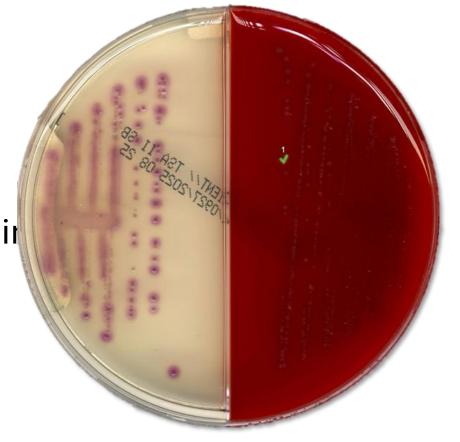


What we'll cover

- Strategies to deal with MDRO Gram negatives
- Strategies for streamlining AST QC
- Q&A

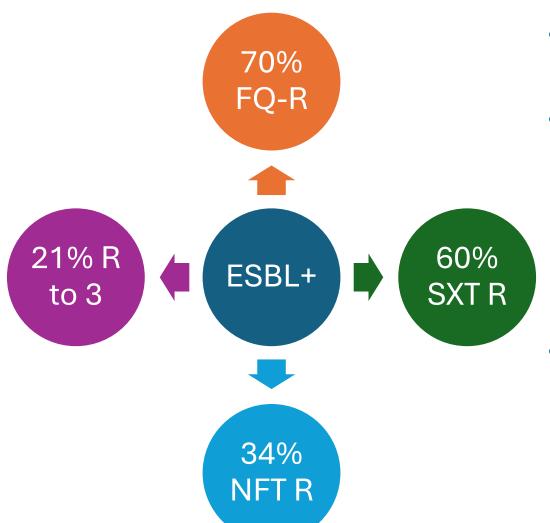

Part 1: MDR Gram negative bacteria

Case 1.

62 YO woman with urinary frequency and pair

• Culture: >100K *E. coli*

Antimicrobial	MIC (µg/mL)	Interpretation
Ampicillin	>32	R
Ceftriaxone	>32	R
Ertapenem	0.25	S
Ciprofloxacin	>4	R
Nitrofurantoin	>128	R
Trimethoprim-sulfa	>4	R



Call to lab from ID Physician:

"Could you start testing **fosfomycin** routinely for these ESBL UTI?

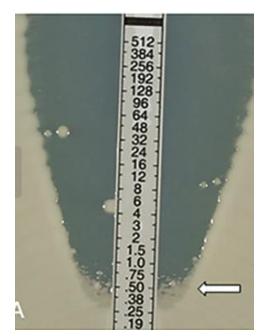
We need oral options!"

Treatment options: ESBL uncomplicated UTI

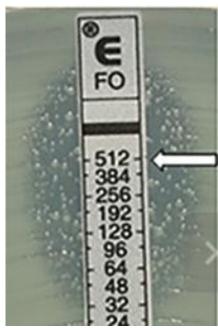
- Increasingly common: 15% outpatient uUTI,
 25% inpatient uUTI¹
- Very few oral options for ESBL isolates ²
 - 21% are resistant to FQ, SXT, and NFT
 - Many patients have a SXT allergy
 - NFT has been avoided for elderly
 - FQ avoided unless last option
- Fosfomycin active vs. ESBL E.coli
 - Resistance documented but often only in critically ill patients

FQ, fluoroquinolone SXT, trim-sulfa NFT, nitrofurantoin

1. Fernandez et al. OFID 2023. 10, S2. 2. Dunne et al. BMC Infect Dis 22:194; 2. Dunne et al. CID. 2023 76:78



Fosfomycin; the story...

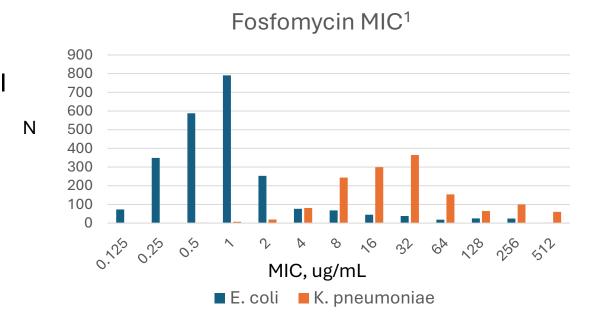

- Discovered in late 1960s
- Approved for lower urinary tract infection in 1996, brand "Monurol"
- Bactericidal, inactivates pyruvyl transferase (cell wall synthesis)
- In the USA:
 - Only available as an oral sachet
 - Only available as treatment for uncomplicated cystitis
 - Only for Escherichia coli and Enterococcus faecalis

Fosfomycin testing

- Breakpoints only for E. coli and E. faecalis
 - Supplement media with Glucose-6-Phosphate for testing¹
- Agar dilution (AD) is reference method¹
- New FDA-cleared Etest (FO) available, has 99% categorical agreement vs. AD²
- FDA-cleared Vitek2 available data from Canada shows issues with detection of resistance³; FDA submission with new formulation shows 0 / 14 VME
 - Only available on some cards

Unless they fill the ellipse!

Disk diffusion:


Read inner, colony-free zone of inhibition!

^{1.} CLSI 2025. M100

^{2.} Goer et al. 2022 J Clin Microbiol 60:e00021-22

Fosfomycin testing: other Enterobacterales

- MIC distributions are very different from E.coli
- Oral fosfomycin breakpoints are ONLY for E. coli (CLSI and EUCAST)
 - EUCAST IV breakpoints are only for E. coli and infections originating in the urinary tract²
- Resistance to fosfomycin:
 - Fosfomycin cleavage by FosA
 - modification of murA target
 - mutation of fosfomycin transporter
- No relationship between MIC and outcome for K. pneumoniae³

Most K. pneumoniae, K. aerogenes,

P. aeruginosa and Enterobacter have FosA

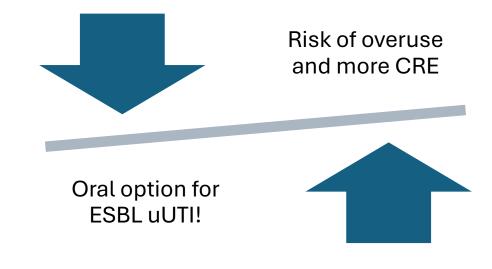
1. EUCAST MIC Distributions

2. EUCAST v 15.0 breakpoint tables, www.eucast.org

3. Kaye et al. 2019. CID 69:045

Testing should not be performed!

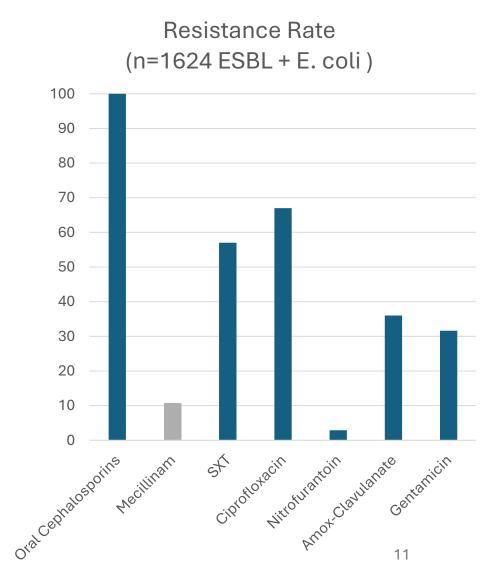
Fosfomycin: what are our options


- 1. Routine test urine isolates... if card available (and verification ok)
- 2. Reflex testing by disk or Etest (either by request or routine for ESBL *E. coli*)
- 3. Consider generating a once-a-year fosfomycin antibiogram for *E. coli* (limited study)

Species	N	%S
E. coli (ESBL)	100	99

4. Educate clinicians on limitations of testing other species

What other oral options?


- Sulopenem: oral penem (2024)
 - Brand name: Orlynva
 - Similar to ertapenem in activity
 - IV and Oral formulations
 - FDA indication: uUTI
 - Failed to achieve primary endpoint vs. ertapenem²
 - Succeeded vs. ciprofloxacin in FQ-R infections and amoxicillin-clavulanate³
 - FDA-cleared: Liofilchem MIC strips

Talk to your ASP to see if sulopenem use is in discussion!

What other oral options?

- Pivmecillinam: oral beta-lactam (2024)
 - Brand name Pivya, prodrug of mecillinam
 - FDA indication: uUTI in women
 - E. coli, P. mirabilis, S. saprophyticus indications
 - Active against many ESBL and some carbapenemase producers!
 - No activity vs. P. aeruginosa, E. faecalis or S. aureus
 - Testing?
 - CLSI breakpoints recognized by FDA
 - No current FDA-cleared tests, most use empirical

What other oral options?

- Gepotidacin: oral triazaacenaphthylene (2025)
 - Brand name Blujepa
 - FDA indication: uUTI in women
 - Novel antibiotic class, targets DNA gyrase / topoisomerase IV in region unique from fluoroquinolones
 - E. coli, K. pneumoniae, C. freundii, S. saprophyticus and E. faecalis
 - Testing?
 - No CLSI breakpoints
 - Hardy Disk only FDA cleared test

Gepotidacin – Oral Products

	Minimum Inhibitory (mcg/mL)	Concentratio	Disk Diffusion (zone diameter in mm)			
<u>Pathogen</u>	s	I	R	s	I	R
Enterobacterales ^a	≤ 16	32	≥ 64	≥12	8-11	≤7
Staphylococcus saprophyticus	≤0.25	-	-	≥23	-	-
Enterococcus faecalis	≤4	-	-	≥14		

Organism	% Susceptible
E. coli (n=3560)	99.9%
E. coli, ciprofloxacin R (n=899)	99.8%
E. coli, ESBL (n=616)	99.4%
S. saprophyticus (n=344)	100%

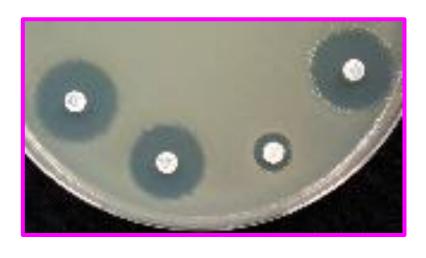
What about ESBL testing?

IDSA Treatment Guidance

- ESBL-Producing Enterobacterales
 - Treatment recommendations guided by laboratory reporting presumed or confirmed ESBL

Tamma PD et al. 2022. https://www.idsociety.org/practice-guideline/amr-guidance/. Accessed 3/17/23

Hadziyannis et al. 2000 DMID 36:113 Morrissey et al. 2014 J Med Microbiol. 63:556 El-Jade et al. 2016 PLoS One 11: e0160203


Farber et al. JCM 46:3721

ESBL test realities

- Most sensitive way to detect ESBL is a ceftriaxone MIC > 0.125 μg/mL or ceftazidime MIC > 0.5 μg/mL
- 2. Historical "screening" criteria for ESBL is same as current intermediate ceftriaxone MIC breakpoint
- 3. ESBL test developed when only 217 ESBLs known; today >3000 described
- 4. Performance of CLSI reference ESBL test suboptimal
 - E. coli, PPV, 98% but NPV is 76%
 - K. pneumoniae, PPV, 82% and NPV is 95%
 - False-positive results for other species due to chromosomal enzymes (AmpC, OXY)
- 5. Commercial systems overall ESBLs
 - Vitek 2, specificity ~50%
 - Phoenix, specificity ~70%

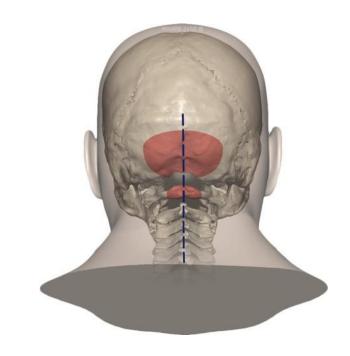
CLSI guidance on ESBL testing

(24) Following evaluation of PK/PD properties, limited clinical data, and MIC distributions, revised breakpoints for cephalosporins (cefazolin, cefotaxime, ceftazidime, ceftizoxime, and ceftriaxone) and aztreonam were first published in January 2010 (M100-S20) and are listed in this table. When using current breakpoints, routine ESBL testing is not necessary before reporting results. However, in consultation with the antimicrobial stewardship team and other relevant institutional stakeholders, laboratories may decide to perform phenotypic or genotypic testing for ESBLs, and the results may be used to guide therapeutic management or for epidemiological or infection prevention purposes. Limitations of phenotypic and genotypic methods must be considered (see Table 3A introductory text).

Example Presumed ESBL Reporting

E. coli - respiratory

Antimicrobial	Result
Amoxicillin-clavulanate	R
Cefazolin	R
Ceftriaxone	R
Cefepime	R
Ciprofloxacin	S
Gentamicin	S
Ertapenem	S
Meropenem	S
Piperacillin-tazobactam	R
Trimeth-sulfa	S


Report Comment:

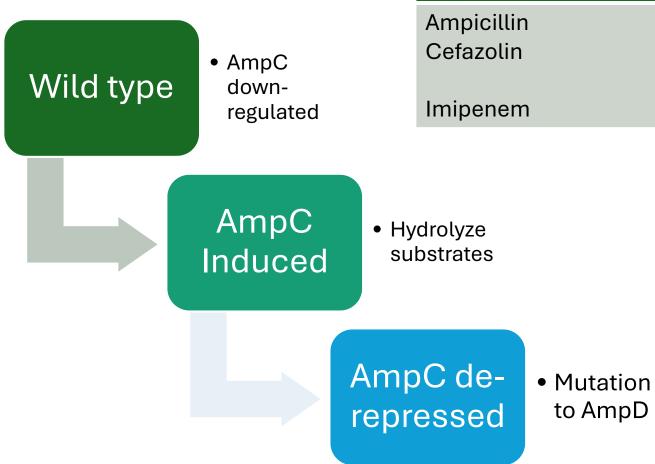
"Ceftriaxone-resistant *E. coli* are presumed to be ESBL producers. Place patient under contact precautions. Carbapenems are preferred therapy for ESBL-producers. ID consultation recommended."

Ceftriaxone/cefotaxime can serve as a proxy for ESBL producers to guide patient management, including infection prevention measures.

Case 2.

- 57 year old man
- Suboccipital craniectomy for 4th ventricular ependymoma
- Post-surgery, develops altered mental status and fever
- CSF: 60 WBC
- Gram stain = GNR

CSF Culture: *Enterobacter (Klebsiella)* aerogenes


Antimicrobial	MIC (µg/mL			
Ampicillin	>16	R		
Aztreonam	≤2	S		
Cefepime	≤1	S		
Ceftriaxone	≤1	S		
Piperacillin-tazobactam	4	S		

Case 1, continued

- Patient started on cefepime, but changed to ceftriaxone due to seizures
- Patient continues to have high WBC in CSF
- Repeat isolates recovered, but AST not performed
 - Laboratory policy is to repeat AST only every 5 days
- Finally, day 6, AST performed: "R" to ceftriaxone

Antimicrobial	Isolate #1 Day 1	Isolate #2 Day 6
Ampicillin	>16, R	>16 R
Aztreonam	≤2, S	16, R
Cefepime	≤1, S	≤1, S
Ceftriaxone	≤1, S	32, R
Pip-tazo	4, S	64, R
Meropenem	S	S

AmpC Induction Overview

AmpC de-repressed mutants: Impact on AST results

Species	Piperacillin- Tazobactam	Ceftriaxone	Ceftazidime	Cefepime
E. cloacae	<5%	0%	0%	35%
E. aerogenes	10%	<5%	0%	98%
C. freundii	29%	0%	0%	80%
P. rettgeri	12%	5%	0%	81%
S. marcescens	55%	0%	75%	88%
Typically	S or R	R	R	S

0-25 %
25-50%
50-75%
>75%

Review of AmpC VUMC: Enterobacter, Citrobacter, Serratia in Blood

N= 37 patients in Jan – July 2020 Initial culture results: 81% ceftriaxone – S

89% piperacillin-tazobactam - S

50% of patients treated with ceftriaxone (n=4) suspected of derepression due to clinical decompensation

	Total	%
Patients with repeat testing	28	76%
Repeat + culture grew on repeat testing Median duration of bacteremia	8 36 h	29% 24-168 h
AST performed on repeat	3	37.5%
Number de-repressed AmpC	2	66.7%

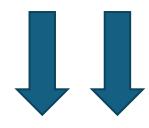
resistance during prolonged therapy with 3rd-generation cephalosporins as a result of de-repression of AmpC beta-lactamase. This derepression is most commonly seen with C. freundii, E. cloacae, K. aerogenes. Isolates that are initially susceptible may become resistant within a few days after initiation of therapy. Testing subsequent isolates may be warranted if clinically indicated. The approach to reporting AST results for these organisms should be determined in consultation with the ASP and other relevant institutional stakeholders.

- H afnia alvei
- E nterobacter cloacae
- C itrobacter freundii
- K lebsiella aerogenes
- Y ErSinia enterocolitica

Table 1

Cefepime should be considered a Tier 1 agent for testing and/or reporting of *C. freundii*, *E. cloacae*, *H. alvei*, *K. aerogenes*, *M. morganii*, *Providencia* spp, *S. marcescens* and *Y. enterocolitica*

Opportunities for the lab


- 1. Provide guidance on frequency of repeating cultures
- 2. Repeat AST more often than every 5 days
- 3. "warning" re: use of ceftriaxone for AmpC organisms:
 - 1. Suppress ceftriaxone / ceftazidime results
 - 2. Provide a comment re: risk of AmpC de-repression

Which Enterobacterales have AmpC?

No – ceftriaxone works well	Yes – risk of de-repression	
Citrobacter koseri Citrobacter amalonaticus group (C. amalonaticus, C. farmer, C. sedlaki) Escherichia spp. Klebsiella spp (excluding K. aerogenes) Proteus mirabilis	All other Enterobacterales	
Raoultella spp. Salmonella Shigella	Good clue: If tested, cefoxitin is "R" Additional resource:	
	CLSI Appendix B of M100	

^{*}note, Proteus vulgaris doesn't have an AmpC but it has an enzyme that is similar to AmpC

CLSI Appendix B

Appendix B. (Continued)

B1. Enterobacterales

Antimicrobial Agent Organism	Ampicillin	Amoxicillin- clavulanate	Ampicillin- sulbactam	Ticarcillin	Cephalosporins I: Cefazolin, Cephalothin	Cephamycins: Cefoxitin, Cefotetan	Cephalosporin II: Cefuroxime	Imipenem	Tetracyclines	Tigecycline	Nitrofurantoin	Polymyxin B Colistin	Aminoglycosides
Citrobacter freundii	R	R	R		R	R	R						
Citrobacter koseri,	R			R									
Citrobacter amalonaticus groupa													
Enterobacter cloacae complex ^b	R	R	R		R	R							
Escherichia coli	There is	no intrin	sic resista	ance to β-	lactams in	this organi	sm.						
Escherichia hermannii	R			R									
Hafnia alvei	R	R	R		R	R							
Klebsiella (formerly	R	R	R		R	R							
Enterobacter) aerogenes													
Klebsiella pneumoniae,	R			R									
Klebsiella oxytoca, Klebsiella													
variicola													

Example: AmpC Reporting

E. cloacae complex- tissue

Antimicrobial	Result
Ampicillin	R
Ampicillin-sulbactam	R
Cefazolin	R
Ceftriaxone	S
Cefepime	S
Ciprofloxacin	R
Gentamicin	S
Ertapenem	S
Meropenem	S
Piperacillin-tazobactam	S
Trimeth-sulfa	S

Option 1:

Add Report Comment:

"E. cloacae complex may develop resistance upon exposure to third-generation cephalosporins. ID consultation recommended."

Option 2:

Suppress third-generation cephalosporins or report as "R."

Note to Laboratory:

Isolates should be retested every few days to determine if resistance to third-generation cephalosporins is now being expressed.

Resistance Emerging on Therapy

Instructions for Use:

VI. Development of Resistance and Testing of Repeat Isolates

"Isolates that are initially susceptible may become intermediate or resistant after therapy is initiated ... Laboratory guidelines on when to perform susceptibility testing on repeat isolates should be determined after consultation with the medical staff."

- > There are no definitive guidelines on how often to perform repeat AST.
- > Depends on:
 - > Organism
 - > Patient
 - > Institution preference
 - > Laboratory capacity

Example Policies – AST Repeat Testing

Hospital A

Repeat every 3 days

Test more often if requested by ID physician

Hospital B

Repeat every 5 days

Test every day¹:
S. aureus
P. aeruginosa

Hospital C

Repeat every day, sterile sources

Repeat every 5 days, non-sterile sources

Hospital D

Repeat every 7 days

Test more often, if requested by ASP

Case 3.

- 30-year-old with no previous medical history
- Sustained friction burns following flash diesel explosion at industrial plant
- 65% total body surface area burn wounds
- Multiple operations and allografts
- 2 weeks after admission:
 - K. pneumoniae in blood cultures

Molecular results (positive blood culture): bla_{VIM} carbapenemase gene detected

Antimicrobial	K. pneumonia			
Amikacin	≤8 *	S		
Cefazolin	>16	R		
Cefepime	>16	R		
Ceftazidime- avibactam	>8/4	R		
Ceftriaxone	>32	R		
Ciprofloxacin	>2	R		
Ertapenem	>2	R		
Gentamicin	>8	R		
Levofloxacin	>4	R		
Meropenem	>8	R		
Meropenem- vaborbactam	>8	R		
Piperacillin- tazobactam	>64/4	R		
Tobramycin	>8	R		
Trimeth- sulfamethoxazole	>2/38	R		

Refresher – Carbapenemase Types

Ambler class:

Example

Active site

BLAs hydrolyzed

Ceftazidime-avibactam

Meropenem-vaborbactam

Imipenem-relebactam

A

KPC

Serine

All

B

NDM, IMP, VIM

ZN2+

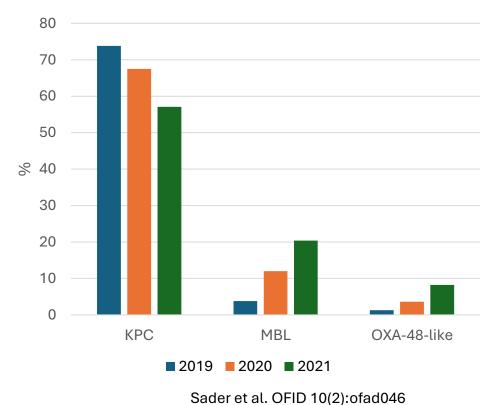
All but Aztreonam

OXA-48-like

Serine

All but weakly*

*may be "S" to cefepime, imipenem, meropenem


Carbapenemases and Enterobacterales - Again!

- Knowledge of specific carbapenemase type is needed to inform treatment
- > RISK of not performing carbapenemase testing:
 - > Assume isolate has a class A or D carbapenemase
 - > May "miss" transmission events for patients with CRE

Carbapenemase Type	Optimal Treatment - Enterobacterales
Not done*	Ceftazidime-avibactam Imipenem-relebactam Meropenem-vaborbactam
Class A (KPC)	Ceftazidime-avibactam Imipenem-relebactam Meropenem-vaborbactam
Class B (NDM, IMP, VIM)	Ceftazidime-avibactam + aztreonam Cefiderocol
Class D (OXA-48-like)	Ceftazidime-avibactam

*IDSA guidance suggestions if no *specific* carbapenemase testing done Tamma et al. CID 2023. doi:10.1093/cid/ciad428

Carbapenemase Type Among
Carbapenem-resistant
Enterobacterales (CRE), USA 20192021

Table 2A-1 Enterobacterales Comment (25) – new in 2025

- Should perform carbapenemase testing of CRE
- Exception: Proteus,
 Providencia, and Morganella
 spp. that are only "R" to
 imipenem
- Possible exception: for *E*.
 cloacae complex and *K*.
 aerogenes isolates that are only "R" to ertapenem

Table 2A-1. Enterobacterales	/ti	- Calmanalla and	Chinalla	\ (C = = in = d\
lable ZA-1. Enterobacterales	texciuains	e saimoneila and	i əmiaeria spp.) (Continued)

		Disk	Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm				•	Categorie			
	Antimicrobial Agent	Content	S	SDD	1	R	5	SDD		R	Comments
Ι	CA DDA DENIENAC										

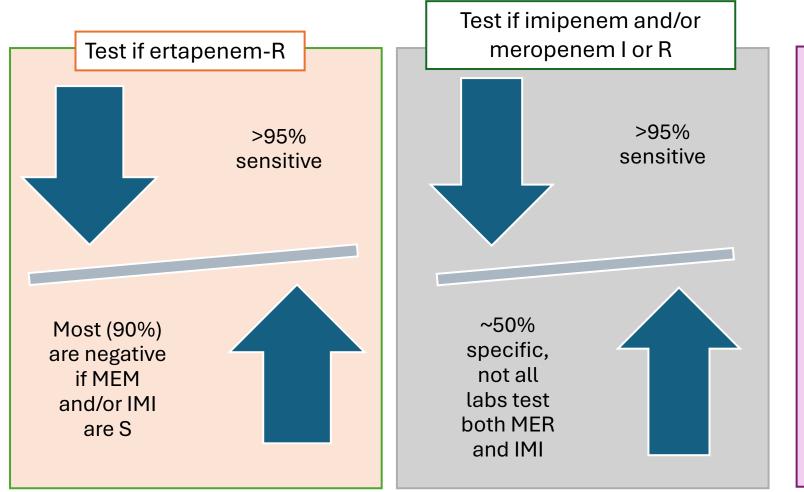
CARBAPENEMS

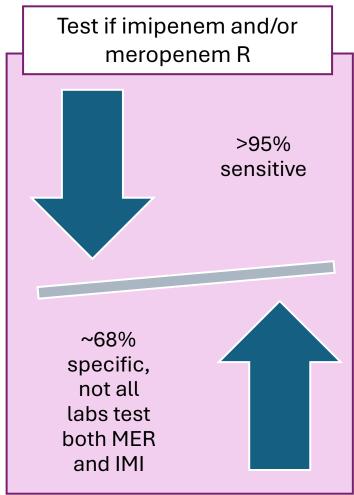
(25) Following evaluation of PK/PD properties, limited clinical data, and MIC distributions that include recently described carbapenemase-producing strains, revised breakpoints for carbapenems were first published in June 2010 (CLSI M100-S20-U) and are listed below. Because of limited treatment options for infections caused by organisms with carbapenem MICs or zone diameters in the intermediate range, clinicians may wish to design carbapenem dosage regimens that use maximum recommended doses and possibly prolonged IV infusion regimens, as has been reported in the literature. Consultation with an infectious diseases specialist is recommended for isolates for which the carbapenem MICs or zone diameter results from disk diffusion testing are in the intermediate or resistant ranges.

Isolates resistant to any carbapenem tested (eg, ertapenem, imipenem, meropenem) should be tested for a carbapenemase using phenotypic and/or molecular assays. An exception to this recommendation is *Proteus, Providencia*, and *Morganella* spp. that are only resistant to imipenem. These assays should identify and ideally differentiate the presence of specific carbapenemase types (eg, KPC, NDM, OXA-48, VIM, IMP).

Decisions related to carbapenemase testing and reporting are best made by each laboratory in consultation with the antimicrobial stewardship team and other relevant institutional stakeholders.

These results do not replace antimicrobial susceptibility testing, but are important for treatment decisions, and to inform infection control and prevention interventions and/or epidemiologic investigations.


Depending on local epidemiology and available resources, carbapenemase testing for *E. cloacae* complex and *K. aerogenes* isolates that are only resistant to ertapenem might not be necessary. Ertapenem resistance in these species is often due to mechanisms other than carbapenemase production and carbapenemases are currently uncommon in such isolates.


See Appendix G, Table G3 regarding suggestions for reporting when mechanism of resistance-based testing (molecular and phenotypic methods) is discordant with phenotypic AST.

The following information is provided as background on carbapenemases in Enterobacterales that are largely responsible for MICs and zone diameters in the intermediate and resistant ranges, and thus the rationale for setting revised carbapenem breakpoints.

Goal - identify and differentiate KPC, NDM, OXA-48, VIM, IMP

Carbapenemase Testing Protocols Based on Carbapenem Resistance Profile

Hard to balance over-testing (high lab cost and labor) with under-testing (miss carbapenemases)

Reference: CLSI January 2024 Agenda Book

Carbapenemase Testing for Carbapenem-Resistant Organisms (CRO) A Primer for Clinical and Public Health Laboratories

Contents:

Introduction	1
Acronyms	1
Table 1. Tests for Carbapenemases in Gram-Negative Bacteria.	3
Table 2. Features of Various Tests for Carbapenemases	5
Table 2 Current CISI and EDA recognized Carbananam Presidents	7

Table 4. Potential Activities of Newer A
Tables 5. Strategies for Testing Isolate
Results Reporting

Table 5A. Optional Report Comment
Table 5B. Summary of Key Features
Table 6. CRO Examples.....

Table 1. Tests for Carbapenemases in Gram-Negative Bacteria

1		Routinely performed on ¹						
it	Method	Isolates	Positive Rectal Swabs		Enterobacterales	Pseudomonas aeruginosa	Acinetobacter baumannii	
	Phenotypic (for isolates)							
	Modified Carbapenem	yes	no	no	yes	yes	no	
┨	Inactivation Method (mCIM) with					(mCIM only)		
	or without EDTA Carbapenem							
	Inactivation Method (eCIM)							
	CarbaNP ²	yes	no	no	yes	yes	no	
	BioMerieux Rapidec® Carba NP	yes	no	no	yes	yes	no	
L	BD Phoenix™ CPO Detect	yes	no	no	yes	yes	yes	

REVIEW

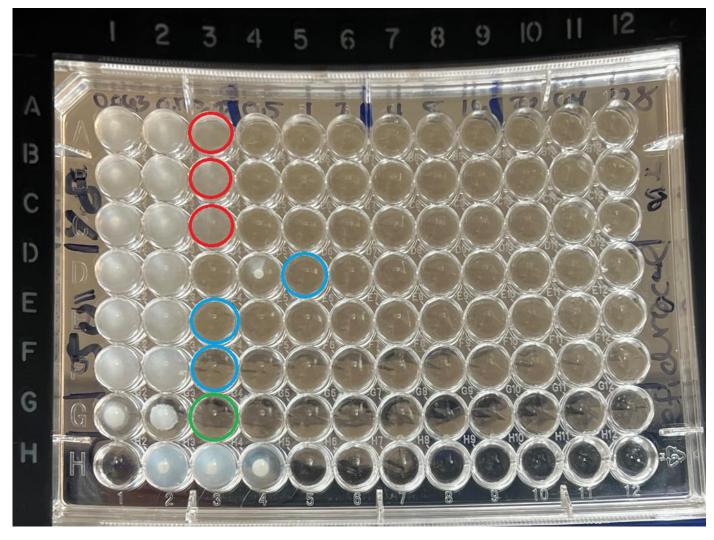
Month YYYY Volume XX Issue XX e00054-22 https://doi.org/10.1128/cmr.00054-22

Laboratory detection of carbapenemases among Gramnegative organisms

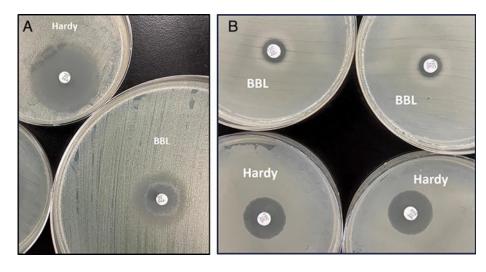
Patricia J. Simner (1) 1,2, Johann D. D. Pitout (1) 3,4,5, Tanis C. Dingle (1) 3,6

Back to Case 3.... What are our treatment options?

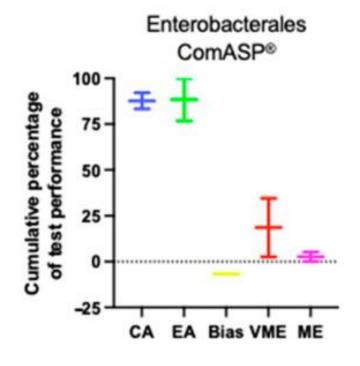
- Cefiderocol: siderophore cephalosporin (2019)
 - Brand name: Fetroja
 - Active vs. 85% of MBLs¹
 - CLSI and FDA breakpoints these differ
 - Tests: Disk, ComASP
- Aztreonam-avibactam (2025)
 - Brand name: Emblaveo
 - Active vs. 98.4% of MBLs²
 - No (current) CLSI breakpoints, but FDA breakpoints ->
 - Tests: Gradient diffusion, disk

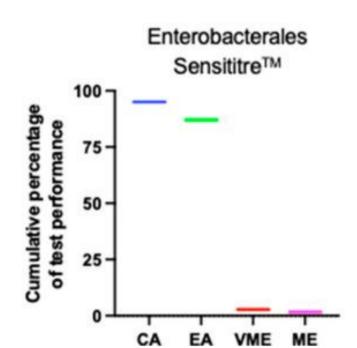

Aztreonam and Avibactam Injection

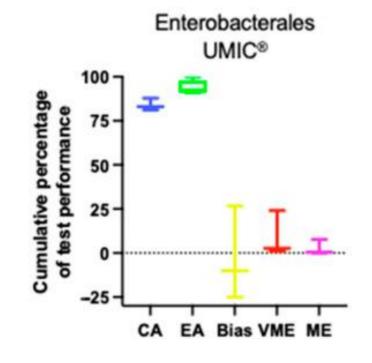
Exceptions or additions to the recognized standards

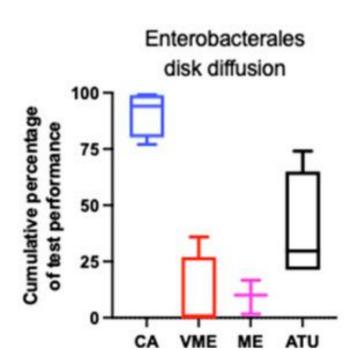

S = Susceptible; I = Intermediate; R = Resistant

		linimum Inhib	•	Disk Diffusion (zone diameters in mm)			
<u>Pathogen</u>	s	s ı		s	1	R	
Enterobacterales	≤ 4/4	8/4	≥ 16/4	≥21	18 – 20	≤ 17	

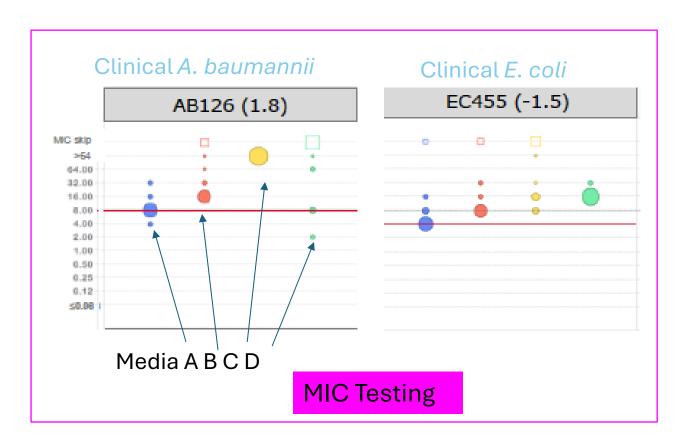

Cefiderocol testing... options?



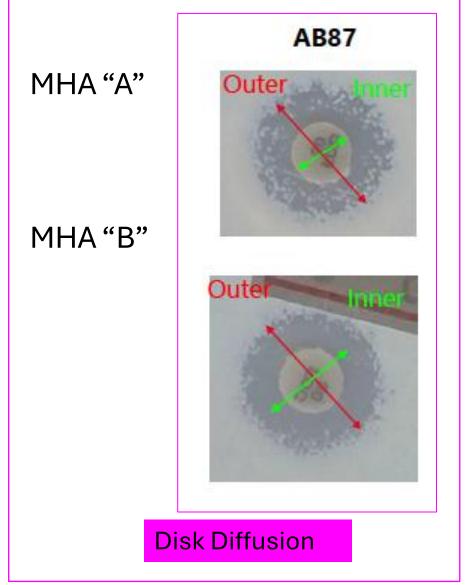

- Disk diffusion
 - Best with BBL agar
 - May miss resistance



DeMarco et al. 2025. J Clin Microbiol. 63



- Recommend disk diffusion for initial screen for S or R
 - Confirm with UMIC or reference BMD
- NOTE: studied with EUCAST breakpoints, which are different than CLSI


Stefani 2025. Antibiotics(Basel)14:760

Cefiderocol Reproducibility Concerns -

Examples

Note: for many A. baumannii measuring "inner zone" correlates better with MICs

- 1 Potential of Inaccurate Cefiderocol Susceptibility Results: A CLSI AST Subcommittee Advisory
- 2 Patricia J. Simner^{1,2}, Elizabeth Palavecino³, Michael J. Satlin⁴, Amy J. Mathers⁵, Melvin P. Weinstein⁶,
- 3 James S. Lewis II7, Romney Humphries8, on behalf of the Clinical and Laboratory Standards Institute
- 4 Antimicrobial Susceptibility Testing Subcommittee

Issues:

- 1. Poor reproducibility of BMD and disk diffusion for *A. baumannii* isolates with MICs > 2 µg/mL
- 2. Hard to read MIC and disk diffusion endpoints (trailing and inner colonies)
- 3. Small differences in inoculum = major differences in cefiderocol MICs

Resulted in warning language added to M100 33rd ed. Work ongoing to fix these issues!

Cefiderocol

(37) The **accuracy** and **reproducibility** of cefiderocol testing results by disk diffusion and broth microdilution are markedly affected by **iron concentration** and **inoculum preparation** and may vary by disk and media manufacturer. Depending on the type of variance observed, false resistant or false susceptible results may occur. Testing subsequent isolates is encouraged. Discussion with prescribers and antimicrobial stewardship members regarding the potential for inaccuracies is recommended.

Applies to Enterobacterales, *P. aeruginosa, Acinetobacter,* and *S. maltophilia*

How to approach cefiderocol testing in your laboratory?

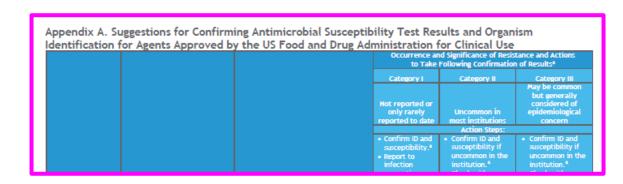
- Few testing options:
 - Disk diffusion, commercial MIC or MIC testing at a reference laboratory *
- Discuss pros/cons of testing with ASP partners:
 - Testing issues are known to lead to both false "S" and false "R"
 - Issues most pressing for A. baumannii
 - Careful evaluation of patient's response to therapy with cefiderocol
 - Test subsequent isolates from the same patient routinely
- Resistance can emerge on therapy **

^{*} Cefiderocol testing info: https://www.fetroja.com/microbiologist-diagnostic-toolkit#top

^{**} Karakonstantis, S. et al. 2022. Antibiotics. 11:723.

Example: VUMC Approach

A. baumannii - burn wound

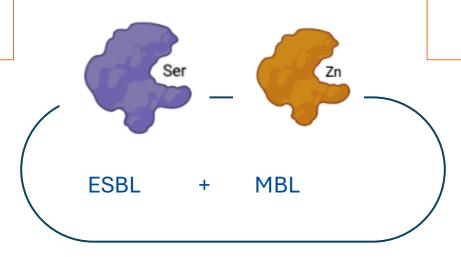

Antimicrobial	MIC (μg/mL)	
Amikacin	16	S
Amp-Sulb	>32	R
Cefepime	>32	R
Ceftazidime	>32	R
Ciprofloxacin	>4	R
Gentamicin	>16	R
Levofloxacin	>4	R
Meropenem	>8	R
Minocycline	>32	R
Piperacillin- tazobactam	>128	R
Trim-Sulfa	>4	R
Tobramycin	>16	R

Tier 1: Antimicrobial agents that are appropriate for routine, primary testing and reporting	Tier 2: Antimicrobial agents that are appropriate for routine, primary testing but may be reported following cascade reporting rules established at each institution	Tier 3: Antimicrobial agents that are appropriate for routine, primary testing in institutions that serve patients at high risk for MDROs but should only be reported following cascade reporting rules established at each institution	Tier 4: Antimicrobial agents that may warrant testing and reporting by clinician request if antimicrobial agents in other tiers are not optimal because of various factors
Ampicillin-sulbactam			
Ceftazidime Cefepime	Imipenem Meropenem	Cefiderocol	
Ciprofloxacin Levofloxacin			
Gentamicin Tobramycin	Amikacin		
· · · · · · · · · · · · · · · · · · ·	Piperacillin-tazobactam		
	Trimethoprim-sulfamethoxazole		
	Minocycline		Doxycycline
			Cefotaxime
			Colistin or polymyxin
Urine only			
Tetracycline*			

M100 33rd ed. Table 1D. (p. 32)

- MDR A. baumannii
- Other test options amp-sulbactam, colistin, cefiderocol
- Test cefiderocol by disk diffusion w/ director consultation
 - If zone very large (>28 mm) or no zone, feel confident reporting
 - If zone anywhere in between, or hard to read → send for reference MIC

Additions to M100 33rd ed. Appendix A*


Organism Group	Antimicrobi	Antimicrobial	Category I	Category II	Category III
	al Class	Agents and Resistance Phenotypes Detected	Not reported or only rarely reported to date	Uncommon in most institutions	May be common but generally considered of epidemiological concern
Enterobacterales	Cefiderocol	I or R	X		
A. baumannii complex	Cefiderocol	I or R	X		
P. aeruginosa	Cefiderocol	I or R	X		
S. maltophilia	Cefiderocol	NS	X		

Cefiderocol resistance remains relatively rare – "R" results should be confirmed at reference laboratory that does MIC testing

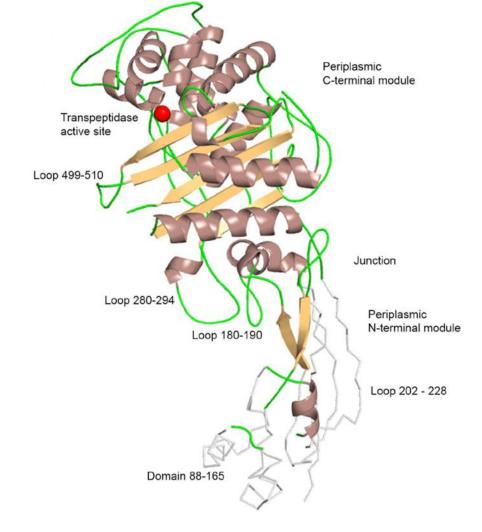
New! Aztreonam + Avibactam for MBLs

ESBL:

Hydrolyze Aztreonam Inhibited by avibactam

MBL:

Cannot hydrolyze aztreonam NOT inhibited by avibactam

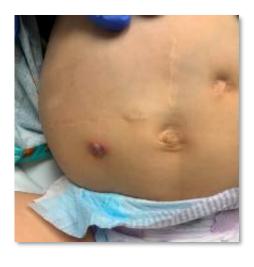

Together, avibactam protects aztreonam from ESBL = aztreonam activity

- > Aztreonam-avibactam available in late 2024
- > CLSI breakpoints to be published in 2026
- > Recommended by IDSA for MBL-producers, including *S. maltophilia* EXCEPTION!! *A. baumannii* is intrinsically "R" to aztreonam

Tamma et al. 2022. CID. 75:187-212. Marshall et al. 2917. AAC. 61(4).

Do we need to test for ATM+AVI for susceptibility?

- > Yes! Resistance is emerging.
- > Aztreonam targets PBP3.
- > YRN/K insertion at position 333 = ATM "R"
 - Also impacts cefiderocol, cefepimetaniborbactam
- > PBP3 mutants prevalent globally
- > CMY-42/other AmpC can also lead to resistance
- > Isolates with NDM-5 more likely to be "R"

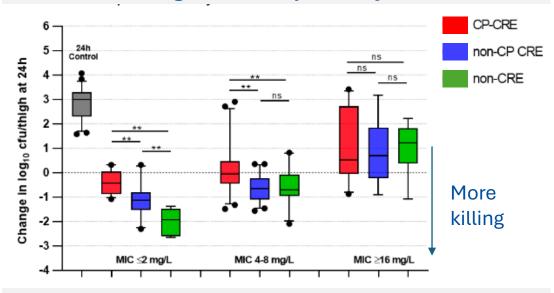


Mendes et al. 2021. JAC. 76:2833-8. Sadek et al. 2020. AAC. 64:e01659. Sader et al. 2022. Eur J Clin Microbiol Infect Dis. 41:477-87.

Rossolini, 2024, I Global Antimicrob Res 36:123

Case 4. New Cefepime Reporting Rule

Citrobacter freundii


	MIC (µg/mL)	
Ampicillin	>16	R
Ceftriaxone	>32	R
Cefepime	4	SDD
Ertapenem	>4	R
Gentamicin	≤1	S
Meropenem	4	R
Trimeth-sulfa	≤0.5/9.5	S

NG-Test® Carba-5: KPC detected

Cefepime Treatment for KPC Producers Observations

- > Barnes-Jewish Hospital
 - > 149 KPC isolates, 14% S or SDD to cefepime
- > Johns Hopkins Hospital
 - > 209 KPC, 28% S or SDD to cefepime
- > Mouse study
 - > 2 g q 8h humanized dose of cefepime
 - Despite S or SDD MIC, do not achieve1-2 log kill

Bacterial Killing with Cefepime, by MIC

Cefepime and Enterobacterales CLSI M100-Ed35

Table 2A-1. Enterobacterales

Comment (18):

"Cefepime S/SDD results should be suppressed or edited and reported as resistant for isolates that demonstrate **carbapenemase production.**"

Appendix G. Using Molecular Assays for Resistance Detection

Table G3:

For isolates S or SDD to cefepime but **positive for any carbapenemase by phenotypic or genotypic testing**: Cefepime should be suppressed or reported as R.

"NOTE: Current evidence suggests cefepime therapy may not be effective against carbapenemase-producing strains. Most of these data are based on studies investigating KPC-producing CREs."

Case 4. New Cefepime Reporting Rule

Citrobacter freundii (Final Report)

Antimicrobial	MIC (µg/mL)	
Ampicillin	>16	R
Ceftriaxone	>32	R
Cefepime	4	SDD R
Ertapenem	>4	R
Gentamicin	≤1	S
Meropenem	4	R
Trimeth-sulfa	≤0.5/9.5	S

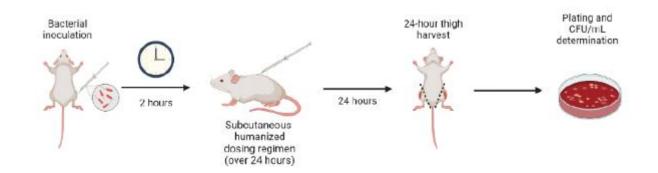
NG-Test® Carba-5: KPC detected

Case 5. New Meropenem-Vaborbactam Reporting Rule

Escherichia coli

Antimicrobial	MIC (µg/m	L)
Ceftriaxone	>32	R
Ceftazidime-avibactam	≤0.5/4	S
Ciprofloxacin	2	R
Ertapenem	>2	R
Fosfomycin		S
Gentamicin	8	R
Meropenem	4	R
Meropenem-vaborbactam	4	S
Nitrofurantoin	128	R
Trimeth-sulfa	>2/38	R

Challenge of Combination Agents vs OXA-48


OXA-48-like enzymes

- > Poor activity vs cephalosporins (isolates usually "R" due to coproduction of ESBL)
- > Relatively low MICs to carbapenems (vs KPC)
- > Inhibited by avibactam, relebactam, but NOT by vaborbactam
- > Challenge with combination agent breakpoints:

Antimicrobial	Susceptible MIC (µg/mL)	Dose
Ceftazidime	≤4	1 g IV q 8h
Ceftazidime-avibactam	≤8/4	2.5 g IV q 8h (pneumonia) or 1.5 g IV q 8h (other infection)
Imipenem	≤1	500 mg IV q 6h or 1 g q 8h
Imipenem-relebactam	≤1/4	1.25 g IV q 6h
Meropenem	≤1	1 g IV q 8h
Meropenem-vaborbactam	≤4/8	4 g IV q 8h, 3 h infusion

Ceftazidime-avibactam and Meropenemvaborbactam "S" breakpoints are higher than ceftazidime or meropenem alone due to dosing.

Impact of Meropenem-Vaborbactam Breakpoint vs OXA-48 Producers

Antimicrobial	Susceptible Breakpoint MIC (µg/mL)	% Bactericidal Activity if "S"
Ceftazidime-avibactam	≤8/4	96-100%
Imipenem-relebactam	≤1/4	100%
Meropenem-vaborbactam	≤4/8	9-50%

Case 5. Meropenem-Vaborbactam Reporting Rule

> (13) Enterobacterales that harbor OXA-48-like enzymes may test susceptible to meropenem-vaborbactam, but may not respond to meropenem-vaborbactam *in vivo*. If an OXA-48-like gene or enzyme is detected, suppress meropenem-vaborbactam or report as resistant.

CLSI M100-Ed35 Table 2A-1.

Escherichia coli (Final Report)

Antimicrobial	MIC (µg/ml	L)
Ceftriaxone	>32	R
Ceftazidime-avibactam	≤0.5/4	S
Ciprofloxacin	2	R
Ertapenem	>2	R
Fosfomycin		S
Gentamicin	8	R
Meropenem	4	R
Meropenem-vaborbactam	4	S
		R
Nitrofurantoin	128	R
Trimethoprim-sulfamethoxazole	>2/38	R

Summary: Considerations for Addressing β-lactam Resistance Mechanisms in 2025

"R" Mechanism	Why might you test?	Considerations?
ESBL	 Infection control precautions Guide appropriate therapy (eg, avoid piperacillin-tazobactam) 	 E. coli, K. pneumoniae, K. oxytoca, P. mirabilis only Some false negatives & false positives Use 3rd gen cephalosporin as surrogate
Cabapenemase	 Infection control precautions Public health follow up Guide appropriate therapy (eg, encourage newer β-lactam combination agents) 	 Know local epidemiology Delayed results with some phenotypic tests (eg, mCIM) Molecular and lateral flow test "kits" limited targets
AmpC	(No standardized test available)	 Provide cautionary comments on laboratory reports for 3rd generation cephalosporins if "S"

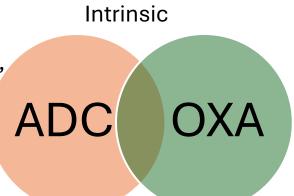
CLSI recommendation is to not edit "S" to "R" if ESBL

Case 6

- 37 Year old Kidney Transplant Recipient
- Presents with pneumonia, septic shock
- BAL: Many Acinetobacter baumannii
- Blood: Acinetobacter baumannii
 - OXA-23/-48 detected by ePlex

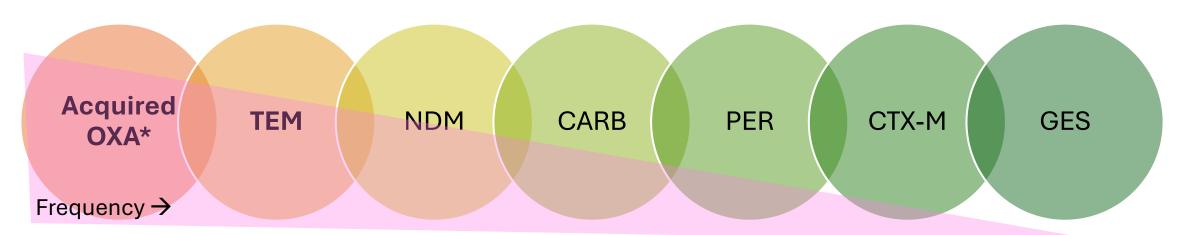
Antimicrobial	MIC (µg/mL)	
Ampicillin/sulbactam	8	S
Ceftriaxone	>64	R
Cefepime	64	R
Ciprofloxacin	>4	R
Gentamicin	>16	R
Meropenem	>16	R
Minocycline	≤4	S
Tobramycin	>16	R
Trimethoprim-Sulfamethoxazole	>32	R

Call to lab from ID Fellow to Micro Fellow:


"Is it weird that ampicillin/sulbactam is "S" but meropenem is "R"?

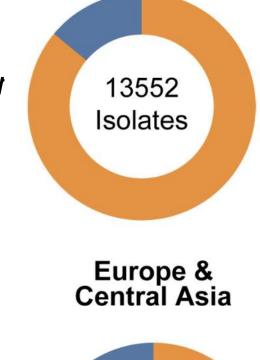
Would it be better to use sulbactam-durlobactam?"

Acinetobacter baumannii: all about beta-lactamases


"Acinetoacter-derived cephalosporinase"

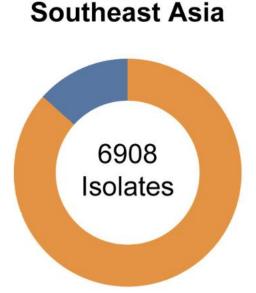
- Class C beta-lactamase
- Non-inducible
- Usually expressed at low level
- Penicillin, cephalosporin resistance

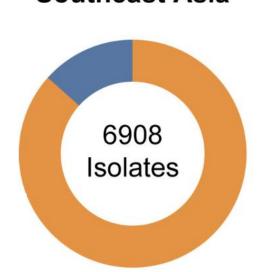
- OXA-51 intrinsic to A. baumannii
- Class D beta-lactamase
- Low-level carbapenem resistance
- Many, many mutants with variable carbapenemase activity


Acquired

Mack. 2025 AAC 69(3) Evans 2014. CMR. 27:241

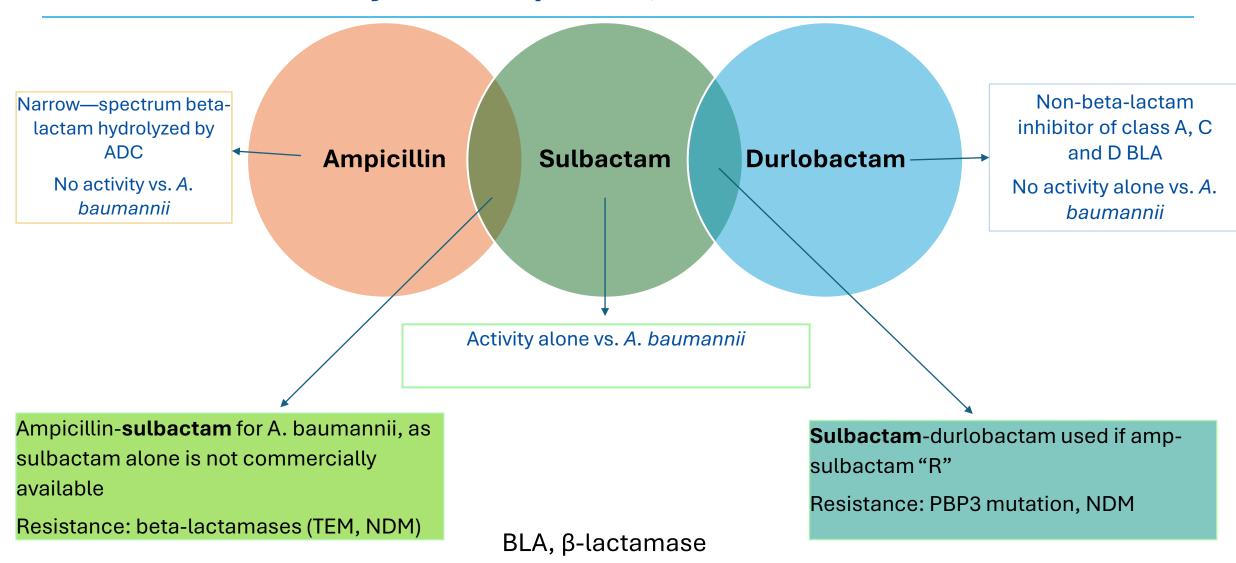
Carbapenem resistance


- Globally, carbapenem resistance in A. baumani
 - OXA-23 family (64%)
 - OXA-24 family (14%)
 - Overexpression of intrinsic OXA-51


3085

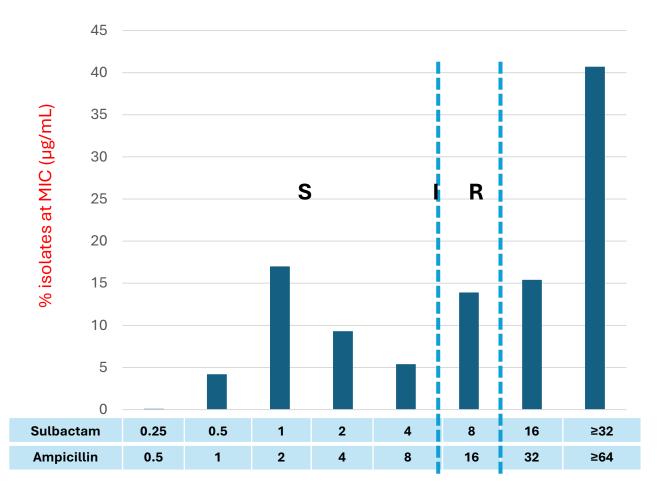
Isolates

North America


East &

Mack. 2025 AAC 69(3)

So - what's the story with Ampicillin, Sulbactam and Durlobactam



Acinetobacter spp. Breakpoints in CLSI M100

- > Originally "all" bacteria interpreted with same breakpoints
- > Mid-2000s: genus-specific breakpoints published
- > 2014: Breakpoints for imipenem, meropenem, doripenem updated
- > 2019: Added breakpoints for cefiderocol
- > 2024: Added breakpoints sulbactam-durlobactam
- > 2025: Reviewed ampicillin-sulbactam

Do we believe ampicillin-sulbactam breakpoints are correct? What about other breakpoints for *Acinetobacter* spp.

Ampicillin-Sulbactam for A. baumannii

- ECV for sulbactam, 4 μg/mL (equivalent to 8/4 μg/mL ampicillin-sulbactam)
- PK/PD variable, but high dose extended infusion needed to achieve targets [3 g (2 g ampicillin + 1 g sulbactam) given IV q 6 hour, over ≥3h)]
- Clinical outcomes show reasonable response with MIC 8/4 µg/mL
- Change: added dose for ampicillin-sulbactam susceptible in M100 35th ed (Table 2 dosages, page 175)

Treatment options.... CRAB

Ampicillin Sulbactam

- Used at high dose, IDSA treatment of choice if "S"
- breakpoints reviewed for 2025 by CLSI

16% "S"

Sulbactam durlobactam

- Used with a carbapenem
- IDSA treatment of choice

98% "S"

Minocycline

- PK unfavorable
- CLSI 2025 breakpoints are for stasis

34% "S"

Cefiderocol

- Unclear data: many studies show excess mortality
- FDA & CLSI breakpoints differ

97% "S"

Polymyxins

- High toxicity
- Poor outcomes

92% "I"

Testing challenges:

- Cefiderocol testing is exceedingly hard for A. baumannii. Best to perform reference BMD
- No FDA-cleared tests for polymyxins (labs shouldn't test anyway)

Susceptibility from JMI MVP program, USA isolates

Case 7.

- > 52 YO presents via air ambulance from Cabo, Mexico with new diagnosis of ALL for induction chemotherapy
 - > Patient had PICC line placed in Mexico
- > Develops fever on hospital day 1 (before induction)
- > Blood cultures: Gram-negative Rods
- > Molecular ID: no identification
- > Final ID: B. cepacia
- > AST performed using gradient diffusion

Burkholderia cepacia complex

	MIC (µg/mL)	
Ceftazidime	4	?
Levofloxacin	0.5	?
Trimethoprim- sulfamethoxazole	0.5	?

M100 35th Edition, Table 2B-3

Table 2B-3. MIC Breakpoints for Burkholderia cepacia Complex

Testing Conditions

Medium: Broth dilution: CAMHB

Inoculum: Broth culture method or colony suspension, equivalent to

a 0.5 McFarland standard

Incubation: 35°C ± 2°C; ambient air; 20–24 hours

QC Recommendations

Refer to the following:

- Table 5A-1 that lists acceptable QC ranges
- Appendix I to develop a QC plan

> No more breakpoints!

Reference broth
microdilution (frozen
panels) are the only
reproducible method

General Comments

- (1) Minimal inhibitory concentration (MiC) and disk diffusion breakpoints for B. cepacia complex organisms were removed based on data showing that two CLSI reference antimicrobial susceptibility testing (AST) methods, broth microdilution (BMD) and agar dilution, do not correlate. These findings are supported by additional studies conducted by European Committee on Antimicrobial Susceptibility Testing (EUCAST) and a Brazilian study demonstrating problems with B. cepacia complex AST.^{1,2}
- (2) Epidemiological cutoff values (ECVs) are available in Appendix F, which are for epidemiological use only. In several cases, ECVs are above MICs typically achievable by routine antimicrobial dosing for similar organisms.
- (3) Laboratories can consider adding the following comment to the laboratory report: "Antimicrobial susceptibility testing is not routinely performed for B. cepacia complex due to the lack of accurate test methods. MICs for ceftazidime, levofloxacin, meropenem, minocycline, or trimethoprimsulfamethoxazole with wild-type isolates are high and might be above the MICs typically achievable by routine antimicrobial dosing."
- (4) If testing is performed, reference BMD (frozen) is the only reproducible method and laboratories might consider including the comment, "correlation of MIC values with clinical outcome is not known."

NOTE: Information in boldface type is new or modified since the previous edition.

Infections caused by BCC

- > Traditionally in CF patients
- Sporadic cause of disease in patients with serious underlying disease
 - Chronic granulomatous disease
 - Often from contaminated environmental sources
 - Nosocomial infections due to oral, ophthalmic, infusion solutions

S. aureus

P. aeruginosa

IMRSA

H. influenzae

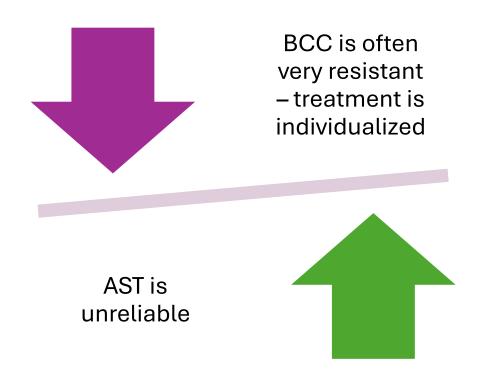
S. maltophilia

A. xylosoxidans

B. cepacia complex

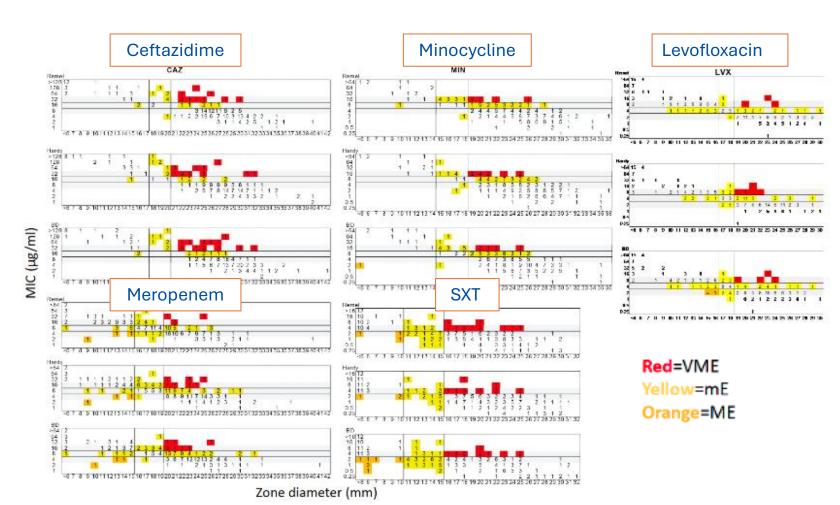
Year

Reduced incidence of bacterial pathogens in CF:


Fewer cultures performed

Prevalence of Respiratory Microorganisms, 1993–2023

- Better therapies for CF
- Better early eradication for patients with CF


Chakhtoura et al. CID 65: 1327-34.

Treatment of Burkholderia cepacia complex (BCC)

- > UpToDate (treatment of CF patients):
- "We attempt to treat B. cepacia complex species when present, guided by AST. ...The problem of choosing an antibiotic for B. cepacia complex species is compounded by poor performance of AST."
- > EUCAST BCC Rationale document¹
- "There is no relationship between MIC and clinical outcome" Potentially due to mismatch between in vivo and in vitro expression of resistance.
- > AMR in CF International Working Group²
- *There is little evidence that AST predicts the clinical outcome of CF treatment, suggesting careful consideration of current AST use by CF community."
- > ASM Practice guidelines on CF microbiology³
- *All method demonstrate poor reproducibility, which may explain poor correlation of AST and clinical outcomes in CF."

B. cepacia Study of Disk Diffusion vs BMD MICs

Testing done by 2 labs
 Multiple brands of MHA, CAMHB
 Both CF and non-CF isolates
 Tested:

- > Ceftazidime
- > Levofloxacin
- > Meropenem
- > Minocycline
- > Trimethoprim-sulfamethoxazole (SXT)

' errors

sts failed to meet CLSI standards per CLSI M23

Burkhoderia cepacia complex: CLSI work

- > Ongoing studies show:
 - Disk diffusion breakpoints do not agree with reference BMD (removed in 2024)¹
 - > Agar dilution and broth microdilution MICs do not agree²
 - > Commercial test performance is unknown or poor^{2,3}

Antimicrobial	Agar Dilution	Etest
Ceftazidime	73%	71%
Levofloxacin	96%	90%
Meropenem	86%	83%
Minocycline	88%	84%
SXT	68%	55%

- > Data from literature, other societies show no correlation between in vitro MIC and clinical outcomes^{4, 5}
 - CLSI M100 34th Edition
 - Jorth et al. 2025 JCM doi.org/10.1128/jcm.01480-24
 - Wootton et al. 2020. Clin Microbiol Infect S1198-743X(20)30708-4
 - Somayaji et al. 2019. J Cyst Fibros. 18:236-43
 - Saiman et al. 2024. Clin Microbiol Review 37: e0021521

Appendix B: Intrinsic resistance: BCC

Intrinsic Resistance

- Ampicillin,
 Piperacillin,
 Ticarcillin
- Ampicillinsulbactam
- Amoxicillinclavulanate
- Ertapenem
- Polymyxin B,
 Colistin
- Fosfomycin

Usually "R"*

- Piperacillintazobactam
- Cefotaxime
- Ceftriaxone
- Cefepime
- Aztreonam
- Imipenem
- Aminoglycosides
- Trimethoprim

No intrinsic resistance

- Ceftazidime
- Levofloxacin
- Meropenem
- Tetracyclines
- Tigecycline
- Trimethoprimsulfamethoxazole
- Chloramphenicol

*these antimicrobials do not meet definition of intrinsic resistance as wild-type, environmental isolates do not harbor resistance mechanisms. However, most clinical isolates are "R"

Appendix F: Epidemiological cutoff values for BCC

Note! These are going away in 2026

Antimicrobial agent	Interpretive category and MIC, µg/mL		MIC typically achievable, μg/mL*
	WT	NWT	
Ceftazidime	≤16	≥32	≤8
Levofloxacin	≤8	≥16	≤2
Meropenem	≤16	≥32	≤4
Minocycline	≤8	≥16	≤4
SXT	≤2	≥4	≤2

PK-PD estimates suggest WT MIC is not treatable

"Caution: ECVs should not be used as clinical breakpoints"

Caveats to BCC ECVs:

- 1. Not species specific
- 2. >50% of data for minocycline and SXT was from 1 laboratory

Note! These are under review and will not be published for M100 S36 (2026)

CLSI M100 35th Edition. Appendix F.

Back to Case...

> 52 YO with ALL and B. cepacia bacteremia

Option 1:

Source: Blood

ID: Burkholderia cepacia complex

"AST not routinely performed due to lack of accurate test methods."

Option 2:

Source: Blood

ID: Burkholderia cepacia complex

	MIC (μg/mL)	
Ceftazidime	4	-
Levofloxacin	0.5	-
Trimethoprim- sulfamethoxazole	0.5	-

"MIC testing performed by XX reference laboratory using BMD. Correlation of MIC values with clinical outcomes is not known. Consultation with ID is recommended."

Ongoing work at CLSI to address:

- non-CF patient isolates
- Updated ECV
- Evaluation of lyophilized
 BMD

Option 3:

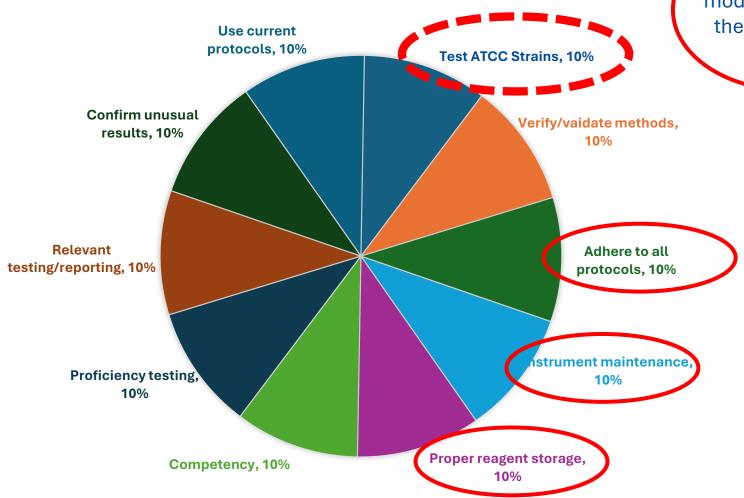
Source: Blood

ID: Burkholderia cepacia complex

	MIC (μg/mL)	
Ceftazidime	4	WT
Levofloxacin	0.5	WT
Trimethoprim- sulfamethoxazole	0.5	WT

"MIC testing performed by XX reference laboratory using BMD. Correlation of MIC values with clinical outcomes is not known. Isolate displays wild-type (WT) results, indicating no acquired or mutational resistance mechanisms. Consultation with ID is recommended."

Probably not an option in 2026


Part 2: QC

Achieving Quality AST Results

QC strains are in control... Will you report these results without question?

S. aureus

Antimicrobial	Result
Ciprofloxacin	S
Clindamycin	S
Daptomycin	S
Erythromycin	S
Oxacillin	S
Trimeth-sulfa	S
Vancomycin	R

Testing QC strains modestly "controls" these parameters

When testing ATCC QC strains, what types of errors or out of range results might we encounter?

Random or Identifiable Errors

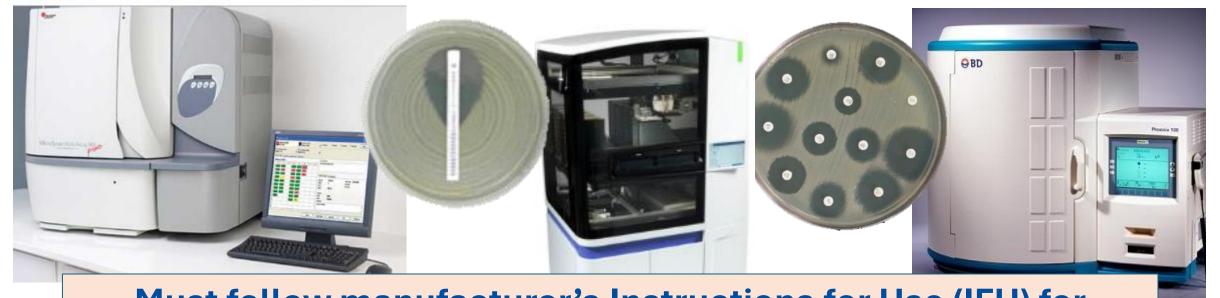
- Can be easily explained
- Most correct on repeat testing with the same or a new QC strain
- Can be a result of chance and not a system failure
- > Are very unlikely to affect patient results

Examples:

- No growth of the QC strain
- Mixed culture used for QC
- Incorrect QC strain tested.

System Errors

- > Due to a malfunction of an instrument
- > Due to defective media and/or reagents
- Do not correct with repeat testing with the same or a new QC strain
- > Can affect patient results


Examples:

- Manufacturing issue with media and/or reagents (eg, incorrect concentration of drug, incorrect contents of media)
- Issues with optical system
- Blocked reagent line
- Degradation of drug or media in the test system.

Most frequent errors

CLSI M100 Ed35. Appendix I. p. 369.

Very Uncommon

Must follow manufacturer's Instructions for Use (IFU) for testing, including QC

Background to CLSI 2025 Change

- AST QC CMS requires daily testing using "appropriate control organism(s)" to check the procedure
 - > CLIA § 493.1261
- > 2016 CMS introduced <u>IQCP</u> option
 - Alternative QC option for all laboratory testing including AST QC testing
- CLSI provided a plan to support converting from daily to weekly QC
 - > Since 2016 requires IQCP
- IQCP can support less frequent than weekly
 QC

> Why change now?

- > Nearly 10 years experience with IQCP
- Routine QC testing rarely identifies an AST system problem that would contribute to patient report errors
- Manufacturers of commercial AST systems perform extensive QC before release of media/reagent/equipment
- Laboratories have protocols beyond testing QC strains to minimize patient report errors
- Laboratories are increasingly focusing on how to best use limited resources.

CMS, Centers for Medicare and Medicaid Services; IQCP, Individualized Quality Control Plan

Tables 2 - Modified QC Recommendations Box

Table 2A-1. Zone Diameter and MIC Breakpoints for Enterobacterales (excluding Salmonella and Shigella spp.)

Testing Conditions

Medium: Disk diffusion: MHA

Broth dilution: CAMHB; iron-depleted CAMHB for cefiderocol (see Appendix H, section H1)¹

Agar dilution: MHA

Inoculum: Broth culture method or colony suspension, equivalent

to a 0.5 McFarland standard; positive blood culture broth for select antimicrobial agents with disk diffusion (see

general comment [4])

Incubation: 35°C ± 2°C: ambient air

Disk diffusion: 16–18 hours Dilution methods: 16–20 hours QC Recommendations

M100 35th ed

Refer to the following:

- Tables 4A-1, 4A-2, 5A-1, and 5A-2 that list acceptable QC ranges applicable for each method
- Appendix I to develop a QC plan

When a commercial test system is used for antimicrobial susceptibility testing, refer to the manufacturer's instructions for QC **strains** and QC ranges

Refer to Tables 3A, 3B, 3C, 3D, 3E, 3F-1, and 3F-2 for additional testing, reporting, and QC for Enterobacterales.

Table 2A-1. Zone Diameter and MIC Breakpoints for Enterobacterales (excluding Salmonella/Shigella)

M100 34th ed

Testing Conditions

Medium: Disk diffusion: MHA

Broth dilution: CAMHB; iron-depleted CAMHB for

cefiderocol (see Appendix H)1

Agar dilution: MHA

Inoculum: Broth culture method or colony suspension, equivalent

to a 0.5 McFarland standard; positive blood culture broth for select antimicrobial agents with disk diffusion (see

general comment [4])

Incubation: 35°C ± 2°C; ambient air

Disk diffusion: 16–18 hours Dilution methods: 16–20 hours Routine QC Recommendations (see Tables 4A-1 and 5A-1 for acceptable QC ranges)

Escherichia coli ATCC® 25922

Pseudomonas aeruginosa ATCC® 27853 (for carbapenems)

Refer to Tables 4A-2 and 5A-2 to select strains for routine QC of β -lactam combination agents.

When a commercial test system is used for susceptibility testing, refer to the manufacturer's instructions for QC test recommendations and QC ranges.

CLSI M100 Ed35. All Tables 2. pp. 56-146.

Appendix I. Selection of Quality Control Strains and Quality Control Testing Frequency

Appendix I

Appendix I. Selection of Quality Control Strains and Quality Control Testing Frequency

Abbreviations for Appendix I

AST antimicrobial susceptibility testing

ATCC^{®2} American Type Culture Collection

CMS Centers for Medicare & Medicaid Services

IQCP individualized quality control plan

MIC minimal inhibitory concentration

NaCl sodium chloride

pH negative logarithm of hydrogen ion concentration

QA quality assurance

QC quality control

11 Regulatory Requirements for Selection of Quality Control Strains and Quality Control Testing Frequency

The Centers for Medicare & Medicaid Services (CMS) requires laboratories in the United States to perform appropriate QC testing for antimicrobial susceptibility testing (AST) with each lot/batch or shipment of media and antimicrobial agent(s) before, or concurrent with initial use.¹ Thereafter, QC must be performed with each day of testing (subsequently referred to as "daily" QC testing). The specific QC strains required for daily QC testing are not specified by CMS. Other regulatory agencies may have alternative QC requirements.

12 Development of an Individualized Quality Control Plan

A laboratory in the United States must develop an individualized quality control plan (IQCP) if it wishes to deviate from CMS's daily AST QC requirement. If an IQCP is acceptable to the laboratory's director and accreditation requirements, an IQCP can be designed to reduce AST QC frequency and to determine which QC strains to test.

When developing an IQCP, the laboratory should select QC strains to detect both system and identifiable errors. The IQCP should include data from the laboratory to support less frequent (eg., weekly, monthly) than the CMS-required daily QC testing.

The IQCP considers both QA processes (eg, equipment maintenance, laboratory procedures, personnel competency assessment) and QC (QC plans for media and reagents). The examples in CLSI M100 focus on QC plans.

- 11 Regulatory Requirements for Selection of Quality Control Strains and Quality Control Testing Frequency
- 2 Development of an Individualized Quality Control Plan
- 13 Resources for Development of an Individualized Quality Control Plan for Antimicrobial Susceptibility Testing
- 14 Type of **Quality Control Errors**
- 15 **Selection of Quality Control Strains** to Quality Control Antimicrobial Agents and Specific Media Component
- **16 Quality Control Plans**
- 17 Indicators to **Detect Antimicrobial Susceptibility Testing**System Problems
- 18 **Example** Quality Control Plans: User's Laboratory

CLSI M100 Ed35. Appendix I. p. 368.

Modified "Routine" QC Guidelines in CLSI M100 Ed35 ... What to do??

Review modified CLSI guidelines and your current QC plan

Continue daily/weekly QC

(based on current lab protocols)

IQCP Templates Google ASM AST IQCP

Prepare / Modify IQCP

- > Frequency of testing
 - Weekly? Biweekly? Monthly?, Other (e.g., rotate instruments)?
- > Selection of QC Strains
 - Batch/lot/shipment
 - "Routine"

Importance of a Quality Control Plan

Tabulate errors / Review Plan Assess risk complains Previous QC records, patient test results, physician complaints How do these errors Data analysis Risk factor, Product recalls and affect patient AST test possible error, and literature especially if results how could the this is a new product error be reduced • Frequency, harm, and for the laboratory risk level Manufacturer's IFU

QC Functions - Manufacturer vs. User

Manufacturer QC

User Shipment QC User Routine QC

Confirm quality of media and/or reagents......

for a **newly** manufactured lot/batch

following **receipt** of a new lot/batch

throughout their shelf life

New Lot/New Shipment

Same Lot/New Shipment

Table I1. Example QC Strain Selection for MIC Methods When Testing Nonfastidious Gram-Negative Organisms

Table 13: Example QC Strain Selection for MIC Methods When Testing Nonfastidiou	us Gram-Nega	ative Organisms
---	--------------	-----------------

	rection for Mic Methods When	In User's Laboratory		
Antimicrobial Agents	Manufacturer Lot QC ^a	New Lot, New Shipment QC	Same Lot, New Shipment QC	Routine QC
Ampicillin	E. coli ATCC® 25922	E. coli ATCC® 25922	E. coli ATCC® 25922	E. coli ATCC® 25922
Cefazolin				
Cefepime	• F. coli ATCC® 25922	P. aeruginosa ATCC® 27853°	P. aeruginosa	P. aeruginosa
Cefiderocol	• P. aeruginosa ATCC® 27853°		ATCC® 27853°	ATCC® 27853°
Ceftriaxone				
Ciprofloxacin				
Gentamicin				
Imipenem ^c				
Tetracycline				
Tigecycline				
Tobramycin				
Trimethoprim-	• E. coli ATCC [®] 25922	• E. coli ATCC [®] 25922	E. coli ATCC® 25922	E. coli ATCC® 25922
sulfamethoxazole	• E. faecalis ATCC [®] 29212	• E. faecalis ATCC® 29212		
Amoxicillin-clavulanate ^{c,d}	E.coli ATCC® 35218°	E.coli ATCC® 35218°	E.coli ATCC® 35218°	E.coli ATCC® 35218°
Piperacillin-tazobactam ^d	or	or	or	or
	K. pneumoniae ATCC® 700603°	K. pneumoniae ATCC® 700603°	K. pneumoniae ATCC® 700603°	K. pneumoniae ATCC® 700603°
Ceftazidime-avibactam ^d	K. pneumoniae ATCC® 700603	K. pneumoniae ATCC® 700603	K. pneumoniae ATCC®	K. pneumoniae ATCC®
Ceftolozane-tazobactam ^d			700603	700603
Imipenem-relebactam ^{c,d}	K. pneumoniae ATCC® BAA-	K. pneumoniae ATCC® BAA-	K. pneumoniae ATCC® BAA-	K. pneumoniae ATCC® BAA-
Meropenem-vaborbactam ^d	1705™	1705™	1705 [™]	1705™
	or	or	or	or
	K. pneumoniae ATCC® BAA- 2814™	K. pneumoniae ATCC® BAA- 2814™	K. pneumoniae ATCC® BAA- 2814™	K. pneumoniae ATCC® BAA- 2814™

Abbreviations: ATCC®, American Type Culture Collection; MIC, minimal inhibitory concentration; QC, quality control.

Selecting QC Strains

Minimum Requirement

- 1 QC stain for each:
 - antimicrobial
 - resistance mechanism test, if present (i.e. ESBL)

Resources

- Manufacture
 IFU
- M100 Tables 4/ 5
- M100
 Appendix C
- M100
 Appendix I

Considerations

- QC similar to the organism tested (ie GNR for a GNR)
- QC strain that is on-scale for the dilutions on the panel

AST Methods

Disk Diffusion
Gradient
Diffusion
Commercial
Panels

Frequency of QC Testing (if not Daily) Supporting Data

Historical records

- > 15-replicate (3x5-day) plan or 20-30 day plan
- > Ongoing weekly QC

Consider:

- > Any previous AST system failures in your lab/beyond?
- > How long drug / method tested in your lab/beyond?
- > Other IQCP risk assessment parameters

Define frequency in IQCP

> Weekly, Bi-weekly, Monthly, Rotate instruments

Up to the laboratory director – strain selection and frequency!
Retain documentation supporting IQCP.

Example 1: Automated Commercial MIC Test System Panel *Current Plan*

Current Plan

QC Strain	Purpose
E. coli ATCC° 25922	Entire panel
P. aeruginosa ATCC° 27853	Entire panel
E. coli ATCC° 35218	Beta-lactamase inhibitor combinations
K. pneumoniae ATCC° 70060	ESBL test
K. pneumoniae ATCC® BAA-1705	Meropenem-vaborbactam

Frequency	Total QC Tests
New lot/Shipment	100 (6 errors)
Weekly	520 (15 errors)
Total	620 (21 errors)

Risk Assessment

QC Strain	# of errors	Туре
<i>E. coli</i> ATCC° 25922	11 (9%)	Random (reset by turbidity)
P. aeruginosa ATCC° 27853	8 (6%)	Random (reset by turbidity)
<i>E. coli</i> ATCC° 35218	2 (2%)	Random (isolate issue)
K. pneumoniae ATCC° 70060	0	
K. pneumoniae ATCC° BAA-1705	0	

0 system errors found = low risk to patient

Example 1: Automated Commercial MIC Test System Panel *Revised Plan*

Strain Selection

QC Strain	Purpose
E. coli ATCC° 25922	Entire panel
P. aeruginosa ATCC° 27853	Entire panel
E. coli ATCC° 35218	Beta-lactamase inhibitor combinations
K. pneumoniae ATCC° 70060	ESBL test
K . pneumoniae ATCC® BAA-1705	Meropenem-vaborbactam

Meropenem-vaborbactam not reported, not on hospital formulary

Frequency Adjustment

Frequency Options	Total QC Tests	
New lot/Shipment	10 / year	
Weekly	52 / year	R
		i
New lot/Shipment	10 / year	S
Bimonthly	24 / year	k
New lot/Shipment	10 / year	
Monthly	12 / year	7

Example 2: Commercial Gradient Diffusion Strip

Current Plan

QC Strain	Purpose
S. pneumoniae ATCC® 49619	Penicillin G

4 Years of Historical QC Data

Frequency	Total QC Tests
Day of testing	174 (1 random error)

- Average 4 QC tests a month
- Within last year increased to 6 QC tests a month

Revised Plan

QC Strain	Purpose
S. pneumoniae ATCC® 49619	Penicillin G

QC Tests per IQCP

Frequency	Total QC Tests
New Lot/ Shipment	2 / year
Weekly	4 / month

- No 3x5 plan or 20/30 day QC data available
- Used 4 years of historical QC data

0 system errors found = low risk to patient

Example 3: Commercial MIC Test System Panel with a New Drug / New Panel

Manufacturer IFU Recommended Strains

QC Strain	Purpose
E. coli ATCC° 25922	Entire panel
P. aeruginosa ATCC° 27853	Entire panel
E. coli ATCC° 35218	Beta-lactamase inhibitor combinations
K. pneumoniae ATCC° 70060	ESBL test
K. pneumoniae ATCC° BAA-2814	Imipenem-relebactam

Laboratory had an IQCP for the old panel

Frequency New lot / shipment Bimonthly

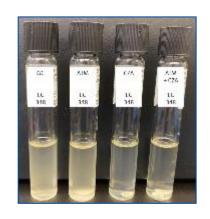
- New panel with new drug imipenemrelebactam
- No historical data for this drug and K. pneumoniae ATCC® BAA-2814
- Remaining drugs and dilutions on panel have not changed
- Laboratory opted to a 3x5 plan for K. pneumoniae ATCC® BAA-2814 to incorporate this strain into its existing IQCP
 - > Weekly for 1 year
 - > Then move to bimonthly

QC Range Adjustments and Other Minor QC Changes

Modified QC Range

Antimicrobial	DD (mm)	
<i>E.</i> coli ATCC [®] 25922		
Minocycline	20-26	

QC Table Footnote:


"Sulfisoxazole can be used to represent any of the currently available sulfonamide preparations."

CLSI M100 Ed35 Tables 4A-1 p. 230; 5A-1 p. 254.

CLSI M100 Ed35 Table 4A-1. p. 228.

Aztreonam Plus Ceftazidime-avibactam Broth Disk Elution – Alternative "R" QC Strains

	QC Strain	Organism Characteristics	Expected Results
Alteri E. col	i AR Bank #0348 native strains: i AR Bank #0434 coli AR Bank #0450	Not susceptible to any antimicrobial agents evaluated	ATM: Growth – not susceptible CZA: Growth – not susceptible ATM + CZA: Growth – not susceptible

CLSI M100 Ed35 Table 3D. pp. 184.

Summary

- QC should be informed by your risk assessment
- No requirement to change!
- Opportunity to streamline

Part 3: Q&A