SEGQ

HOMEWORK 22

Please do the following textbook exercises:

- Geometry for Challenge and Enjoyment
§16.3: page 723: $\sharp 1,2,3,4,5$
Review Problems: page 433: $\sharp 32$
Review Problems: page 738: $\sharp 1,4,7$
- AOPS Introduction to Geometry
§7.3: page 182: $\sharp 7.3 .5,7.3 .6$
§7.4: page 187: $\sharp 7.4 .2,7.4 .4$
§7.5: page 192: $\sharp 7.5 .3,7.5 .4,7.5 .5$
Review Problems: page 168: $\sharp 6.55$
Review Problems: page 202: $\sharp 7.38,7.39$

1. Let $A B C$ be a triangle with $B C=a, A C=b$, and $A B=c$. Let m_{a}, m_{b}, and m_{c} be the lengths of the medians from A, B, and C of triangle $A B C$. Prove that:
(a) $\frac{b+c-a}{2}<m_{a}<\frac{b+c}{2}$.
(b) Prove that in any triangle the sum of the medians is greater than $\frac{3}{4}$ of the perimeter but less than the perimeter.
(c) Prove that $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{4}$.
(d) Prove that $m_{a}=\frac{a}{2}$ if and only if triangle $A B C$ is right with $\angle A=90^{\circ}$.
(e) Prove that $a=b$ if and only if $m_{a}=m_{b}$.
(f) Prove that if $a>b$, then $m_{a}<m_{b}$.
(g) Prove that $a^{2}+b^{2}>\frac{1}{2} c^{2}$, and deduce that $m_{a}^{2}+m_{b}^{2}>\frac{9}{8} c^{2}$.
(h) Let $x=a b+b c+c a$, and let $x_{1}=m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}$. Prove that: $\frac{9}{20}<\frac{x_{1}}{x}<\frac{5}{4}$.
2. (2007 Archimedes Contest, Romania, Grade 7, Final Round, $\sharp 3(b))$ In triangle $A B C, D$ and E are the midpoints of the sides $\overline{B C}$ and $\overline{A C}$, respectively. Prove that if $A D^{2}+2 B E^{2}=3 A B^{2}$, then $B C=A B \sqrt{2}$.
3. In $\triangle A B C, a=1$ and $m_{a}=3$. Find the perimeter of the triangle and determine if the triangle is equilateral, isosceles, or scalene.
4. (1990 Chinese National Middle School Math League, Preliminary Form, $\sharp I I .4) \triangle A B C$ is isosceles with $A B=A C=2$. Let $P_{1}, P_{2}, \ldots, P_{100}$ be 100 points on the side $B C$. Let $m_{i}=A P_{i}^{2}+B P_{i} \cdot P_{i} C$, for $i=1,2, \ldots, 100$. Find the value of $m_{1}+m_{2}+\cdots+m_{100}$.
5. (2015 USC High School Math Contest, $\sharp 23$) In triangle $A B C, A B=7, B C=5$, and $A C=6$. Locate points P_{1}, P_{2}, P_{3}, and P_{4} on $\overline{B C}$ so that the side is divided into 5 equal segments, each of length 1 . Let $q_{k}=A P_{k}$ for $k \in\{1,2,3,4\}$. What is $q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}$?
(A) 142
(B) 150
(C) 155
(D) 160
(E) 168
6. (1980 AMC 12, $\sharp 23$) Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where x is a real number such that $0<x<\frac{\pi}{2}$. The length of the hypotenuse is:
(A) $\frac{4}{3}$
(B) $\frac{3}{2}$
(C) $\frac{3 \sqrt{5}}{5}$
(D) $\frac{2 \sqrt{5}}{3}$
(E) not uniquely determined by the given information
7. (1999 Canadian Open Math Challenge, $\sharp B 3$) Triangle $A B C$ is right angled with its right angle at A. The points P and Q are on the hypotenuse $B C$ such that $B P=P Q=Q C, A P=3$, and $A Q=4$. Determine the length of each side of $\triangle A B C$.

8. (2005 $A M C 10 B, \sharp 10$) In $\triangle A B C$, we have $A C=B C=7$ and $A B=2$. Suppose that D is a point on line $A B$ such that B lies between A and D and $C D=8$. What is $B D$?
(A) 3
(B) $2 \sqrt{3}$
(C) 4
(D) 5
(E) $4 \sqrt{2}$
9. (1977 Alberta High School Math Competition, Canada, $\sharp 17$) The lengths of the medians of a right triangle which are drawn from the vertices of the acute angles are $\sqrt{73}$ and $2 \sqrt{13}$. The length of the third median is:
(A) $5 \sqrt{5}$
(B) $\sqrt{73}+2 \sqrt{13}$
(C) 5
(D) 10
(E) none of these
10. (1983 AMC 12, $\sharp 19$) Point D is on side $C B$ of triangle $A B C$. If $\angle C A D=\angle B A D=60^{\circ}, A C=3$, and $A B=6$, then the length of $A D$ is:
(A) 2
(B) 2.5
(C) 3
(D) 3.5
(E) 4
11. (1998 Canadian Open Math Challenge, $\sharp A 6$) The lengths of the sides of $\triangle A B C$ are 60,80 , and 100 , with $\angle A=90^{\circ}$. The line $A D$ divides triangle $A B C$ into two triangles of equal perimeter. Calculate the length of $A D$.

B

12. (1985 AMC 12, $\sharp 28)$ In $\triangle A B C$, we have $\angle C=3 \angle A, a=27$, and $c=48$. What is b ?

(A) 33
(B) 35
(C) 37
(D) 39
(E) not uniquely determined
13. (Posamentier and Salkind, Problem 10-8, page 47) In a right triangle, the bisector of the right angle divides the hypotenuse into segments that measure 3 and 4. Find the measure of the angle bisector of the larger acute angle of the right triangle.
14. (2008 Canadian Open Math Challenge, $\sharp B 4$) A triangle is called automedian if its three medians can be used to form a triangle that is similar to the original triangle.
(a) Show that the triangle with sides of length 7,13 , and 17 is automedian.
(b) $\triangle A B C$ has side lengths $A B=c, A C=b$, and $B C=a$, with $a<b<c$. If $\triangle A B C$ is automedian, prove that $a^{2}+c^{2}=2 b^{2}$.
(c) Determine, with proof, an infinite family of automedian triangles with integer side lengths, such that no two of the triangles in the family are similar.
15. (1995 China Math Competitions for Secondary Schools) In $\triangle A B C, \angle A=90^{\circ}, \overline{A B} \cong \overline{A C}$, and D is a point on $\overline{B C}$. Prove that

$$
B D^{2}+C D^{2}=2 A D^{2} .
$$

