Paper 3 - Quantitative Aptitude: Full Trend Bank

Section 1 - 50 MCQs (answers inline) Q1. Simple interest on 4752 at 10 percent for 3 years equals: (a) 1425 (b) 1568 (c) 1283 (d) 1525 Answer: $1425 - SI = P^*r^*t/100 = 4752^*10^*3/100 = 1425$. Q2. Sum of first 6 natural numbers is: (a) 21 (b) 20 (c) 22(d) 36 Answer: 21 - Use n(n+1)/2. Q3. If A:B = 3:5 and B = 50, find A. (a) 30 (b) 35 (c) 25(d) 60 Answer: 30 - A/B = r1/r2 -> A = B*(r1/r2). Q4. Compound interest on 4061 at 8 percent for 3 years (annual) equals: (a) 1054.69 (b) 1160.16 (c) 949.22 (d) 1154.69 Answer: $1054.69 - CI = P[(1+r)^n - 1]$. Q5. Matrix: det([5]) equals: (a) 5 (b) 1/5 (c) 0(d) -5Answer: 5 - Determinant of 1x1 is the element. Q6. Probability: For fair die, probability of getting number greater than 4 is: (a) 2/6(b) 3/6(c) 1/6(d) 4/6

Answer: 2/6 - Outcomes 5,6 -> 2/6.

Q7. Mean of 2,4,6,8,10 is:

(a) 6

```
(b) 5
    (c) 7
    (d) 8
Answer: 6 - Sum 30/5.
Q8. LR: Series 2,4,8,16,? Next term is:
    (a) 32
    (b) 24
    (c) 18
    (d) 20
Answer: 32 - Multiply by 2.
Q9. Sets: If |A|=20, |B|=15, |A \cup B|=28, then |A \cap B| is:
    (a) 7
    (b) 6
    (c) 8
    (d) 0
Answer: 7 - |A \cup B| = |A| + |B| - |A \cap B|.
Q10. Calculus: derivative of x^2 is:
    (a) 2x
    (b) x
    (c) x^3
    (d) 1
Answer: 2x - d/dx x^2 = 2x.
Q11. Simple interest on 2376 at 6 percent for 2 years equals:
    (a) 285
    (b) 313
    (c) 256
    (d) 385
Answer: 285 - SI = P^*r^*t/100 = 2376^*6^*2/100 = 285.
Q12. Sum of first 5 natural numbers is:
    (a) 15
    (b) 14
    (c) 16
    (d) 25
Answer: 15 - Use n(n+1)/2.
Q13. If A:B = 3:2 and B = 20, find A.
    (a) 30
    (b) 35
    (c) 25
    (d) 60
Answer: 30 - A/B = r1/r2 -> A = B*(r1/r2).
```

Q14. Compound interest on 2592 at 12 percent for 3 years (annual) equals:

```
(a) 1049.57
    (b) 1154.53
    (c) 944.61
    (d) 1149.57
Answer: 1049.57 - CI = P[(1+r)^n - 1].
Q15. Matrix: det([5]) equals:
    (a) 5
    (b) 1/5
    (c) 0
    (d) -5
Answer: 5 - Determinant of 1x1 is the element.
Q16. Probability: For fair die, probability of getting number greater than 4 is:
    (a) 2/6
    (b) 3/6
    (c) 1/6
    (d) 4/6
Answer: 2/6 - Outcomes 5,6 -> 2/6.
Q17. Mean of 2,4,6,8,10 is:
    (a) 6
    (b) 5
    (c)7
    (d) 8
Answer: 6 - Sum 30/5.
Q18. LR: Series 2,4,8,16,? Next term is:
    (a) 32
    (b) 24
    (c) 18
    (d) 20
Answer: 32 - Multiply by 2.
Q19. Sets: If |A|=20, |B|=15, |A \cup B|=28, then |A \cap B| is:
    (a) 7
    (b) 6
    (c) 8
    (d) 0
Answer: 7 - |A \cup B| = |A| + |B| - |A \cap B|.
Q20. Calculus: derivative of x^2 is:
    (a) 2x
    (b) x
    (c) x^3
    (d) 1
Answer: 2x - d/dx x^2 = 2x.
```

```
Q21. Simple interest on 4847 at 8 percent for 3 years equals:
   (a) 1163
   (b) 1279
   (c) 1046
   (d) 1263
Answer: 1163 - SI = P^*r^*t/100 = 4847^*8^*3/100 = 1163.
Q22. Sum of first 4 natural numbers is:
   (a) 10
   (b) 9
   (c) 11
   (d) 16
Answer: 10 - Use n(n+1)/2.
Q23. If A:B = 5:5 and B = 50, find A.
   (a) 50
   (b) 55
   (c) 45
   (d) 100
Answer: 50 - A/B = r1/r2 -> A = B*(r1/r2).
Q24. Compound interest on 3516 at 10 percent for 3 years (annual) equals:
   (a) 1163.8
   (b) 1280.18
   (c) 1047.42
   (d) 1263.8
Answer: 1163.8 - CI = P[(1+r)^n - 1].
Q25. Matrix: det([5]) equals:
   (a) 5
   (b) 1/5
   (c) 0
   (d) -5
Answer: 5 - Determinant of 1x1 is the element.
Q26. Probability: For fair die, probability of getting number greater than 4 is:
   (a) 2/6
   (b) 3/6
   (c) 1/6
   (d) 4/6
Answer: 2/6 - Outcomes 5,6 -> 2/6.
Q27. Mean of 2,4,6,8,10 is:
   (a) 6
   (b) 5
   (c)7
   (d) 8
Answer: 6 - Sum 30/5.
```

```
Q28. LR: Series 2,4,8,16,? Next term is:
    (a) 32
    (b) 24
    (c) 18
    (d) 20
Answer: 32 - Multiply by 2.
Q29. Sets: If |A|=20, |B|=15, |A \cup B|=28, then |A \cap B| is:
    (a) 7
    (b) 6
    (c) 8
    (d) 0
Answer: 7 - |A \cup B| = |A| + |B| - |A \cap B|.
Q30. Calculus: derivative of x^2 is:
    (a) 2x
    (b) x
    (c) x^3
    (d) 1
Answer: 2x - d/dx x^2 = 2x.
Q31. Simple interest on 1117 at 5 percent for 3 years equals:
    (a) 167
    (b) 184
    (c) 150
    (d) 267
Answer: 167 - SI = P^*r^*t/100 = 1117^*5^*3/100 = 167.
Q32. Sum of first 6 natural numbers is:
    (a) 21
    (b) 20
    (c) 22
    (d) 36
Answer: 21 - Use n(n+1)/2.
Q33. If A:B = 3:4 and B = 40, find A.
    (a) 30
    (b) 35
    (c) 25
    (d) 60
Answer: 30 - A/B = r1/r2 -> A = B*(r1/r2).
Q34. Compound interest on 4803 at 8 percent for 3 years (annual) equals:
    (a) 1247.4
    (b) 1372.14
```

(c) 1122.66 (d) 1347.4

```
Answer: 1247.4 - CI = P[(1+r)^n - 1].
Q35. Matrix: det([5]) equals:
    (a) 5
    (b) 1/5
    (c) 0
    (d) -5
Answer: 5 - Determinant of 1x1 is the element.
Q36. Probability: For fair die, probability of getting number greater than 4 is:
    (a) 2/6
    (b) 3/6
    (c) 1/6
    (d) 4/6
Answer: 2/6 - Outcomes 5,6 -> 2/6.
Q37. Mean of 2,4,6,8,10 is:
    (a) 6
    (b) 5
    (c)7
    (d) 8
Answer: 6 - Sum 30/5.
Q38. LR: Series 2,4,8,16,? Next term is:
    (a) 32
    (b) 24
    (c) 18
    (d) 20
Answer: 32 - Multiply by 2.
Q39. Sets: If |A|=20, |B|=15, |A \cup B|=28, then |A \cap B| is:
    (a) 7
    (b) 6
    (c) 8
    (d) 0
Answer: 7 - |A \cup B| = |A| + |B| - |A \cap B|.
Q40. Calculus: derivative of x^2 is:
    (a) 2x
    (b) x
    (c) x^3
    (d) 1
Answer: 2x - d/dx x^2 = 2x.
Q41. Simple interest on 4822 at 5 percent for 3 years equals:
    (a) 723
```

(b) 795

```
(c) 650
    (d) 823
Answer: 723 - SI = P*r*t/100 = 4822*5*3/100 = 723.
Q42. Sum of first 3 natural numbers is:
    (a) 6
    (b) 5
    (c) 7
    (d) 9
Answer: 6 - Use n(n+1)/2.
Q43. If A:B = 4:5 and B = 50, find A.
    (a) 40
    (b) 45
    (c) 35
    (d) 80
Answer: 40 - A/B = r1/r2 -> A = B*(r1/r2).
Q44. Compound interest on 4983 at 8 percent for 3 years (annual) equals:
    (a) 1294.14
    (b) 1423.55
    (c) 1164.73
    (d) 1394.14
Answer: 1294.14 - CI = P[(1+r)^n - 1].
Q45. Matrix: det([5]) equals:
    (a) 5
    (b) 1/5
    (c) 0
    (d) -5
Answer: 5 - Determinant of 1x1 is the element.
Q46. Probability: For fair die, probability of getting number greater than 4 is:
    (a) 2/6
    (b) 3/6
    (c) 1/6
    (d) 4/6
Answer: 2/6 - Outcomes 5,6 -> 2/6.
Q47. Mean of 2,4,6,8,10 is:
    (a) 6
    (b) 5
    (c) 7
    (d) 8
Answer: 6 - Sum 30/5.
```

Q48. LR: Series 2,4,8,16,? Next term is:

- (a) 32
- (b) 24
- (c) 18
- (d) 20

Answer: 32 - Multiply by 2.

Q49. Sets: If |A|=20, |B|=15, $|A \cup B|=28$, then $|A \cap B|$ is:

- (a) 7
- (b) 6
- (c) 8
- (d) 0

Answer: $7 - |A \cup B| = |A| + |B| - |A \cap B|$.

Q50. Calculus: derivative of x^2 is:

- (a) 2x
- (b) x
- (c) x^3
- (d) 1

Answer: $2x - d/dx x^2 = 2x$.

Section 2 - 30 Case-based questions (answers inline)

Case 1. Finance: Loan 5050 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 162.95.

Case 2. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 3. LPP (simple bounds): Maximize Z=3x+2y with x <= 103, y <= 61, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=103, y=61. Z=3*103+2*61=431.

Case 4. Finance: Loan 5200 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 167.79.

Case 5. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 6. LPP (simple bounds): Maximize Z=3x+2y with x <= 106, y <= 63, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=106, y=63. Z=3*106+2*63=444.

Case 7. Finance: Loan 5350 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 172.63.

Case 8. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 9. LPP (simple bounds): Maximize Z=3x+2y with x <= 109, y <= 64, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=109, y=64. Z=3*109+2*64=455.

Case 10. Finance: Loan 5500 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 177.47.

Case 11. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 12. LPP (simple bounds): Maximize Z=3x+2y with x <= 112, y <= 66, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=112, y=66. Z=3*112+2*66=468.

Case 13. Finance: Loan 5650 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 182.31.

Case 14. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 15. LPP (simple bounds): Maximize Z=3x+2y with x <= 115, y <= 67, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=115, y=67. Z=3*115+2*67=479.

Case 16. Finance: Loan 5800 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 187.15.

Case 17. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 18. LPP (simple bounds): Maximize Z=3x+2y with x <= 118, y <= 69, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=118, y=69. Z=3*118+2*69=492.

Case 19. Finance: Loan 5950 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 191.99.

Case 20. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 21. LPP (simple bounds): Maximize Z=3x+2y with $x \le 121$, $y \le 70$, $x,y \ge 0$. Find optimal Z and point.

Answer: Corner at x=121, y=70. Z=3*121+2*70=503.

Case 22. Finance: Loan 6100 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 196.83.

Case 23. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 24. LPP (simple bounds): Maximize Z=3x+2y with x <= 124, y <= 72, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=124, y=72. Z=3*124+2*72=516.

Case 25. Finance: Loan 6250 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 201.67.

Case 26. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 27. LPP (simple bounds): Maximize Z=3x+2y with x <= 127, y <= 73, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=127, y=73. Z=3*127+2*73=527.

Case 28. Finance: Loan 6400 at 10 percent annual, monthly compounding, tenure 3 years. Compute EMI.

Answer: $EMI = P^*r^*(1+r)^n/[(1+r)^n-1]$ with monthly r=0.008333, n=36. EMI approx 206.51.

Case 29. Statistics: Compute 3-month moving average for series [10, 12, 11, 13, 12].

Answer: 3-MA values: 11.0, 12.0, 12.0.

Case 30. LPP (simple bounds): Maximize Z=3x+2y with x <= 130, y <= 75, x,y >= 0. Find optimal Z and point.

Answer: Corner at x=130, y=75. Z=3*130+2*75=540.