NACMID 2022: Antimicrobial Stewardship Panel: From Culture to Bedside– Practices that Work

Minkey Wungwattana, PharmD, BCIDP Clinical Pharmacist – Infectious Diseases Maine Medical Center / Maine Medical Partners <u>Minkey.Wungwattana@mainehealth.org</u>

Disclosures

- Accelerate Diagnostics research funding
- Gilead Sciences, Inc. research funding
- Merck & Co. ad-hoc consultant

Objectives

- Explain how to leverage antimicrobial stewardship principles to communicate microbiology results to key stakeholders at the bedside.
- Demonstrate the utility of reflex testing in the clinical microbiology laboratory as a means to guide appropriate clinical decisions and patient care.
- Discuss how to integrate laboratory stewardship to reduce inappropriate management of common clinical syndromes including hospital acquired infections (HAIs).

The million dollar question..

Explain how to leverage antimicrobial stewardship principles to communicate microbiology results to key stakeholders at the bedside.

What is 'nudging'?

Nudging in the context of clinical microbiology reports can be:

- 1. Presenting 1 or more default options that are more desirable than other options (and masking non-desirable options)
- 2. Framing recommendations by adding comments or context to guide decision making
- 3. Presenting desired options at eye level by keeping desired choices at the top, or, emphasizing the text of desired agents

Susceptibility Cascading or Suppression

What is cascading & suppression

Cascading:

- "...a strategy of reporting antimicrobial susceptibility test results in which secondary (e.g. broader-spectrum, costlier) agents may only be reported if an organism is resistant to primary agents within a particular drug class"
- Customizable based on institutional needs, antibiogram, antibiotic formulary
- Oftentimes are reflexive rules set in place for microbiology to follow

Suppression:

- Selectively displaying certain antibiotics
- Can be customizable:
 - <u>Ex:</u> hiding all daptomycin and linezolid results for all Gram-positive results; released upon request
 - *Ex:* hiding all 3rd generation cephalosporins for AmpC harboring organisms
- Oftentimes require a request from a clinician to release suppressed results

Combining ≥ 1 testing modalities: *C.difficile*

- Clinical context for *C.difficile* testing
 - PCR (+) and Toxin EIA (+): CDI likely
 - PCR (+) and Toxin EIA (-): CDI unlikely (colonization vs. early infection)
- Pre-Intervention:
 - (PCR+/EIA-) reported as "Clostridium difficile cytotoxin B gene detected"
 - Treatment recommendations included
- Post-intervention:
 - (PCR+/EIA-) reported as "Clostridium difficile organism present but toxin not detected by EIA. Consider C. difficile colonization or early infection."
 - Treatment recommendations removed for any toxin-negative test

Herman DJ et al. Open Forum Infect Dis 2020;8:ofaa605.

Optimization of CDI cases

- 199 pre-intervention vs. 165 postintervention
- Total days of therapy (mean):
 - Pre- 13.6 vs. Post- 7.9 (-5.8 days; 95% CI:-3.9 to -7.6)
- Proportion of patients receiving no antibiotic therapy
 - Pre- 6.5% vs. Post- 23.6% (OR, 4.5; 95% CI, 2.3–8.7)

	Pre- intervention	Post- intervention
Subsequently developed toxin positive disease	9%	6.7%
Colectomy	0%	0.6%
Mortality	7.5%	12.1%
Hospital length-of-stay	19 days	16 days

Herman DJ et al. Open Forum Infect Dis 2020;8:ofaa605.

No significant statistical differences detected

Cascading rules: Enterobacterales

*Suppress results for amoxicillin/clavulanate for ESBL isolates resistant to ceftriaxone **Report only for urine isolates of *Escherichia coli Italics* = not reported on CSF isolates

Fig. 1 A.

Cascade reporting algorithm for antimicrobial susceptibility reporting for

Enterobacteriaceae.

Cascading rules: P.aeruginosa

Italics = not reported on CSF isolates

Fig. 1 B.

Cascade reporting algorithm for antimicrobial susceptibility reporting for *Pseudomonas aeruginosa*.

Impact of cascade reporting at VA

Consumption of Antimicrobials Before and After the Cascade Reporting Intervention

Outcome	Mean (SD) DOTs/1,000 DP During the Period Before the Intervention	Mean (SD) DOTs/1,000 DP During the Period After the Intervention	P Value
Amoxicillin/Clavulanate	13.86 (12.06)	20.23 (16.37)	.001
Cefpodoxime ^a	0.00 (0.00-0.00)	0.00 (0.00-0.00)	.065
Cephalexin	7.76 (9.08)	8.29 (10.18)	.702
Ciprofloxacin	18.38 (15.59)	16.53 (14.72)	.325
Levofloxacin	39.50 (26.64)	36.35 (24.75)	.362
Moxifloxacin ^a	0.00 (0.00-0.00)	0.00 (0.00-1.33)	.184
Trimethoprim/Sulfamethoxazole	10.15 (10.74)	10.76 (10.84)	.654
Ceftriaxone	30.41 (22.90)	28.27 (21.54)	.390
Cefepime	6.98 (10.12)	19.01 (20.09)	<.001
Meropenem	52.96 (43.83)	40.42 (32.97)	.005
Piperacillin/Tazobactam	132.56 (73.70)	113.80 (67.28)	.002

Note. SD, standard deviation; DOT, days of therapy, DP, days present.

^{*a*}Median (interquartile range). The Wilcoxon signed-rank test was used due to low utilization.

Impact of cascade reporting at VA

Consumption of Antimicrobials Before and After the Cascade Reporting Intervention

Outcome	Mean (SD) DOTs/1,000 DP During the Period Before the Intervention	Mean (SD) DOTs/1,000 DP During the Period After the Intervention	P Value
Amoxicillin/Clavulanate	13.86 (12.06)	20.23 (16.37)	.001
Cefpodoxime ^a	0.00 (0.00-0.00)	0.00 (0.00-0.00)	.065
Cephalexin	7.76 (9.08)	8.29 (10.18)	.702
Ciprofloxacin	18.38 (15.59)	16.53 (14.72)	.325
Levofloxacin	39.50 (26.64)	36.35 (24.75)	.362
Moxifloxacin ^a	0.00 (0.00-0.00)	0.00 (0.00–1.33)	.184
Trimethoprim/Sulfamethoxazole	10.15 (10.74)	10.76 (10.84)	.654
Ceftriaxone	30.41 (22.90)	28.27 (21.54)	.390
Cefepime	6.98 (10.12)	19.01 (20.09)	<.001
Meropenem	52.96 (43.83)	40.42 (32.97)	.005
Piperacillin/Tazobactam	132.56 (73.70)	113.80 (67.28)	.002

Note. SD, standard deviation; DOT, days of therapy, DP, days present.

^{*a*}Median (interquartile range). The Wilcoxon signed-rank test was used due to low utilization.

Impact of cascade reporting at VA

Consumption of Antimicrobials Before and After the Cascade Reporting Intervention

Outcome	Mean (SD) DOTs/1,000 DP During the Period Before the Intervention	Mean (SD) DOTs/1,000 DP During the Period After the Intervention	P Value
Amoxicillin/Clavulanate	13.86 (12.06)	20.23 (16.37)	.001
Cefpodoxime ^a	0.00 (0.00-0.00)	0.00 (0.00-0.00)	.065
Cephalexin	7.76 (9.08)	8.29 (10.18)	.702
Ciprofloxacin	18.38 (15.59)	16.53 (14.72)	.325
Levofloxacin	39.50 (26.64)	36.35 (24.75)	.362
Moxifloxacin ^a	0.00 (0.00-0.00)	0.00 (0.00–1.33)	.184
Trimethoprim/Sulfamethoxazole	10.15 (10.74)	10.76 (10.84)	.654
Ceftriaxone	30.41 (22.90)	28.27 (21.54)	.390
Cefepime	6.98 (10.12)	19.01 (20.09)	<.001
Meropenem	52.96 (43.83)	40.42 (32.97)	.005
Piperacillin/Tazobactam	132.56 (73.70)	113.80 (67.28)	.002

Note. SD, standard deviation; DOT, days of therapy, DP, days present.

^{*a*}Median (interquartile range). The Wilcoxon signed-rank test was used due to low utilization.

Experience from OH Community Hospital

<u>Antimicrobial Agents Reported</u> <u>Without Cascade</u>

Antimicrobial Agents Reported Through Cascade

Liao S et al. Open Forum Infect Dis 2020;7:ofaa002.

Effect of Cascade Reporting

- Antibiotic treatment vs. *E.coli* and *Klebsiella* spp.
- Reviewed 852 episodes pre-CR vs. 1049 post-CR
- Overall,
 in cefepime use measured as mean days-of-therapy
 Pre-CR 1.229 days vs. post-CR 0.813 days
- Very minimal use of meropenem across both study time periods
 - Two pre-CR vs. two post-CR
- Length of stay impact (\downarrow): 14.1 ± 0.46 vs. 10.9 ± 0.34

Additional Comments in Microbiology Report

Meaningful microbiology report interventions

- Number of blood culture bottles (+) in a set
- Preliminary tests
 - Coagulase test (Latex test) → differentiates between *S.aureus* vs. non-*S.aureus* cases
 - Germ tube test \rightarrow allows clinician to consider appropriate antifungal treatment options
 - Optochin test \rightarrow *S.pneumoniae* vs. non-*S.pneumoniae*
- Including antibiotic options based on local (or regional/national) susceptibility results
- Culture-specific add-ons:
 - Sputum cultures (e.g. normal flora \rightarrow add layer stating "lack of MRSA and Pseudomonas")

Tweaks to Respiratory Culture Report

- Modified comment for all respiratory cultures that previously would be reported "commensal respiratory flora" to:
 - "Commensal respiratory flora only: No S. aureus/MRSA or P. aeruginosa"
- Clinician education provided at the time of report comment change
- De-escalation occurred in 39% (41/105) pre- vs. 73% (77/105) post-
 - MRSA de-escalation 37% pre- vs. 71% post-
 - Anti-pseudomonal de-escalation 32% pre- vs. 70% post-
- Less co-morbidities and severely ill 5.5 times more likely to be de-escalated

Rapid Diagnostics Experience at Maine Medical Center (MMC)

Partnership with NorDx

A focus on optimizing communication

Fall 2015

 Agreement to a 6-month pilot to implement molecular on GP (Nanosphere[®])

Jan 2020

- Transitioned all GNR from molecular to phenotypical platform (Accelerate Diagnostics[®])
- GPs remained on molecular

GP: Gram-positive GNR: Gram-negative rods

Spring/Summer 2016

- Expanded molecular platform to GNRs
- Now performed (reflex) on all
 (+) BCx

Note: NorDx utilizes BD Phoenix for automated identification and antimicrobial susceptibility testing

Rapid Identification at MMC

Simple and straight forward interpretation

Component	
Rapid Blood Culture Iden- tification	Staphylococcus aureus (Mec A positive)-detected by molecular testing. **MRSA** (methicillin-resistant S. aureus) Susceptibility, and phenotypical confirmation to follow.
	Refer to NorDx test Catalogue for a listing of all targets tested. (http://testcat.nordx.mmc.org/) RAPID ORGANISM IDENTIFICATION CALLED TO: S S - P ON: 08/31/2022 AT: 13:46 BY CG06;RB.

Translate technical info to clinical info for bedside clinician mecA \rightarrow methicillin-resistance \rightarrow MRSA

VERIGENE Gram-positive Panel

Gram-Positive Blood Culture Test (BC-GP)

Species

Staphylococcus aureus Staphylococcus epidermidis Staphylococcus lugdunensis Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes Enterococcus faecalis Enterococcus faecium

Streptococcus anginosus

Staphylococcus spp. Streptococcus spp. Micrococcus spp.⁺ Listeria spp.

Resistance

Genus

mecA (methicillin) *vanA* (vancomycin) *vanB* (vancomycin)

VERIGENE Gram-positive Panel

Gram-Positive Blood Culture Test (BC-GP)

Species

Staphylococcus aureus Staphylococcus epidermidis Staphylococcus lugdunensis Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes Enterococcus faecalis Enterococcus faecium

Group

Streptococcus anginosus

Genus

Staphylococcus spp. Streptococcus spp. Micrococcus spp.⁺ Listeria spp.

Resistance

mecA (methicillin) *vanA* (vancomycin) *vanB* (vancomycin)

VERIGENE Gram-positive Panel

Gram-Positive Blood Culture Test (BC-GP)

Species

Staphylococcus aureus

Staphylococcus epidermidis Staphylococcus lugdunensis Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes Enterococcus faecalis Enterococcus faecium

Group

Streptococcus anginosus

Genus

Staphylococcus spp. Streptococcus spp. Micrococcus spp.⁺ Listeria spp.

Resistance

mecA (methicillin) *vanA* (vancomycin) *vanB* (vancomycin)

Staphylococcus spp-detected by molecular testing. Rapid Blood Culture Identification Coagulase-negative staphylococcus, NOT S.epidermidis or S. lugdunensis Susceptibility and phenotypical confirmation to follow. Refer to NorDx test Catalogue for a listing of all targets tested. (http://testcat.nordx.mmc.org/) Aerococcus and Listeria species may also give a positive result. RAPID ORGANISM IDENTIFICATION CALLED TO:R C ON: 08/18/2022 AT: 04:15 BY;BS RB.

"On menu" – genus only Final identification: *Staphylococcus hominis*

Rapid Blood Culture Iden-	Streptococcus pyogenes, Beta-Hemolytic Group A
tification	detected by molecular testing
	Susceptibility and phenotypical confirmation to follow.
	_
	Refer to NorDx test Catalogue for a listing of all targets
	<pre>tested. (http://testcat.nordx.mmc.org/)</pre>
	RAPID ORGANISM IDENTIFICATION CALLED TO: M M ON:
	07/25/2022 AT: 20:09 BY:KW;RB.

"On menu" – genus & species Final identification: *Streptococcus pyogenes* Rapid Blood Culture Iden-
tificationStreptococcus spp-
detected by molecular testing.
This is not S. anginosus group, S. pneumoniae,
S.pyogenes or S. agalactiae
Susceptibility and phenotypical confirmation to follow.--Refer to NorDx test Catalogue for a listing of all targets
tested. (http://testcat.nordx.mmc.org/)
Lactococcus species may also give a positive result.
CALLED TO:BROGAN OXFORD RN ON:07/10/2022 AT:0652 BY:ALG01
;RB.

"On menu" – genus only Final identification: Group G streptococcus

Lessons Learned at MMC/MaineHealth

Gram-Positive Blood Culture Test (BC-GP)

Species

Genus

Staphylococcus spp.

Streptococcus spp.

Micrococcus spp.+

Listeria spp.

Resistance

mecA (methicillin)

vanA (vancomycin)
vanB (vancomycin)

Staphylococcus aureus Staphylococcus epidermidis Staphylococcus lugdunensis Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes Enterococcus faecalis Enterococcus faecium

Group

Streptococcus anginosus

• Hands down, the rapid technologies are great!

- Collaborate with specialists (e.g. stewardship team) and bed-side clinicians (hospitalist team) to maximize the clinical impact and outcome of each result
- Consider useful verbiage/comments to promote understand and use of the results from rapid platforms

Future Plans at Maine Medical Center

- Group A and B streptococci
 - Add comment suggesting pan-susceptibility to penicillins and cephalosporins
 - Goal: \downarrow duration of broad-spectrum antibiotics and vancomycin
- Urine culture with E.coli, K.pneumoniae, P.mirabilus
 - Add comment on ability to use oral cephalosporins for uncomplicated UTIs if cefazolin MIC ≤ 16
 - Goal: \downarrow use of fluoroquinolones, \uparrow awareness of PO cephalosporins as option
- E. faecalis
 - Add comment (based on local antibiogram data) stating universal susceptibility to ampicillin
 - Goal: \downarrow duration of empiric vancomycin
- Micrococcus luteus
 - Add comment describing this organism as a common contaminant. Use clinical judgement when determining need to p
 - Goal: \downarrow duration of empiric vancomycin

Future Plans at Maine Medical Center

AmpC harboring organisms

- Enterobacter cloacae
- Klebsiella aerogenes
- Citrobacter freundii

In discussion with microbiology, clinicians, and antibiotic stewardship to consider adding 'nudge' language to suggest use of cefepime.

Take Home Points

- Nudging and cascading has shown to be highly effective antibiotic stewardship tools
 - Multi-disciplinary efforts will result in more effective and measurable outcomes
 - \uparrow understanding and use of the information by bedside clinician
- Do not reinvent the wheel
 - Existing protocols exist in the literature
 - Adapt them and fit your institution, stewardship program, and patient population
- When implementing rapid diagnostic technologies, look for ways to squeeze as much juice as possible

NACMID 2022: Antimicrobial Stewardship Panel: From Culture to Bedside– Practices that Work

Minkey Wungwattana, PharmD, BCIDP Clinical Pharmacist – Infectious Diseases Maine Medical Center / Maine Medical Partners <u>Minkey.Wungwattana@mainehealth.org</u>