UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA XII CONGRESO INTERNACIONAL EN CIENCIAS AGRICOLAS. 2009

Necesidades y estrategias de tecnificación del riego en alfalfa (*Medicago sativa L.*) en el valle de Mexicali, Baja California.

Carlos R. Orozco Riezgo¹, Ángel López López²

RESUMEN

En el valle de Mexicali, Baja California, México, el cultivo de la alfalfa (Medicago sativa L.) es el que mayor volumen de aqua consume por unidad de superficie, y siendo el aqua un recurso cada vez más escaso, se planteó el objetivo de determinar las necesidades y estrategias de tecnificación del riego para el cultivo de alfalfa. Para lo anterior se llevó a cabo un análisis considerando los últimos cinco ciclos agrícolas comprendidos del 2003-04 al 2007-08. El análisis consistió en revisar la variación de la superficie y consumo de aqua destinado para el riego de alfalfa en los Módulos de Riego ubicados en la margen derecha del Distrito de Riego 014, Río Colorado, y que corresponden a los Módulos de Riego No. 4, 5, 6, 7, 8, 9A, 9B, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21 y 22. Esta revisión considera la superficie sembrada y el volumen de aqua utilizado para su riego. Los resultados indican que los módulos en donde se destina más agua por unidad de superficie son el 8, 22, 6, y 14, con 22,167 m³, 20,110 m³, 18,616 m³, y 17,385 m³, respectivamente. Así mismo, los módulos de riego que presentan la oportunidad de recuperar mayor volumen de agua por unidad de superficie son en orden decreciente los módulos 22, 8, 6, 14 y 21, con 1005, 944.5, 943.7, 869.0 y 858.0 metros cúbicos por hectárea respectivamente. En relación a la recuperación de volúmenes, los módulos de riego en donde es factible recuperar mayores volúmenes totales de agua son los módulos 10 con 2,573,726, el módulo 22 con 1,964,930, el 9A con 1,773,555, el módulo 16 con 1,759,100 y el Modulo de Riego No. 4 con 1,526,234 metros cúbicos por año. Por otro lado, es factible ahorrar anualmente 21.6 millones de metros cúbicos del agua de riego destinada a la alfalfa. incrementando su eficiencia de riego en 5 por ciento.

Palabras clave: agua de riego, alfalfa, tecnificación del riego.

ABSTRACT

In the Mexicali Valley, in Baja California, México, the alfalfa crop uses more water per surface unit than any other crop, and water being an increasingly limited resource, there is the aim to determine the irrigation modernization needs and strategies for the alfalfa crop. An analysis took place considering the last 5 agricultural cycles comprised from 2003-04 to 2007-08. The analysis process comprised checking the surface variation and water used for the alfalfa crop in Irrigation Modules located in the right side of Irrigation District 014, Colorado River, numbers 4, 5, 6, 7, 8, 9A, 9B, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21 and 22. This analysis takes account of the cultivated surface and the water volume used for irrigation. Results show that the modules where more water is used per surface unit are 8, 22, 6 and 14, with 22,167 m³, 20,110 m³, 18,616 m³, and 17,385 m³ respectively. As for the volume rescue, the irrigation modules where is more viable to recover greater quantities of water are module 10 with 2,573,726, module 22 with 1,964,930, 9A with 1,773,555, module 16 with 1,759,100 and module 4 with 1,5261234 cubic meters per year. In the other hand, is viable to save 21.6 million cubic meters of water intended for alfalfa a year, increasing its irrigation efficiency in 5%

Key words: irrigation water, alfalfa, irrigation modernization.

¹ Estudiante de Doctorado en Ciencias Agropecuarias del Instituto de Ciencias Agrícolas (ICA) de la Universidad Autónoma de Baja California (UABC), oriezgo@gmail.com

² Profesor Investigador del Instituto de Ciencias Agrícolas (ICA) de la UABC. Página internet del ICA: <u>www.ica.mxl.uabc.mx</u>

INTRODUCCIÓN

El Distrito de Riego 014, Río Colorado, comprende los valles de Mexicali, Baja California y de San Luis, Río Colorado, Sonora, México, el cual está conformado por 22 Módulos de Riego y una superficie de 207,795 hectáreas (ha), de éstos, 19 se ubican en la margen derecha del río Colorado y corresponden al valle de Mexicali.

El Distrito cuenta con un volumen total anual del orden de 2,747.592 hectómetros cúbicos (Hm³) por año, de los cuales 1,850.234 (Hm³) son los que están establecidos en el "Tratado sobre distribución de las aguas internacionales de los ríos Bravo del Norte, Colorado y Tijuana", firmado el 03 de Febrero de 1944, en la ciudad de Washington, Distrito de Columbia, E.U.A., por el gobierno de México y el de Estados Unidos de América, y los 897.358 restantes provenientes de aguas subterráneas extraídos por medio de 725 pozos profundos.

Del total de volúmenes de agua aportados por las diferentes fuentes con las cuales cuenta el Distrito, una parte importante no puede ser utilizada por los usuarios, ya que se pierde en las diferentes etapas de operación. Considerando solo los volúmenes concesionados a partir del Tratado y los volúmenes extraídos de la zona antigua de pozos por los usuarios del plan federal, el volumen final disponible bajo las condiciones actuales es del orden de 1,348.717 (Hm³), Cuadro 1.

Cuadro 1. Eficiencia de conducción y parcelaria en el Distrito de Riego 014, Río Colorado.

Responsable	Volumen (Mm³/año)	Eficiencia de conducción (%)	Volumen perdido (Mm³/año)
CONAGUA	1,850.234	96.59	63.093
Dto. de Riego S de RL	1,787.141	92.68	130.818
Módulos de Riego	1,656.322	85.00	248.448
¹ Usuarios	2,077.874	² 57.00	906.358
Volumen perdido en la	1,348.717		

¹Incluye 700 millones de metros cúbicos de agua proveniente del acuífero, menos 30 que se entregan a los centros de población rural.

Debido a la dificultad que conlleva el realizar asignaciones de volúmenes por unidad de superficie a nivel de toma granja, entre otras cosas por la variabilidad entre las eficiencias internas de conducción de cada uno de los módulos de riego, se acordó llevar a cabo la distribución por unidad de superficie con el volumen disponible a nivel de punto de control de Módulo, de esta forma se asignó a cada unidad de superficie; en zona de pozo federal, un volumen de 10,310 m³/ha medidos en la bocatoma del pozo, y en los suelos irrigados con agua de gravedad un volumen de 11,853.4 m³/ha, medidos en el punto de control del Módulo; de esta forma el volumen disponible para cada usuario a nivel de toma granja depende de la eficiencia de conducción interna de cada módulo. El padrón de cultivos en el valle de Mexicali se conforma por 21 cultivos principalmente, de los cuales los más importantes en superficie corresponden al trigo, alfalfa y algodón, de éstos es la alfalfa el que presenta el mayor consumo unitario de agua de riego.

OBJETIVO

Analizar el uso del agua en el cultivo de alfalfa y sus necesidades y estrategias de tecnificación del riego en el valle de Mexicali, Baja California.

MATERIALES Y MÉTODOS

El trabajo se llevó a cabo en los Módulos de Riego del valle de Mexicali, Baja California, según el Consejo Estatal de Población (1992), citado por Orozco (2001) el estado de Baja California se

²Se refiere a la eficiencia obtenida en la parcela.

localiza en la región noroeste de la República Mexicana, en la parte norte de la península y se ubica geográficamente entre los meridianos 117° 06' y 112° 46' de longitud oeste, y entre los paralelos 28° 00' y 32° 43' de latitud norte.

Los citados Módulos son parte del Distrito de Riego 014, Río Colorado, que comprende al valle de Mexicali, B.C., y el de San Luis, Río Colorado, Sonora, y se localiza entre los paralelos 31° 50' y 32° 40' latitud norte y 114° 45' y 115° 40' de longitud oeste del meridiano de Greenwich (INEGI, 1990, citado por Ruíz, 1995).

Para el análisis se consideraron los ciclos agrícolas comprendidos del 2003-04 al 2007-08. El proceso de análisis consistió en revisar la variación de la superficie y consumo de agua destinado para el riego de alfalfa en los Módulos de Riego ubicados en la margen derecha del Distrito de Riego 014, Río Colorado, y que corresponden a los número 4, 5, 6, 7, 8, 9A, 9B, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21 y 22. Esta revisión considera la superficie sembrada y el volumen de agua utilizado para su riego.

RESULTADOS Y DISCUSIÓN

En cinco ciclos agrícolas correspondientes de 2003-04 al 2007-08, la superficie promedio sembrada en alfalfa en el valle de Mexicali es de 27,084.80 ha con un consumo anual de 433.248 Hm³, según la información reportada por CONAGUA relativa al agua que se utiliza a nivel parcelario. De acuerdo al análisis, se observa que los Módulos que mayor lámina bruta de riego destinan para su riego son el 8, 22, 6, y 14, con 221.67 cm, 201.10, 186.16 cm, y 173.85 cm respectivamente (Cuadro 2).

Cuadro 2. Superficie promedio sembrada de alfalfa en los Módulos de Riego del Valle de Mexicali.

Módulo de	Superficie	Vol. de agua	Lámina de l	Riego (cm)
Riego	(ha)	(miles de m³)	Neta	Bruta
4	1,880.60	30,524.690	150.65	150.92
5	1,077.80	16,489.210	167.15	170.01
6	932.60	17,601.763	177.41	186.16
7	1,858.00	26,094.948	131.93	131.99
8	1,040.80	18,890.127	205.73	221.67
9 A	2,141.00	35,471.093	164.11	171.28
9 B	1,699.40	27,335.634	165.79	168.11
10	3,738.40	51,474.516	134.17	138.92
11	968.00	14,106.220	134.38	145.80
12	1,355.20	21,743.670	146.31	160.45
14	1,315.80	22,874.580	155.41	173.85
15	1,771.00	25,892.200	127.57	146.20
16	2,127.00	35,181.980	161.67	165.41
17	1,000.60	15,723.590	147.41	157.14
18	462.60	5,942.460	116.53	128.46
19	613.80	9,233.020	118.04	150.42
20	82.00	1,075.240	114.63	131.13
21	1,066.00	18,294.000	149.19	171.61
22	1,954.20	39,299.000	189.19	201.10
Total	27,084.80	433,247.940	162.94	178.15

Si en el Distrito de Riego se realizaran obras de tecnificación del riego que permitan ahorrar agua en un 5 por ciento puede ser factible recuperarse un volumen promedio del orden de los 795 metros cúbicos por hectárea.

Este volumen fluctúa en los Módulos de Riego, así se tiene que en el Modulo 22 es posible recuperar mayor cantidad de agua con un volumen del orden de 1,005 metros cúbicos por hectárea, seguido de los módulos 6, 8, 14 y 21, con volúmenes que varían de 944 hasta 858 metros cúbicos de agua por hectárea. El resto de los módulos y el volumen factible de recuperar se presentan en el Cuadro 3.

Cuadro 3. Volumen de agua total a recuperar al disminuir su consumo con tecnificación del riego, mediante el incremento de la eficiencia parcelaria del Módulo de Riego.

Módulo de	Volumen	Volumen de agua total a recuperar (miles de metros cúbicos)			
Riego	1%	2%	3%	4%	5%
4	305.247	610.494	915.741	1,220.988	1526.234
5	164.892	329.784	494.676	659.568	824.460
6	176.018	352.035	528.053	704.071	880.088
7	260.949	521.899	782.848	1,043.798	1,304.747
8	188.901	377.803	566.704	755.605	944.506
9 A	354.711	709.422	1,064.133	1,418.844	1,773.555
9 B	273.356	546.713	820.069	1,093.425	1,366.782
10	514.745	1,029.490	1,544.235	2,058.981	2,573.726
11	141.062	282.124	423.187	564.249	705.311
12	217.440	434.870	652.310	869.750	1,087.180
14	228.750	457.490	686.240	914.980	1,143.730
15	258.920	517.840	776.770	1,035.690	1,294.610
16	351.820	703.640	1,055.460	1,407.280	1,759.100
17	157.240	314.470	471.710	628.940	786.180
18	59.420	118.850	178.270	237.700	297.120
19	92.330	184.660	276.990	369.320	461.650
20	10.750	21.500	32.260	43.010	53.760
21	182.940	365.870	548.810	731.740	914.680
22	392.990	785.970	1,178.960	1,571.940	1,964.930
Total	4,332.500	8,664.930	12,997.460	17,329.930	21,662.400

Por otro lado, como resultado del análisis realizado se tiene que el volumen de agua a recuperar por hectárea es distinto para cada Módulo de Riego, así se tiene que en el Modulo de Riego 22 es posible recuperar mayor cantidad de agua con un volumen del orden de 1,005 metros cúbicos por hectárea, seguido de los módulos 6, 8, 14 y 21, con volúmenes que varían de 944 hasta 858 metros cúbicos de agua por hectárea (Cuadro 4).

Cuadro 4. Volumen de agua por hectárea a recuperar, al disminuir su consumo con tecnificación del riego en el Módulo de Riego.

Módulo de	Volumen de agua por hectárea a recuperar (metros cúbicos)				
Riego	1%	2%	3%	4%	5%
4	162.314	324.627	486.941	649.254	811.568
5	152.989	305.979	458.968	611.958	764.947
6	188.739	377.477	566.216	754.954	943.693
7	140.446	280.893	421.339	561.786	702.232
8	188.901	377.803	566.704	755.605	944.506
9 A	165.675	331.351	497.026	662.701	828.377
9 B	160.855	321.709	482.564	643.418	804.273
10	137.691	275.383	413.074	550.765	688.457
11	145.725	291.451	437.176	582.902	728.627
12	160.000	321.000	481.000	642.000	802.231
14	174.000	348.000	522.000	695.000	869.000
15	146.000	292.000	439.000	585.000	731.000
16	165.000	331.000	496.000	662.000	827.000
17	157.000	314.000	471.000	629.000	786.000
18	128.000	257.000	385.000	514.000	642.000
19	150.000	301.000	451.000	602.000	752.000
20	131.000	262.000	393.000	525.000	656.000
21	172.000	343.000	515.000	686.000	858.000
22	201.000	402.000	603.000	804.000	1,005.000

Implementación de tecnologías y sus costos

Dado que el ahorro de agua debe ser a nivel parcelario a fin de que la dotación a la que tiene derecho cada uno de los 16,649 usuarios registrados en el ciclo agrícola 2007-2008 en el Distrito de Riego 014, les sea suficiente para sus cultivos, se debe fomentar la tecnificación del riego, así como incrementar la eficiencia de la conducción del agua para riego.

Alguna de la infraestructura recomendada es la siguiente:

- a) Riego por aspersión de avance frontal.
- b) Riego por aspersión y microaspersión.
- c) Riego por goteo superficial.
- d) Riego por goteo subterráneo (subirrigación).
- e) Riego por compuerta.
- f) Entubado de regaderas.
- g) Nivelación de tierras.
- h) Uso del SIMARBC.

Cuadro 4. Costos unitarios (por hectárea) de infraestructura tecnificación del riego.

Sistema de Riego	¹ Costo / Hectárea (pesos)	
Aspersión por Avance frontal	28,300.00	
Aspersión	23,900.00	
Micro-aspersión	18,200.00	
Goteo superficial	27,750.00	
Goteo subterráneo (sub-irrigación)	40,500.00	
Compuertas	37,000.00	
Entubado de regaderas	30,150.00	
Nivelación	1,600.00	
Uso del SIMARBC	250.00	

¹Los costos presentados son de referencia ya que varían según las condiciones del suelo, tipo de cultivo, disponibilidad de agua y superficie a tecnificar, principalmente. Se considera un tipo de cambio de \$ 13.50 pesos por dólar de los EU.A.

En relación a los costos de los sistemas de riego presurizados o de gravedad, debido a que intervienen un sin número de consideraciones para cada predio y cultivo en el Cuadro 4, se presentan los costos de referencia.

CONCLUSIONES

- 1. Con respecto al rescate de volúmenes de agua por unidad de superficie sembrada de alfalfa, los módulos de riego que presentan la oportunidad de recuperar mayor volumen de agua son en orden decreciente los módulos 22, 8, 6, 14 y 21, con 1005.000, 944.506, 943.693, 869.000 y 858.000 metros cúbicos por hectárea respectivamente.
- 2. En relación al rescate de volúmenes, los módulos de riego en donde es factible recuperar mayores volúmenes totales de agua son los módulos 10 con 2,573,726, el módulo 22 con 1,964,930, el 9A con 1,773,555, el módulo 16 con 1,759,100 y el módulo 4 con 1,526,234 metros cúbicos por año.
- 3. Es factible ahorrar anualmente 21.6 millones de metros cúbicos del agua de riego destinada a la alfalfa, incrementando su eficiencia de riego en 5 por ciento.

BIBLIOGRAFIA

- Comisión Nacional del Agua, 2008. Estadística de superficie y volúmenes utilizados para riego de cultivos, ciclos 2003-2004 al 2007-2008, del Distrito de Riego 104, Río Colorado, México.
- Orozco, R. C. R., 2001. Balance Salino Cualitativo del Distrito de Riego 014, Río Colorado. Tesis de Maestría en Ciencias en Uso y Manejo del Agua de Riego en Zonas Áridas. Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California. México.
- Ruíz, C. J. S., 1995. Aprovechamiento de Agua Residual Tratada para Riego de Trigo (*Triticum vulgare* L.) en el valle de Mexicali, B. C. Tesis de Maestría en Ciencias en Uso y Manejo del Agua de Riego en Zonas Áridas. Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California. México.
- Secretaría de Agricultura y Recursos Hidráulicos (SARH), 1984. Centro de Investigaciones Agrícolas del Noroeste. Campo Agrícola Experimental Valle de Mexicali. Plan de Investigación Agrícola para el Distrito de Riego 014, Río Colorado (Problemática, diagnóstico y propuesta de investigación). México.

Withers, B., Vipond, S., 1986. El Riego: diseño y práctica. Editorial Diana.