1= Smart Contract Code Review and Security Analysis Report for
I') S PulseDogecoin ERC20 Token Smart Contract

BLOCK SOLUTIONS

Smart Contract Code Review and
Security Analysis Report
for
PULSEDOGECOIN ERC20 Token

Smart Contract

Request Date: 2022-04-24
Completion Date: 2022-04-26

Language: Solidity

1= Smart Contract Code Review and Security Analysis Report for

1')5 PulseDogecoin ERC20 Token Smart Contract
Contents

COMIMUISSION ..o e e e 3
PULSEDOGECOIN ERC20 TOKEN Propert1€s.........ccooovmiiiieeee e 4
R RN LTI BRI 1 oot N A s e e e S M S s x
BTSN S
(O 1 510 14§ TP 6
JERARTIE S I s ascon e o o) O S R O T e R A R 8
PLILSEHOGHS OIN ERCHTOKEN Conttael oo a0 oo 8
Testing SUMMATY ... e 11
L T e 12
D R LN e s S b T e 13
I T I ccorrc ot e o o e oy oo 13
D OCUMCIITATION ... e e 13
LR B I B IO ML i o e S B e S St o K
CRRICHE oo o ro e s o o e e 14
Ha g e 14
.1 g POt e F s R (e S R R S PR SR R e S e N R b S W 14
B smn e et o e o e e e e e s 14
CONCIUSION ... e 15

1o Smart Contract Code Review and Security Analysis Report for

1') c;- PulseDogecomn ERC20 Token Smart Contract
Commission

Audited Project PULSEDOGECOIN ERC20 Token Smart Contract

Contract Creator 0xC4e2CA254E8d502AeB9D29CI9FE07B26029A814c¢1

Contract Address 0x34F0915a5115a66Eba86F6a58bE1A471FB7836A7

Blockchain Platform Ethereum Mainnet

Block Solutions was commissioned by PULSEDOGECOIN ERC20 TOKEN Smart Contract
owners to perform an audit of their main smart contract. The purpose of the audit was to achieve
the following:

® Ensure that the smart contract functions as mtended.

® Identify potential security 1ssues with the smart contract.

The information 1n this report should be used to understand the risk exposure of the smart contract,

and as a guide to improve the security posture of the smart contract by remediating the 1ssues that
were 1dentified.

12 Smart Contract Code Review and Security Analysis Report for
I‘) o; PulseDogecoin ERC20 Token Smart Contract
PULSEDOGECOIN
ERC20 TOKEN Properties
Contract Token PulseDogecoin
name
Symbol PLSD
Decimals 12
Total Supply 1701209
Holders 4419
Transfers 9.466
Number of Claims [5899
Current Day 6

L.aunch Time

Wednesday, April 20, 2022 2:19:02 PM

Benevolent 0x7686640F09123394Cd&8Dc3032€9927767a1D89344
Address
Hex Origin 0x9A6a414D6F3497¢c05E3b1De90520765fA1E07¢03
Address

Merkle Tree Root

0x&81t4elc18aa0323d567b9abc6¢ct6419626e82et1b41a404b3148bta92eech9142

Contract Creator

0xC4e2CA254E8d502AeB9D29CI9FE07B26029A814cl

Contract Address

0x34F0915a5115a66Eba86F6a58bE1A471FB7836A7

Blockchain
Platform

Hthereum Mainnet

Smart Contract Code Review and Security Analysis Report for

™ PulseDogecomn ERC20 Token Smart Contract

Contract Functions

Executables

I
11.
111.

1V.

V1.
V11.

function approve(address spender, uint256 amount) public virtual override returns (bool)
function claim(address to, uint256 amount, bytes32[] calldata proof) external

function decrease Allowance(address spender, uint256 subtractedValue) public virtual
returns (bool)

function mcreaseAllowance(address spender, uint256 addedValue) public virtual returns
(bool)

function mintOaBaTokens() external

function transfer(address recipient, uint256 amount) public virtual override returns (bool)
function transferFrom(address sender,address recipient, uint256 amount) public virtual
override returns (bool)

1o Smart Contract Code Review and Security Analysis Report tor

I') o;g- PulseDogecoin ERC20 Token Smart Contract
Checklist
Compiler errors. Passed
Possible delays 1n data delivery. Passed
Timestamp dependence. Passed
Integer Overtlow and Undertlow. Passed
Race Conditions and Reentrancy. Passed
DoS with Revert. Passed
DoS with block gas limat. Passed
Methods execution permissions. Passed
Economy model of the contract. Passed
Private user data leaks. Passed
Malicious Events Log. Passed
Scoping and Declarations. Passed
Unimitialized storage pointers. Passed
Arithmetic accuracy. Passed
Design Logic. Passed
Impact of the exchange rate. Passed
Oracle Calls. Passed
Cross-function race conditions. Passed
Fallback function security. Passed

12 Smart Contract Code Review and Security Analysis Report for

I') c;- PulseDogecoin ERC20 Token Smart Contract
Safe Open Zeppelin contracts and implementation usage. Passed
Whitepaper-Website-Contract correlation. Not-Checked

Front Running. Not-Checked

1o Smart Contract Code Review and Security Analysis Report for
1') P PulseDogecoimn ERC20 Token Smart Contract

Owner privileges

PULSEDOGECOIN ERC20 TOKEN Contract

function will transfer token for a specified address recipient 1s the address to transfer. “amount” 1s
the amount to be transferred.

transfer(recipient, amount)

_transfer(_msgSender(), recipient, amount);

>

Transter tokens from the “from” account to the “to” account. The calling account must already
have sufficient tokens approved for spending from the “from” account and “From” account must
have sufficient balance to transfer.” Spender” must have sufficient allowance to transfer.

transferFrom(sender, recipient, amount)

(bool) {

_transfer(sender, recipient, amount);
currentAllowance = _allowances[sender][_msgSender()];
(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
unchecked {
_approve(sender, msgSender(), currentAllowance - amount);

Approve the passed address to spend the specified number of tokens on behalf of msg. sender.
“spender” 1s the address which will spend the funds. “tokens” the number of tokens to be spent.

approve(spender, amount)
_approve(_msgSender(), spender, amount);

|

.

This will increase approval number of tokens to spender address. “ spender” 1s the address whose
allowance will increase and “ addedValue” are number of tokens which are going to be added
current allowance. approve should be called when allowed| spender| == 0. To mmcrement allowed
1s better to use this function to avoid 2 calls (and wait until the first transaction 1s mined).

1 Smart Contract Code Review and Security Analysis Report for
1' P~ PulseDogecoimn ERC20 Token Smart Contract
2 o

increaseAllowance(spender, addedValue)

) {

_approve(_msgSender(), spender, allowances[msgSender()][spender] + addedValue);

¥
2

4

This will decrease approval number of tokens to spender address. ““ spender” 1s the address whose
allowance will decrease and “ subtractedValue” are number of tokens which are going to be
subtracted from current allowance.

decreaseAllowance(spender, subtractedValue)

(bool) {

currentAllowance = allowances[msgSender()][spender];
(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {

_approve(msgSender(), spender, currentAllowance - subtractedValue);

}

External function to claim airdrop tokens. Must be before the end of the claim phase. Tokens can
only be minted once per unique address. The address must be within the airdrop set.

e “to” 1s the HEX staker address.
e “amount’ 1s the PLSD token amount
e “proot” 1s the Merkle tree proot

claim(to, amount, [] proof)

(_currentDay() <= CLAIM PHASE DAYS, "Claim phase has ended.");
(thasClaimed[to], “Address has already claimed.”);
(_hexAddressIsClaimable(to, amount, proof), "HEX Address is not claimable.");

hasClaimed[to] = -

numberOfClaims = numberOfClaims.add(1);

~mint(to, amount);

Claim(to, amount);

Mint token on HEX Origin & PLSD Benevolent Address. Must be after claim phase has ended.
Tokens can only be minted once. Determine the number of tokens each address will receive and
mint those tokens.

1= Smart Contract Code Review and Security Analysis Report for
1') P PulseDogecom ERC20 Token Smart Contract

mintOaBaTokens()

(_currentDay() > CLAIM PHASE DAYS, "Claim phase has not ended.");

(! OaBaTokensMinted,
"HEX Origin Address & Benevolant Address Tokens have already been minted.");

_OaBaTokensMinted =

tokenPayout _numberOfClaims.mul(TOKEN PAYOUT IN DOGI);
~mint(HEX ORIGIN ADDR, tokenPayout);
~mint(BENEVOLANT ADDR, tokenPayout);

1= Smart Contract Code Review and Security Analysis Report for
I')%g‘g-‘ PulseDogecoimn ERC20 Token Smart Contract

Testing Summary

PASS

Block Solutions Belileves
this smart contract security

qualifications to passes listed be
@] 8 o e ks A= e e (= B =) R 1= [nlls 1 =) s

26 APR, 2022

Smart Contract Code Review and Security Analysis Report for
PulseDogecoimn ERC20 Token Smart Contract

Quick Stats:

Contract Solidity version not specified
Programming

Solidity version too old

Integer overtlow/underflow

Function mput parameters lack of check

Function input parameters check bypass

Function access control lacks management

Critical operation lacks event log

Human/contract checks bypass

Random number generation/use vulnerability

Fallback function misuse

Race condition

Logical vulnerability

Other programming 1ssues

Code Visibility not explicitly declared
Specification

Var. storage location not explicitly declared

Use keywords/functions to be deprecated

Other code specification 1ssues

Gas Optimization | Assert () misuse

High consumption ‘for/while’ loop

High consumption ‘storage’ storage

“Out of Gas” Attack

Business Risk The maximum limit for mintage not set

“Short Address” Attack

“Double Spend” Attack

1o Smart Contract Code Review and Security Analysis Report for
I') ™ PulseDogecoimn ERC20 Token Smart Contract

Overall Audit Result: PASSED

Executive Summary

According to the standard audit assessment, Customer's solidity smart contract 1s Well-secured
Again, 1t 1s recommended to perform an Extensive audit assessment to bring a more assured
conclusion.

Insecure Poor secured Secure Well-secured

you are here

We used various tools like Mythril, Slither and Remix IDE. At the same time this finding 1s based
on critical analysis of the manual audit.

All 1ssues found during automated analysis were manually reviewed and applicable vulnerabilities
are presented 1n the Quick Stat section.

We found O critical, 0 high, 0 medium and 0 low level 1ssues.

Code Quality

The PULSEDOGECOIN ERC20 TOKEN Smart Contract protocol consists of one smart contract.
The BLOCKSOLUTIONS team has not provided scenario and unit test scripts, which would help
to determine the integrity of the code 1n an automated way. Overall, the code 1s not commented.
Commenting can provide rich documentation for functions, return variables and more.

Documentation

As mentioned above, 1t’s recommended to write comments 1n the smart contract code, so anyone
can quickly understand the programming flow as well as complex code logic. We were given a

PULSEDOGECOIN ERC20 TOKEN Smart Contract smart contract code 1n the form of File.

Use of Dependencies

As per our observation, the libraries are used 1n this smart contract infrastructure that are based on
well-known 1industry standard open-source projects. And even core code blocks are written well
and systematically. This smart contract does not interact with other external smart contracts.

PulseDogecoimn ERC20 Token Smart Contract

I 1 Smart Contract Code Review and Security Analysis Report for
b
120

Risk Level Description
Critical vulnerabilities are usually straightforward to
exploit and can lead to token loss etc.
High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart contract

execution, €.g. public access to crucial
functions

Medium-level vulnerabilities are important to fix; however, they

can’t lead to tokens lose

Low-level vulnerabilities are mostly related to
outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest-level vulnerabilities, code style violations
and 1nfo statements can’t affect smart contract
execution and can be 1gnored.

Audit Findings

‘1 'l []
Critical

No critical severity vulnerabilities were found

L]
High

*.QT i L bl e =1 % S o iy

No high severitvy vulnerabilities were found.

-
L]

Medium

No Med) xveritv vitlnerabilities were fo
INO vViedium severity vuinerapilities were round
L.ow

1= Smart Contract Code Review and Security Analysis Report for
1') ™ PulseDogecom ERC20 Token Smart Contract

Conclusion

The Smart Contract code passed the audit successtully.

We were given a contract code. And we have used all possible tests based on given objects as files.
So, 1t 1s good to go for production. Since possible test cases can be unlimited for such extensive
smart contract protocol, hence we provide no such guarantee of future outcomes. We have used
all the latest static tools and manual observations to cover maximum possible test cases to scan
everything. Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented 1n Quick Stat
section of the report.

Audit report contans all found security vulnerabilities and other 1ssues 1n the reviewed code.

Secunty state of the reviewed contract 1s “Well Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals
of our security audits are to improve the quality of systems we review and aim for sufficient
remediation to help protect users. The following 1s the methodology we use i our security audit

Process.
Manual Code Review:

In manually reviewing all of the code, we look for any potential 1ssues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number generators. We
also watch for areas where more defensive programming could reduce the risk of future mistakes
and speed up future audits. Although our primary focus i1s on the in-scope code, we examine
dependency code and behavior when 1t 1s relevant to a particular line of investigation.
Vulnerability Analysis:

Our audit techniques included manual code analysis, user mterface interaction, and whitebox
penetration testing. We look at the project's web site to get a high-level understanding of what
functionality the software under review provides. We then meet with the developers to gain an
appreciation of their vision of the software. We install and use the relevant software, exploring the
user interactions and roles. While we do this, we brainstorm threat models and attack surfaces. We
read design documentation, review other audit results, search for similar projects, examine source
code dependencies, skim open 1ssue tickets, and generally mvestigate details other than the
implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security vulnerabilities and
seemg them through successful remediation. Whenever a potential 1ssue 1s discovered, we
immediately create an Issue entry for 1t in this document, even though we have not yet verified the
feasibility and impact of the 1ssue. This process 1s conservative because we document our
suspicions early even if they are later shown to not represent exploitable vulnerabilities. We
oenerally, follow a process of first documenting the suspicion with unresolved questions, then
confirming the 1ssue through code analysis, live experimentation, or automated tests. Code analysis

PulseDogecoimmn ERC20 Token Smart Contract

1 1o Smart Contract Code Review and Security Analysis Report for
P
120

1s the most tentative, and we strive to provide test code, log captures, or screenshots demonstrating
our confirmation. After this we analyze the feasibility of an attack 1n a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and
successful mitigation and remediation 1s an ongoing collaborative process after we deliver our
report, and before the details are made public.

