SEGQ

CHALLENGING PROBLEMS IN TRIGONOMETRY

1. (AOPS Precalculus, Problem 4.62, page 156) Find $\sin 18^{\circ}$. (See if you can find both a geometric and an algebraic solution.)
2. (1978 NYSML, Team Contest, $\sharp 8$) The positive root of the equation $4 x^{2}+a x+b=0$ is $\sin 18^{\circ}$. Find the ordered pair of numbers (a, b).
3. Find the exact value of $\sin 18^{\circ} \sin 54^{\circ}$.
4. (1975 AMC 12, \#30) Let $x=\cos 36^{\circ}-\cos 72^{\circ}$. Then x equals:
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $3-\sqrt{6}$
(D) $2 \sqrt{3}-3$
(E) none of these
5. Find the exact value of the expression: $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$.
6. (1974 Timisoara Mathematics Magazine, Romania, Problem 2020) Find the value of $\tan ^{2} 27^{\circ}+2 \tan 27^{\circ} \tan 36^{\circ}$.
7. (2009 Romanian Math Olympiad, Local Round, Vrancea) Prove that $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}$.
8. Show that $\sin 3^{\circ}=\frac{1}{16}[(\sqrt{5}-1)(\sqrt{6}+\sqrt{2})-2(\sqrt{3}-1) \sqrt{5+\sqrt{5}}]$.
9. Show that $\sin 6^{\circ}=\frac{\sqrt{30-6 \sqrt{5}}-\sqrt{6+2 \sqrt{5}}}{8}$ and $\cos 6^{\circ}=\frac{\sqrt{18+6 \sqrt{5}}+\sqrt{10-2 \sqrt{5}}}{8}$.
10. Prove the following identity: $\sin \theta+\sin \left(108^{\circ}-\theta\right)-\sin \left(\theta-36^{\circ}\right)-\sin \left(72^{\circ}-\theta\right)=\cos \left(54^{\circ}-\theta\right)$.
11. (2009 Mandelbrot Competition, Round 1 Individual, $\sharp 8$) Find an acute angle θ for which

$$
\cos \theta=\sin 60^{\circ}+\cos 42^{\circ}-\sin 12^{\circ}-\cos 6^{\circ}
$$

12. (a) Prove that $\cos 18^{\circ}=\frac{1}{4} \sqrt{10+2 \sqrt{5}}$ and $\sin 36^{\circ}=\frac{1}{4} \sqrt{10-2 \sqrt{5}}$.
(b) Find the exact value of $\cos 72^{\circ} \cos 144^{\circ}$.

SEGQ

(c) Find the exact value of $\cos 72^{\circ}+\cos 144^{\circ}$.
13. In the figure below, the points $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} are the vertices of a regular pentagon.

Prove that $\left(A_{1} A_{2}\right)\left(A_{1} A_{3}\right)\left(A_{1} A_{4}\right)\left(A_{1} A_{5}\right)=5$.

This is a particular case of a general result due to Roger Cotes (1682-1716): Suppose that a regular n-gon is inscribed in the unit circle. Let the vertices of the n-gon be $A_{1}, A_{2}, \ldots, A_{n}$. Then the product $\left(A_{1} A_{2}\right)\left(A_{1} A_{3}\right) \ldots\left(A_{1} A_{n}\right)$ is equal to n, then number of sides of the polygon.
14. In the figure below, $A_{1} A_{2} A_{3} A_{4} A_{5}$ is a regular pentagon inscribed in the unit circle and $P(x, 0)$.

Prove that $\left(P A_{1}\right)\left(P A_{2}\right)\left(P A_{3}\right)\left(P A_{4}\right)\left(P A_{5}\right)=1-x^{5}$.

This is a particular case of the following theorem due to Roger Cotes (1682-1716): Suppose that a regular n-gon $A_{1} A_{2} \ldots A_{n}$ is inscribed in the unit circle. Suppose further that A_{1} is the point $(1,0)$ and that P is a point with coordinates $(x, 0)$, where $0 \leq x \leq 1$. Then $\left(P A_{1}\right)\left(P A_{2}\right) \ldots\left(P A_{n}\right)=1-x^{n}$.
15. In triangle $A B C$ with sides a, b, and c and circumradius $R, B=18^{\circ}$ and $C=36^{\circ}$. Prove that $a-b=R$.

SEGQ

16. Let A, B, and C be three acute angles such that $\cos A=\tan B, \cos B=\tan C, \cos C=\tan A$. Prove that

$$
\sin A=\sin B=\sin C=2 \sin 18^{\circ}
$$

17. In $\triangle A B C$, point D is chosen on side $A C$ such that $C D=1$ and $D A=x$, with angles (in radians) as shown.

(a) Prove that x is a solution of the cubic equation $x^{3}+x^{2}-2 x-1=0$.
(b) Prove that $\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}=\frac{1}{8}$.
18. (1963 IMO, $\sharp 5$) Prove that $\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}=\frac{1}{2}$.
19. (2009 Matematica - Modus Vivendi Interstate Competition, Romania, grade 10) Show that $\cos \frac{\pi}{7}$ is a solution of the equation $8 x^{3}-4 x^{2}-4 x+1=0$.
20. (2009 Romanian Math Olympiad, Grade 10, Local Round, Dambovita) Let $z=\cos \frac{\pi}{7}+i \sin \frac{\pi}{7}$.
(a) Determine the real constants a, b, c, d, and e such that $a z+b z^{2}+c z^{3}+d z^{4}+e z^{5}=\frac{1}{1-z}$.
(b) Deduce that $\left|z^{4}+z^{2}+1\right|=\frac{1}{2 \sin \frac{\pi}{14}}$.
(c) Deduce that $6 \sin \frac{\pi}{14}-32 \sin ^{3} \frac{\pi}{14}+32 \sin ^{5} \frac{\pi}{14}=1$.

SEGO

Stanford Math Circle

April 12, 2018
21. (2005 Mandelbrot Competition, Individual Round 4, \#8) Determine the exact value of

$$
\sqrt{\left(2-\sin ^{2} \frac{\pi}{7}\right)\left(2-\sin ^{2} \frac{2 \pi}{7}\right)\left(2-\sin ^{2} \frac{3 \pi}{7}\right)}
$$

22. (AOPS Precalculus, Problem 7.72, page 254) Find a cubic polynomial whose roots are $\cos \frac{2 \pi}{7}, \cos \frac{4 \pi}{7}$, and $\cos \frac{6 \pi}{7}$.
23. Prove that $\csc \frac{\pi}{7}=\csc \frac{2 \pi}{7}+\csc \frac{3 \pi}{7}$.
24. Find the exact value of $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$.
25. (1980 NYSML, Short Answer Questions, $\sharp 6)$ Find the degree measure of the least positive angle θ satisfying $\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ}=\tan \theta$.
26. Find the degree measure of the least positive angle θ such that $\tan 20^{\circ}+\tan 40^{\circ}+\tan 80^{\circ}=8 \sin \theta+\sqrt{3}$.
27. Find the exact value of $\tan ^{2} 20^{\circ}+\tan ^{2} 40^{\circ}+\tan ^{2} 80^{\circ}$.
28. (V. Lidsky at al, Problems in Elementary Mathematics, Moscow, 1973) Simplify the following expression:

$$
\frac{1}{2 \sin 10^{\circ}}-2 \sin 70^{\circ}
$$

29. Simplify the following expression: $\frac{\tan 50^{\circ}-\tan 40^{\circ}}{\tan 10^{\circ}}$.
30. Prove that $\sin 3 \theta=\sin \theta+2 \sin \theta \cos 2 \theta$ and deduce that $\sin \frac{\pi}{9}+2 \sin \frac{\pi}{9} \cos \frac{2 \pi}{9}=\frac{\sqrt{3}}{2}$.
