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Context: RTSync Paratemporal Simulation Development

» Paratemporal simulation algorithms for stochastic simulations with the goal of
decreasing time to execute very high branching, long running models for statistically
significant outcome distributions.

» Tree Expansion simulation algorithms that can achieve 10 speed-up and scalability of
stochastic systems while increasing knowledge of outcome distributions.

» ParaDEVS (Paratemporal Simulation in DEVS) integrated in RTSync’s Discrete Event
System Specification (DEVS)-based Simulation platform and Model-Based System
Engineering Software for ease of user model development with new performance
algorithms.

» ParaDEVS execution on high performance computational architectures on the cloud
and in novel DEVS-chip environments where exploration of scenario spaces in parallel can
further reduce execution time.



Agenda

» ParaDEVS Modeling and Simulation Concept of Operation

» Background and Problem Statement
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= Expansion Control via Merging
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DEVS-based Framework For Paratemporal Simulations.

Clone simulations for reuse, enabling parallel execution

Employ homomorphism-based node merging to control tree expansion
Execute trees in parallel to get earlier results sooner
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ParaDEVS Modeling and Simulation (M&S) Concept of Operation
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Background and Problem Statement



Tree Expansion Concepts

» Coin Tossing Binary Tree
» Depth vs. Breadth
» Node Merging to Manage Tree Growth



Tree Expansion Problem Statement

» DEVS process with a corresponding equivalent expansion tree
= DEVS := Discrete Event System Specification, Theory of Modeling and Simulation

» Examples include
= Air Battle
= Baseball team performance
= Stock trading strategy
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Example: Coin Tossing Binary Tree

» Expansion tree with two possible branches at each stage (biased coin)
= Nodes are named by the paths taken to reach them
= Can grow this tree in any manner, e.g., depth first, vs breadth first
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Binary Example Tree Cont’d

» Now let each of the leaves have an outcome value (macrostate) associated with it
= For example, this could be the number of ones in its name (e.g., number of heads)
- Trajectory (1,0,1) = 2 heads

» Outcome distribution: all the outcomes with associated path probabilities

» Outcome indicators
= Expectation obtained via accumulating outcomes weighted by path probabilities

= Mode (most likely outcome and its probability), unlikely events, tracking different history dependent
branches (critical events, chained events) as ===>

determined by the modeler’s objectives === Experimental Frame
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Depth First (Monte Carlo stochastic simulation)

» Path generated down to last level (sample of the outcome, random variable)
= example, three coin tosses are made and the number of ones is obtained as the outcome for that path.

» Number of samples is determined by the desired statistical significance of the
estimate, which is the numerical average of the outcomes produced

Sample path

Level 1

Level 2

» Inefficient: repeat trajectories, re-simulates the same events, ineffective at studying
low probability events
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Breadth First

» In a paratemporal simulation this average is obtained by accumulating all the outcomes
weighted by the associated path probabilities

" E(X) = Zieleafs bixi
— p; = leaf path probability, x; is "total outcome" attributed to leaf

» Yields results that are exact at the cost of having to explore potentially exponentially
large number of paths

Level 1

Level 2
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Combinatorial explosion limits feasibility
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Issues with Handling Expansion Trees

» Accuracy:

= Stochastic sampling simulations require large amounts of time to generate enough trajectories to attain
statistical significance

» Large Search Space:

*= The event space path are often deep and wide resulting from combinatorial explosion of branching
arising from multiple choice points

» Goal: to leverage Paratemporal simulation method to address these issues

Tree Expansion
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Node Merging to Control Tree Growth

» Question: Can we cut down on the size of the tree from 2¢? (d:= depth)
» Answer: Yes by leveraging the concept of homomorphism

» Under the value function already stated 10 and 01 are equivalent and can be merged
together to generate one representative node instead

Tree Tree Expansion

Expansion with node

without merging
mergmg

O/ N % Homomorphism
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mzerf :gm:,:::.;:'a increase in nodes to linear
conditions expansion in depth without

affecting the result
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Homomorphism Accounting

» When we merge nodes
= Account for probability mass of combination, given by Py, = Yicieqrs Di
= Qutcome of merged leafs are all equal, so a Representative takes on that value

Representative

P1+P2

Outcome of Node
1 = outcome of
Node 2

RTSync
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Binary Tree Reduction

» In this example we go from 2¢ to d+1 leafs
= Exponential = linear

Level 1

Level 2

Merging based
on # of heads
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Homomorphism merging can reduce tree expansion from exponential to polynomial

Origin in congruence relations for automata

And~formal languages Equivalence Relation
and equivalent states:

! —>

States are equivalent if:

0,0 —_— 1,0 .
01 == 1) Their outcomes are equal
0,0,1 . . .
010 01,1 2) their children are equivalent
under the same branching
0.0.0.1 “0,0,1,0 0,1,0,0 ® 1011 1100 1101 111
0011 0101 0110 01,1,1 1001 1010 0
(x1,x2,x3,x4) with the same sum (x1+x2+x3+x4) K

are grouped into the same equivalence class

1
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Homomorphic Tree Merging Underlies Pascal’s Triangle

Compute the number of combinations of Ls and Rs in strings of length, n

LSS [Tl — (5

R 1 1
L /\R
YR NN N/ \R
a) Tree based on all [L 1 2 1
strings on {L,R} LRRL RR L
L R / R
] L\R L NPZAN: g .
LLL LLR,LRL LRR,RLR, RRR 1 I 3 3 1
(RLL RRL
b) Tree of c) Pascal’s Triangle

equivalence class with

. equivalence classes
representative LLR

cardinality (size) of
equivalence class

with representative
LLR

» Pascal’s computation merges nodes that have the same number of R’s and L’s

* This reduces the computation of all combinations from exponential, to polynomial
(square), in the number of places (depth of the tree)

« The number of classes at depth nis n+1 = tree grows as O (n?)

RTSync
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ParaDEVS use-cases and Implementation

» Stochastic Chemical Reaction Models

» Baseball outcome prediction

» DEVS-based Machine Learning for Financial Investment
» Implementation Architecture
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Applications of ParaDEVS

» Stochastic Chemical Reaction Models

20



Example: Dimer Creation Chemical Reaction Model

» For small numbers of molecules, fluctuations around macro values are large.

» The Gillespie algorithm is used fluctuations are important.
* Dimer Example:

Molecules A and B react to form a dimer, AB (forward reaction)
AB dimer dissociates into molecules A and B (backward reaction)
Reaction rate constant of a single A reacting with a single B is kp
Reaction rate constant of an AB dimer breaking up is kg

Forward Reaction
nA
Kp
nA = number A molecules .
Backward Reaction

nB = number B molecules

nAB

/ kB A{num‘berAB compounds
nB
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Gillespie Algorithm Simulation of Dimer Reaction Model

Converts macro reaction rates to probabilities:

Reaction Rates
Rate of dimer formation = kp x nA x nB
Rate of dimer dissociation = kg x nAB
Total rate of reaction = Ryx = (kp x nA x nB) + (kg x nAB)

Probability of Reaction Occurring

P(A+B) — AB = kp xnA x nB
Rtot
AB
P(AB) — A+B = 22X"48 4 b iB) LAB

Rtot
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Tree Expansion for Chemical Reaction Example

» At each event, the imminent reaction is either Formation or Dissociation
» Branch in corresponding direction, with time expansion (via discretization)

Dissociation is
imminent

Formation is
imminent

ny — 2: Nap + 2
t += 26t5

nA—Z:nAB + 2

Na:MNyp
t += 15t, t += 16t,

» Keep track of state (NA,NAB) and accumulated probabilities
» Get distribution at any depth {averages of NA and NAB, and min, max)

* Need to merge to get fast results
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Node Generation and Equivalence

Binary tree expansion:

® One branch is forward reaction
> nA=nA-1 (nB=nB-1)
> nAB =nAB + 1

® One branch is backward reaction

> nA=nA +1 (nB=nB+1)
» nAB =nAB -1

® Equivalence:
® Merge nodes if they have the same states, nA=n'’A, ...

(note NA+NB = constant under conservation of matter)



Sample Results: Molecule numbers, Simulation runtimes

Initial NA = NB =10, NAB = 0, Values at t= 20, NA = 2.28 vs 2 calculated equilibrium
Initial NA = NB = 2, NAB = 10-2, Results = nA = 2.28 vs 2 calculated equilibrium

NumA (Min,Avg,Max) NumAB(Min,Avg,Max)

12 12

Calculated
Equilibrium
=2

10
10

o 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 \/\/\/\/\/\N
0
=——MinA  =——AvgA MaxA 1 2 3 4 5 & 7 & 8 10 11 12 13 14 15
10 e VI INAB s AT AB MaxAB

Increase in Standard Deviation
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Merging results in
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Nodes vs
Exponential

0.25

0.2

Avg of 5
new nodes
(slope)

0.15

Although Max- Min, is
large, variance around
avg is small

0.1

0.05

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 2 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21

== Nodes == Node Increment
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ParaDEVS Implementation

» Baseball Simulation Example

» lllustrates ParaDEVS Simulation Architecture

» Parallel Simulation of Tree Expansions
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Implementation of ParaDEVS

» MS4 Me Two-Level Approach
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MS4 Me ParaDEVS Implementation

* Problem: Construct ParaDEVS model for Baseball Game

« Approach: Simulate stochastic game given one team’s batter hit avgs
« Goal: Compute expected runs given a batting order

* Methods Used: No Merging, Homomorphic Merging, Incremental Merging

Baseball Model

Out ¢ Homer

Bases\
Double Emptry/ Single

Triple

Homer Homer

- ) L Homer - ¥_Out
Man on Man on
Second / First
Out Tiple . Triple o
Single Double Man on single Single Homer
i Single Double
Third » Bases
r Triple /

Out * _Triple
- Double
Out

P T Triple
Maan Homer
v First and Single Triple
Third < ! Man on singlé
Out Triple

Double Double Homer > First and/
Single Man on wond <

Second N Double _Out

@ hci)r:i "
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Baseball Example

» Nodes track successive
* model states
= outs,
* inning,
= and runs scored

Root
<+ <+ — 4 -3 — —+
Out Single Double Triple Houmer Walk
Player 1 at bat 1 7 ! 008 M 4
—x ™ 'y e T I
||
Player 2 at bat
RS TR T WV B N N s W G g A a .
[ [ 0 s D | I |
0 § ] 1 H ) 0 5 ] | N L . ‘ -
W 3] o) wl o | [\ 0! un n | | o [\ s - ~ ‘.m | o | ”
¥ ¢ 9 8. 9.3 o 1 O ) by 2
0 s n 1 I :‘ 0 :-. .l.l f 'I: :‘ ',‘l:! v::‘. ‘ It.lo K.E: .:lu
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ParaDEVS Simulator Architecture

Upper Level

-5tarfing point for tree structure

MakeGenTree |
-Initializes root node of the tree

o,

Calls Advancel eafFront

AdvanceleafFront
-Advances tree structure by creating
new scenarios for each existing node

Fleturn-.s the ==t node with

Calls SimulateF
alls aimulate T'Z.""" the new results

SimulateFrom
-Updated game state attributes base one
of the scenarios
-Generates new leaf node representing
. updated game scenario

1[‘ Returns Experimantal
. Result

2alls Global3tateTransition l

Global StateTransition
-Bridge between upper and lower level

Returns Simulation

| Results

control
-Creates an instance of a new at bat

Calls Expenment \'f

.

Lower Level

oy

}._

."'.

Experiment
-Executes the simulation of an at bat

!

Define Model
-Sets up simulation environment
-Defines components and interaction

. Sets Simulation

i Results to & Variable
SetParams
-Sets parameters for simulation {outs,
runs, etc.)
-Sets current state of the game to
. simulate from
GetAndAnalyzeResults

-Gets results from Game model
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Integration of Baseball Game with AdvancelLeafFront

» Each node represents a batter along with the state of the game
= State of the game = {runners on base, runs scored, outs, etc.}
= Branching corresponds to random variable outcome of the batter
= After branching, a new simulator is initialized and started with the state of the game following previous

batter outcome.

Homerun

Batter/State

Double

)

Batter/State

—
)

Batter/State

—
)

Batter/State
| —
——

Batter/State

—
.

Batter/State

—

~ BaseCM

L FirstBase i
(EmptY) o tFirstOccupied

Model for the state of a
game
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Simulator Scheme

» Nodes track successive model states, outs, inning, and runs scored
» Nodes are expanded and simulated along their branches

Parent
Leaf DEVS
Simulator

Action

@ DEVS (0,1,1,2,
Simulator 0))

Target Computation: Expected Number of Runs = Xicjeqrs PiTUNS;

32



Baseball Tree Expansion

y
O S D T H W
.081 .025 .009 .0004 .004 .017

o S D T H w.
.003 .0009 .0003 .00002 0002 .0006

(0] S D T H w
.068 .021 .008 .0003 .0034 .014

) Out Single Double Triple Homer Walk

Player 1 .657 137 .045 .005 .042 114
il el

Player 2 .593 .182 .066 .003 .030 126

Tree expansion continues down to 3 outs and 9 innings
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ParaDEVS-Baseball

» Utilized paratemporal simulation methods to simulate baseball game outcomes

» Each state has the following parameters:
= Hit type: out, single, double, triple, homerun, walk
= Current batter
= Current number of runs
= Current number of outs
= Base configuration: man on first, second and third, bases loaded, etc.
= Probability of current players hit outcome
= Probability of node occurring

» 9 players in lineup, so 9 different batters with their individual hit probabilities

Batter Ot Single Double Triple Homer Walk

Will Smiith 0.6574 01367 0.0450 0.0052 00415 0.1142
Freddis Fresman 05532 0.1822 0.0e54 0.0028 0.0257 0.1257
Gavim Lux 0.6539 0.17:2 0.0425 0.0142 0.0127 0.09538
Tres Turner 0.6572 0.1841 0.0552 0.0057 0.0257 .03
Wiz Municy 0.6708 0.0832 0.03E9 0.0018 0.0372 0.1681
iChris Taylor 0.6560 01123 0.0551 0.00e5 0.0220 0.1079
Cody Bellinger 0.7345 0.1035 0.0451 0.0055 0.0345 0.0727
haookie Betts 0.6604 0.1139 0.0626 0.0047 0.0548 0.0985

Justin Turner 0.6504 0.1523 0.0e77 0.0000 0.0244 0.1053



Full Game Simulation

» Incorporated inning aspect of nodes to specify the current inning in which the node
is created

» Nodes are terminated when 9 innings are reached or when a node’s probability of
occurring is less then .000001 =1 x 10-5

» Once the last batter hits, the lineup is sent back to index 0 (first batter)
» When 3 outs is reached, the inning advanced by 1, and the bases are cleared

[ 1st Batter ] ces [9th Batter]

if (index >= lineup.length)
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Computing all 9! Team Lineup’s Expected Run Production

» Graph displays each individual lineups expected runs ranked from best to worst
» Best Lineup: 7.8397

» Worst Lineup: 3.9969

» Best lineup is 1.9608 times better than the worst lineup

» Computation time: 25227988 ms =7 hrs 0 min 27 s

Expected Runs for 9! Lineup Combinations
12

10 4

Expected Runs
[=2]

T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000
Rank of Lineup
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Distribution of Players Bar Chart

» Bars show the probability that the respective player is in each lineup position
(color) for the top 10% of lineups

» Probability is measured by number of times player occurs in given lineup position

» Better hitters have larger blue, orange, green, and red bars which represent
positions at the beginning of the lineup

Probability Distributions of Players in Top 10% at Each Position

1.0 -
0.8
Il Position 1
I Position 2
0.6 - B Position 3
E Emm Position 4
2 mmm Position 5
8 mmm Position 6
= 0.4 [ Position 7
B Position 8
[ Position 9
0.2
0.0 -

Jeff Gump
Matt Ewing

0
o
=
]
0
0
=]
o

Players

Adam Boomer
lan Wainer
Austin Owens
Sebastian Mantle
Matt Jackson
Boomer Sumpter



Implementation of ParaDEVS

» Parallel Simulation Architecture via DEVS Streaming
Framework
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DEVS Streaming Framework for Interoperable Distributed Simulation

Kafka
Message
Bus

DEVS
Coordinator

DEVS Coupled Model

DEVS
Protocol
Messages

C++
Simulator

DEVS Federate

DEVS Simulatm

Services

ParaDEVS Model T
l

Docker

DEVS
Messages

Java
Simulator

DEVS Federate
“"DEVS Simulator
Qvuces
1

ParaDEVS Model el_‘
l :

Docker

Internet / Cloud
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Parallel Simulation of Multiple Tree Expansions

» Ensemble of sub-trees focusing on selected regions of scenario space with high
resolution
= Mode: take highest probability branches
= Mean: span greater range with less resolution
= low probability events
= Goal: get earlier results sooner

/. 6827% \

| 95.45% |
| ]
‘ / 99.73% ‘

,u—'30 ,u—'20 H—0 u H+O u-F2cr ,u+'3o




Applications of ParaDEVS

» DEVS-Based Machine Learning for Financial Investment

41



DEVS-Based Machine Learning for Financial Investment

Environment

Actions (buy/sell) I:I |:| I:I @

Reward (cash)

Agent
(Trader)

Observations (balance)

From Trader behavior (Agent) to DEVS simulation model:
inde

Real Agent

World - t@ % Buy/Sell
My TV :>M—»

t
s < DEVS >
DEVS Simulation
AR

[S)
DEVS v
2{ Model [tT—’—T—>t
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DEVS Machine Learning Simulation Approach

-

New State

\ 4

\_

~

DEVS Agent
Policy
Learning Algo
(QLearning)
'y /Acti
Reward Stat

4[ DEVS Environment }7

bn &

[(%)

a,

a3

Q(Su:-ao)

Q(Sl]'.lal)

Q(sg,2,)

Q(s¢,23)

Q(sy,29)

Q(sy,ay)

Q(sy,a,)

Q(s,23)

DEVS-RL Output : Action policy that tells an agent what to do given a state s
» Given some state “s” , the policy tells us what action “a” to take

« We use Q table to devise the policy do this

Observations

 DEVS-RL produces an approximation of Q so our policy can also be
seen as an approximate policy

 We use ParaDEVS to hedge our policy

Barbieri Emanuele. Discrete Event Modeling and Simulation of Large Markov Decision Process : Application to the
Leverage Effects in Financial Asset Optimization Processes. Performance [cs.PF]. Université Pascal Paoli, 2023. En




ParaDEVS Financial Application: ParaFinance

1 Para DEVS: Stochastic policy does in fact need to consider tree as it's doing
multiple actions with non zero probabilities

O Evaluation Tree

Greedy Policy Tree Path

Stochastic Policy Tree Path

o
/// \‘ .
//’ == e
/ o o
yra 1
-
uo )
0,0,0 " 0.0.1
~ (nln ‘
e ‘® 4 ®

{ N “000 ‘“"” 001" o:uo Y% lluul.I.O.l LLL hib)

0,0,1,1 0101‘“' "l'"“l'“'o"
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Experimental Study

We motivate the following test to verifty how the current model performs
against down market conditions for four separate NASDAQ stocks as well as
it’s ability to handle bounce back

Period of Time: April 2nd - April 14
Stocks: GLD sPoR Gold shares

VA = | B 1D Display .,  Studies ., Events o

1. Apple .
2. GLD
3. SPDR S&P 500
4. WMT
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Incremental Homomorphic Merging: Single stock trading

» Actions: Buy,Sell,Hold 1 stock

* Probabilities for Actions derived from Q-table (RL
Machine Learning)

* Expand tree to estimate investment value at the end of
3 days

Stock Trading Tree

(0, 0, 0) Root Node
Prob: 0.00

Day 1
(1,0,0) (0,1,0) (0,0,1)
Prob: 0.14 Prob: 0.14 Prob: 0.14

(2,0,0) (1,1,0) (1,0,1)
Prob: 0.02 Prob: 0.04 Prob: 0.04 Prob: 0.14 Prob: 0.02_Prob: 0.04._Prob: 0.14_Prob: 0.02_Prob: 0.14

(3,0,0) (2,1,00 (2,0.1) (L,0,0) (2,000 (1,20 (11,1 10,1,00 (1,1,0) (1,0,2) (0,0,1) (1,0,1) ~{0,0.0) (0,30 (0,2 1) (0,2,0) (0,1,2) (0,1 1) (0,0, 3)~(0,0,2)
Prob: 0.00 Prob: 0.01 Prob: 0.01 Prob: 0.13 Prob: 0.03 Prob: 0.01 Prob: 0.02 Prob: 0.13 Prob: 0.05 Prob: 0.01 Prob: 0.13 Prob: 0.05 Preb: 0.28 Prob: 0.00 Prob: 0.01 Prob: 0.03 Prob: 0.01 Prob: 0.05 Prob: 0.00 Prob: 0.03

(1,0,0) (0,2,0) (0,1,1) (0,1,0) (0,0,2) 10,0,1) Day 2

Q-Table defining the transition probabilities

L5 B A * B\ |

o

uy Sell Hold

0.06652"0.907657"0.025823
0.0088670.013949"0.977185
0.045624"0.03756170.916815
0.060281"0.018281"0.921438
0.923601:0.023231 0.053168

0.968004 0.021886 0.01011

Y ¥ 1 YT N ¥

r
r
r
r
r

Expected Investment Value
Day 1: 2182.45
Day 2: 4058.04
Day 3: 5688.50

Day 3

0.5

0.4

e
w

Ajngeqold

0.2

0.1

0.0
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Example: S&P Investment Profit Optimal and Average Over time

SP Profit

SP - Start 4/2/2025

200
150
100

50

0

50 0 4 6 8 10 14
\\:3</ \

Profit

-150
-200
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Evolution of S&P Profit Probability Distribution over time

SP PMF (Q" — Q, Max over 13 days /= Max over 1-12)

Probability Distribution of Profit, depth=2

T
0.8 4
rministic Profit = -25.490
0.7
0.6
0.5 )
> by
E
'é 0.4
&
0.3
0.2
0.1 1
0.0 - T T T T
=25 -20 -15 -10 -5
. . Profit
Deterministic Profit (P=1): -25.490
Weighted Mean: -20.192
Standard Deviation: 10.343
Mode (Most Probable Profit): -25.490
P Max Profit: -0.000 (P=0.208)
RT)ync Min Profit: -25.490 (P=0.792)

BINghamron UNIVErsiy | MArchzyz
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ParaDEVS Simulation Results

Comparing Time of Simulations

63 == No Merging == HoM IHoM
No Merging
40 k
0
@ | | |
i Homomorphic Merging
(=R
@
w
1h)
E 20
=0
Incremental Homomorphic Merging
0 -
0 500 1000 1500 2000

Length of Simulation (days)



Summary: Comparison with Monte Carlo Simulation

ParaDEVS Monte Carlo Simulation

Slower (can take years for com

F i h
aster (minutes/hours) plex models)

Higher (tree expansion Lower (random sampling introd
Accuracy e
method) uces variability)
C djust model struct
Flexibility an @ .jus rhodet structure Requires restarting for changes
dynamically
Optimized for large-scale
Computational Efficiency Can be resource-intensive

simulations
Seamlessly integrates with

Integration with Al Al & ML

Limited Al integration

Speed
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