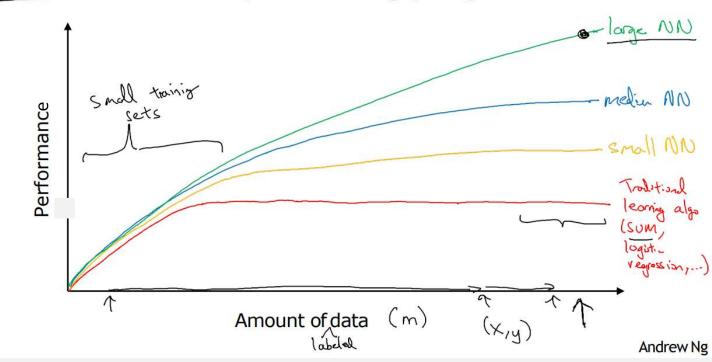


Problem: It does not know why. Is it the dark Rod? The blue clouds? The pink background? The noise?

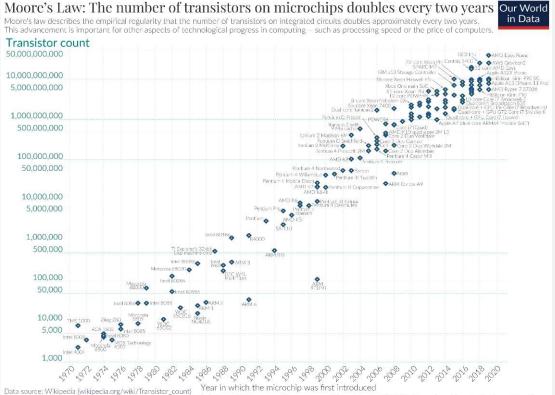
AI-ASSISTED DIGITAL MICROSCOPY



AI-ASSISTED DIGITAL MICROSCOPY

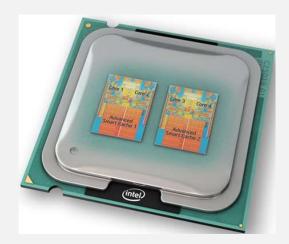

- Solution: Show a huge amount of example images of the object in all variations. This is the main reason why deep learning needs big data!
- The "intelligence" comes from the people who initially labeled all the images
- This has to be done for every class!

WHY NOW?


Scale drives deep learning progress

Source: deeplearning.ai

WHY NOW?



Our/WorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

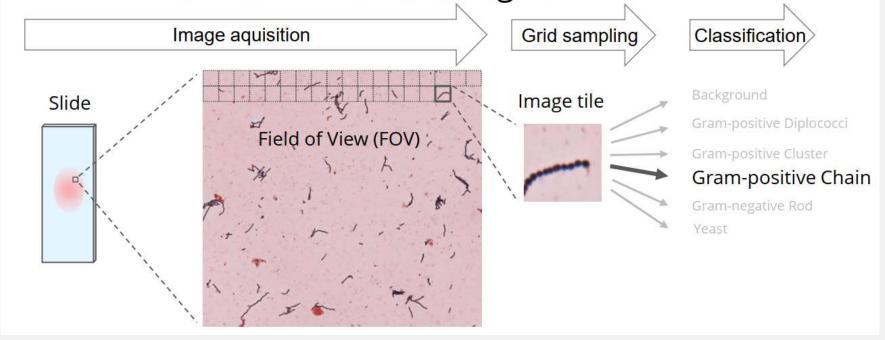
HARDWARE

- **U** CPU: Central Processing Unit
 - Basic arithmetic, logic, input/output processes specified by the instructions in a program
- Processor Core: an individual processor within a CPU

HARDWARE

- GPU: Graphics Processing Unit
- CUDA: Compute Unified Device Architecture (NVIDIA) (AMD's "Stream Processors")

- is a specialized programming language that can leverage the GPU in specific ways to perform tasks with greater performance

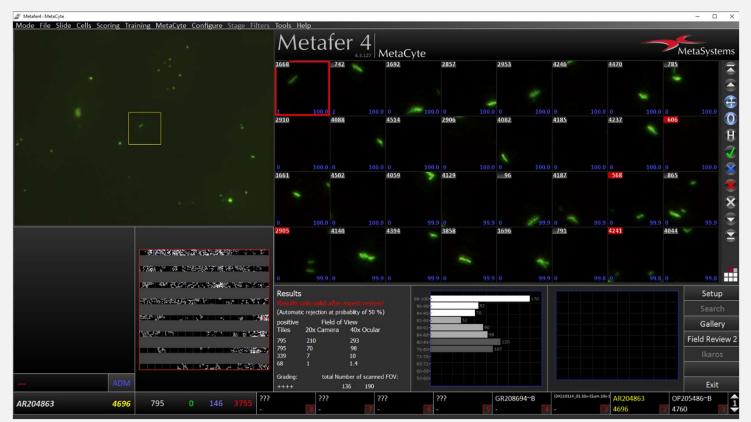

	<u>RTX 2080</u>	<u>GTX 1650</u>
Pipelines / CUDA cores	2944	896
Number of transistors	13600 million	4700 million

AI-ASSISTED DIGITAL MICROSCOPY

General DNN workflow without segmentation: Field of View is cut in image tiles

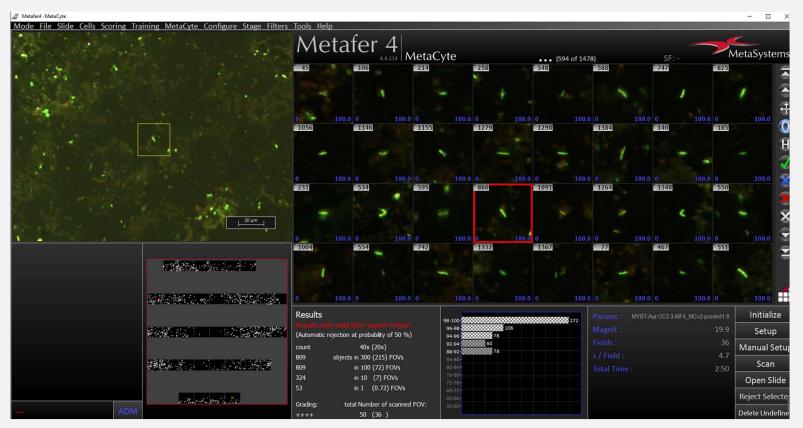
AI-ASSISTED DIGITAL MICROSCOPY

Why automation?

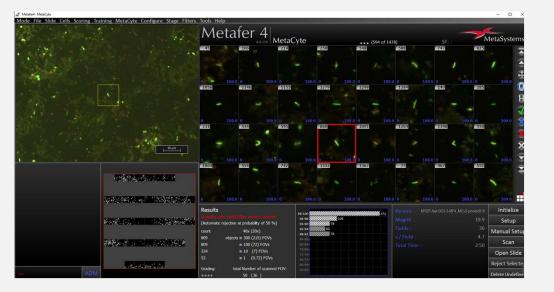

- Less hands-on microscope time
- Higher sensitivity
- Faster results

Challenges for imaging & analysis

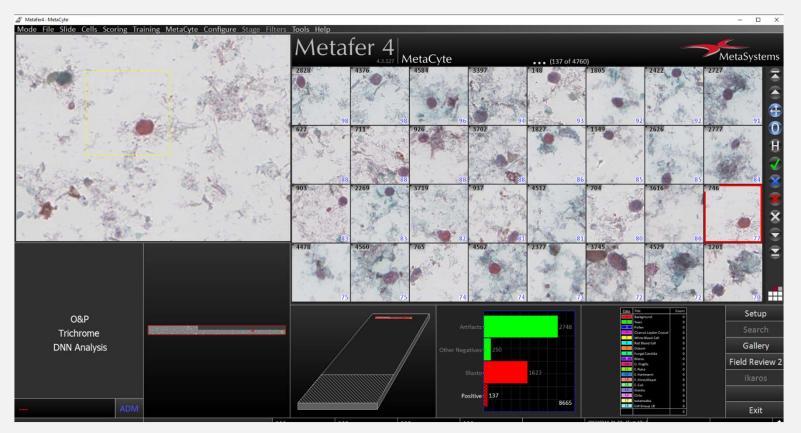
- **D** Focusing
 - Negative slides
 - □ Thick/dense samples
- Stain/slide prep consistency

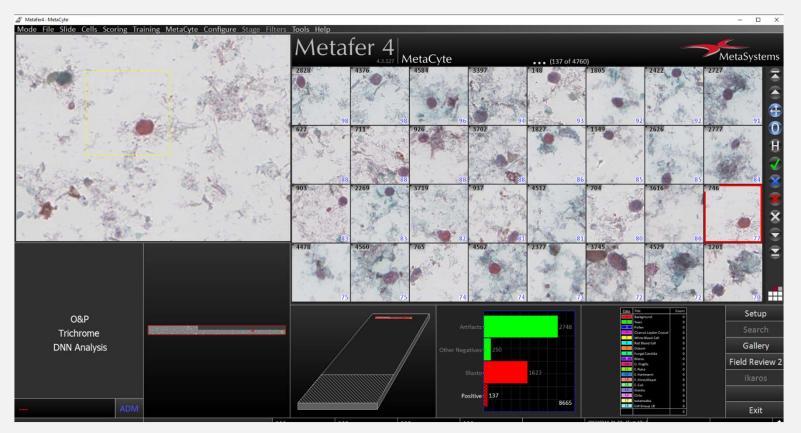


AFB (AURAMINE-O STAIN)

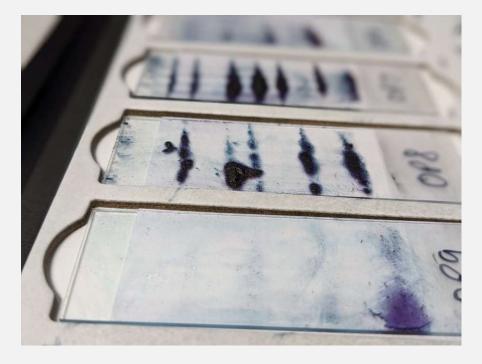


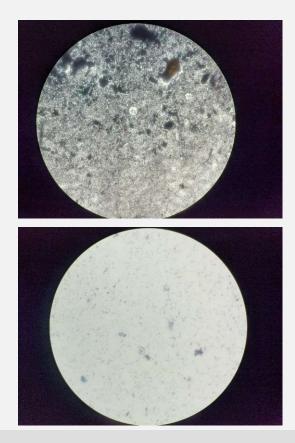
AFB (AURAMINE-O STAIN)

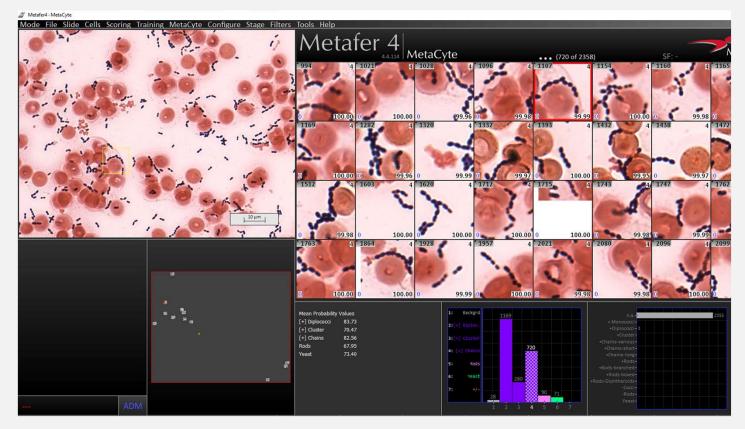

AFB (AURAMINE-O STAIN)

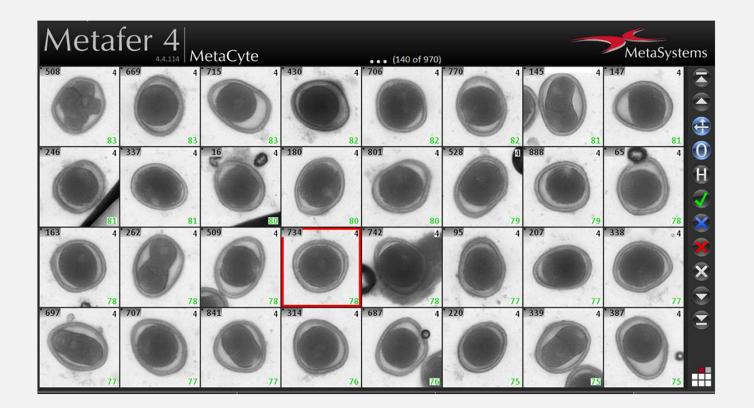

Requirements for automation:

- Focusing on negative slides
 - Use of counter-stain
 - Slides with printed/etched patterns
- Consistent staining
- Consistent slide prep

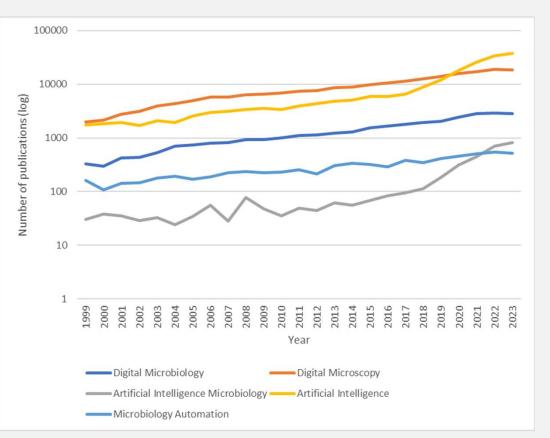








GRAM STAIN



FUTURE OUTLOOK

- Sample collection
- Accessioning
- Sample preparation
- Processing
- Data acquisition
- Analysis/identification
- Resulting/reporting

