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Context: RTSync Paratemporal Simulation Development

Paratemporal simulation algorithms for stochastic simulations with the goal of 

decreasing time to execute very high branching, long running models for statistically 

significant outcome distributions.

Tree Expansion simulation algorithms that can achieve 10x  speed-up and scalability of 

stochastic systems while increasing knowledge of outcome distributions.

ParaDEVS (Paratemporal Simulation in DEVS) integrated in RTSync’s Discrete Event 

System Specification (DEVS)-based Simulation platform and Model-Based System 

Engineering Software for ease of user model development with new performance 

algorithms.

ParaDEVS execution on high performance computational architectures on the cloud 

and in novel DEVS-chip environments where exploration of scenario spaces in parallel can 

further reduce execution time.
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Agenda

ParaDEVS Modeling and Simulation Concept of Operation

Background and Problem Statement

▪ Tree Expansion Concepts

▪ Expansion Control via Merging

Examples of ParaDEVS Use-Cases

▪ Chemical reaction, 

▪ Baseball game outcome

▪ Financial stock trading 

▪ Air Battle

▪ Kill Chain

 Implementation Overview

▪ Two-level design, Simulation schema, 

Summary

Q&A
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DEVS-based Framework For Paratemporal Simulations.

Branching Tree Structure

Random 
Variable

Draw

DEVS Markov
Models

Savie 
model

State for 
reuse

Enable
Parallel 

Execution

o Clone simulations for reuse, enabling parallel execution

o Employ homomorphism-based node merging to control tree expansion

o Execute trees in parallel to get earlier results sooner

Formalize



5

ParaDEVS Modeling and Simulation (M&S) Concept of Operation
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Background and Problem Statement
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Tree Expansion Concepts

Coin Tossing Binary Tree

Depth vs. Breadth

Node Merging to Manage Tree Growth
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Tree Expansion Problem Statement

DEVS process with a corresponding equivalent expansion tree

▪ DEVS := Discrete Event System Specification, Theory of Modeling and Simulation

Examples include
▪ Air Battle

▪ Baseball team performance

▪ Stock trading strategy 

Leafs with associated 

accumulated  probability 

and outcome

Action with associated 

probability and outcome as 

determined by DEVS 

simulator
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Example: Coin Tossing Binary Tree

Expansion tree with two possible branches at each stage (biased coin)

▪ Nodes are named by the paths taken to reach them 

▪ Can grow this tree in any manner, e.g., depth first, vs breadth first
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Binary Example Tree Cont’d

Now let each of the leaves have an outcome value (macrostate) associated with it

▪ For example, this could be the number of ones in its name (e.g., number of heads)

− Trajectory (1,0,1) = 2 heads

Outcome distribution: all the outcomes with associated path probabilities

Outcome indicators

▪ Expectation obtained via accumulating outcomes weighted by path probabilities

▪ Mode (most likely outcome and its probability), unlikely events, tracking different history dependent 

branches (critical events, chained events) as ===>

                    determined by the modeler’s objectives ==➔ Experimental Frame

0 1 1 12 2 2 3
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Depth First (Monte Carlo stochastic simulation)

Path generated down to last level (sample of the outcome, random variable)

▪ example, three coin tosses are made and the number of ones is obtained as the outcome for that path. 

Number of samples is determined by the desired statistical significance of the 

estimate, which is the numerical average of the outcomes produced

 Inefficient: repeat trajectories, re-simulates the same events, ineffective at studying 

low probability events

Sample path
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Breadth First

 In a paratemporal simulation this average is obtained by accumulating all the outcomes 

weighted by the associated path probabilities

▪ 𝐸 𝑋 =  σ𝑖∈𝑙𝑒𝑎𝑓𝑠 𝑝𝑖𝑥𝑖

− 𝑝𝑖 ≔ 𝑙𝑒𝑎𝑓 𝑝𝑎𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑥𝑖  𝑖𝑠 "total outcome" attributed to leaf

Yields results that are exact at the cost of having to explore potentially exponentially 

large number of paths

Combinatorial explosion limits feasibility
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Issues with Handling Expansion Trees

Accuracy:

▪ Stochastic sampling simulations require large amounts of time to generate enough trajectories to attain 

statistical significance 

Large Search Space:

▪ The event space path are often deep and wide resulting from combinatorial explosion of branching 

arising from multiple choice points

Goal: to leverage Paratemporal simulation method to address these issues
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Node Merging to Control Tree Growth 

Question: Can we cut down on the size of the tree from 2𝑑? (d≔ 𝑑𝑒𝑝𝑡ℎ)

Answer: Yes by leveraging the concept of homomorphism

Under the value function already stated 10 and 01 are equivalent and can be merged 

together to generate one representative node instead

Homomorphism
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Homomorphism Accounting

When we merge nodes
▪ Account for probability mass of combination, given by P𝑟𝑒𝑝 = σ𝑖∈𝑙𝑒𝑎𝑓𝑠 𝑝𝑖

▪ Outcome of  merged leafs are all equal, so a Representative takes on that value

Node 1

P1

Node 2

P2

Representative

P1+P2Outcome of Node 

1 = outcome of 

Node 2
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Binary Tree Reduction

 In this example we go from 2𝑑 to d+1 leafs

▪ Exponential ➔ linear

0 1 1 12 2 2 3

EMPTY

0 1

10 2

10 2 3

.6

.36

.216

.4

.16

.064

.48

.288 .432

Merging based 

on # of heads
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Homomorphism merging can reduce tree expansion from exponential to polynomial

3 4

3

3

3

0

0,0
0,1

0,1,0 0,1,1

0,0,0,1

0,0,1

0,0,1,0

0,0,1,1

0,1,0,0

0,1,0,1 0,1,1,0 0,1,1,1
1,0,0,1 1,0,1,0

1,0,1,1 1,1,0,0 1,1,0,1 1,1,1

,0

1,1,1,1

1

Origin in congruence relations for automata 

And formal languages

1,0==

(x1,x2,x3,x4) with the same sum (x1+x2+x3+x4)                    are 
are grouped into the same equivalence class

Equivalence Relation 

and equivalent states:

States are equivalent if:

1) Their outcomes are equal

2)  their children are equivalent

 under the same branching
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Homomorphic Tree Merging Underlies Pascal’s Triangle

• Pascal’s computation merges nodes that have the same number of R’s and L’s

•  This reduces the computation of all combinations from exponential, to polynomial 

(square), in the number of places (depth of the tree)

• The number of classes at depth n is n+1  ➔ tree grows as O (n2)

Compute the number of combinations of Ls and Rs in strings of length, n
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ParaDEVS use-cases and Implementation

Stochastic Chemical Reaction Models

Baseball outcome prediction

DEVS-based Machine Learning for Financial Investment

 Implementation Architecture
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Stochastic Chemical Reaction Models

Applications of ParaDEVS
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Example: Dimer Creation Chemical Reaction Model

For small numbers of molecules, fluctuations around macro values are large. 

The Gillespie algorithm is used fluctuations are important.

• Dimer Example:

• Molecules A and B react to form a dimer, AB (forward reaction)

• AB dimer dissociates into molecules A and B (backward reaction)

• Reaction rate constant of a single A reacting with a single B is kD

• Reaction rate constant of an AB dimer breaking up is kB

Forward Reaction

nA

nB

nAB

kD

kB

Backward Reaction

nAB = number AB compounds

nA = number A molecules
nB = number B molecules
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Gillespie Algorithm Simulation of Dimer Reaction Model

Reaction Rates

Probability of Reaction Occurring

Converts macro reaction rates to probabilities:
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Tree Expansion for Chemical Reaction Example

At each event, the imminent reaction is either Formation or Dissociation

Branch in corresponding direction, with time expansion (via discretization)

• Keep track of state (NA,NAB) and accumulated probabilities

• Get distribution at any depth {averages of NA and NAB, and min, max) 

• Need to merge to get fast results 
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Node Generation and Equivalence

Binary tree expansion:

• One branch is forward reaction
➢ nA = nA – 1 (nB = nB – 1)

➢ nAB = nAB + 1                

• One branch is backward reaction
➢ nA = nA  + 1 (nB = nB + 1)

➢ nAB = nAB – 1

• Equivalence:

• Merge nodes if they have the same states, nA=n’A, …

(note NA+NB = constant under conservation of matter)
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Sample Results: Molecule numbers, Simulation runtimes

Initial NA = NB = 10, NAB = 0, Values at t= 20, NA = 2.28 vs 2 calculated equilibrium

Initial NA = NB = 2, NAB = 10-2, Results = nA = 2.28 vs 2 calculated equilibrium

Calculated 

Equilibrium 

= 2 

Nodes Node Increment

Merging results in 

Linear Increase in 

Nodes vs 

Exponential 
Avg of 5 

new nodes  

(slope)
Although Max- Min, is 

large, variance around 

avg is small
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ParaDEVS Implementation

Baseball Simulation Example

 Illustrates ParaDEVS Simulation Architecture

Parallel Simulation of Tree Expansions
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MS4 Me Two-Level Approach

Implementation of ParaDEVS
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MS4 Me ParaDEVS Implementation

• Problem: Construct ParaDEVS model for Baseball Game 

• Approach: Simulate stochastic game given one team’s batter hit avgs

• Goal: Compute expected runs given a batting order

• Methods Used: No Merging, Homomorphic Merging, Incremental Merging

Baseball Model
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Baseball Example

Player 1 at bat

Player 2 at bat

Nodes track successive 

▪ model states 

▪ outs, 

▪ inning, 

▪ and runs scored
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ParaDEVS Simulator Architecture
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Integration of Baseball Game with AdvanceLeafFront

 Each node represents a batter along with the state of the game

▪ State of the game = {runners on base, runs scored, outs, etc.}

▪ Branching corresponds to random variable outcome of the batter

▪ After branching, a new simulator is initialized and started with the state of the game following previous 

batter outcome. 

Model for the state of a 

game
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Simulator Scheme

Action

Parent 

Leaf
DEVS 

Simulator

Child 

Leaf

Double

(1,1,1,0,

0)
DEVS 

Simulator

(0,1,1,2,

0)

Target Computation: 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑢𝑛𝑠 =  σ𝑖∈𝑙𝑒𝑎𝑓𝑠 𝑝𝑖𝑟𝑢𝑛𝑠𝑖

Nodes track successive model states, outs, inning, and runs scored

  Nodes are expanded and simulated along their branches
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O
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Baseball Tree Expansion
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Out

.657

Single

.137

Double
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.068

S

.021

D

.008
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.0003

H

.0034

W

.014

Out Single Double Triple Homer Walk

Player 1 .657 .137 .045 .005 .042 .114

Player 2 .593 .182 .066 .003 .030 .126

O

.025

Tree expansion continues down to 3 outs and 9 innings
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ParaDEVS-Baseball

Utilized paratemporal simulation methods to simulate baseball game outcomes

Each state has the following parameters:

▪ Hit type: out, single, double, triple, homerun, walk

▪ Current batter

▪ Current number of runs

▪ Current number of outs

▪ Base configuration: man on first, second and third, bases loaded, etc.

▪ Probability of current players hit outcome

▪ Probability of node occurring

9 players in lineup, so 9 different batters with their individual hit probabilities
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Full Game Simulation

 Incorporated inning aspect of nodes to specify the current inning in which the node 

is created

Nodes are terminated when 9 innings are reached or when a node’s probability of 

occurring is less then .000001 = 1 x 10-5

Once the last batter hits, the lineup is sent back to index 0 (first batter)

When 3 outs is reached, the inning advanced by 1, and the bases are cleared

1st Batter 9th Batter…

if (index >= lineup.length)
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Computing all 9! Team Lineup’s Expected Run Production

Graph displays each individual lineups expected runs ranked from best to worst

Best Lineup: 7.8397

Worst Lineup: 3.9969

Best lineup is 1.9608 times better than the worst lineup

Computation time: 25227988 ms = 7 hrs 0 min 27 s
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Distribution of Players Bar Chart

Bars show the probability that the respective player is in each lineup position 

(color) for the top 10% of lineups

Probability is measured by number of times player occurs in given lineup position

Better hitters have larger blue, orange, green, and red bars which represent 

positions at the beginning of the lineup
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Parallel Simulation Architecture via DEVS Streaming 

Framework

Implementation of ParaDEVS
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DEVS Streaming Framework for Interoperable Distributed Simulation

ParaDEVS Model ParaDEVS Model
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Parallel Simulation of Multiple Tree Expansions

Ensemble of sub-trees focusing on selected regions of scenario space with high 

resolution

▪ Mode: take highest probability branches 

▪ Mean: span greater range with less resolution 

▪ low probability events

▪ Goal: get earlier results sooner
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DEVS-Based Machine Learning for Financial Investment

Applications of ParaDEVS
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From Trader behavior (Agent) to DEVS simulation model: 

DEVS-Based Machine Learning for Financial Investment

t

Buy/Sell
Agent

t

inde
x 1

t

inde
x 2

Real 

World

DEVS 
Model

t

e
v
t

t

e
v
t t

e
v
t

DEVS 
SimulationDEVS 

Modeling 

and 

Simulation

Agent 
(Trader)

Environment

Actions (buy/sell)

Reward (cash)

Observations (balance)
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DEVS Agent

DEVS Environment

New State
Policy

Learning Algo 
(QLearning)

Reward
Action & 
State

DEVS Machine Learning Simulation Approach

Q-Table

DEVS-RL Output : Action policy that tells an agent what to do given a state s 

• Given some state “s” , the policy tells us what action “a” to take

• We use Q table to devise the policy do this

Observations

• DEVS-RL produces an approximation of Q so our policy can also be 

seen as an approximate policy

• We use ParaDEVS to hedge our policy

Barbieri Emanuele. Discrete Event Modeling and Simulation of Large Markov Decision Process : Application to the 

Leverage Effects in Financial Asset Optimization Processes. Performance [cs.PF]. Université Pascal Paoli, 2023. En



44

ParaDEVS Financial Application: ParaFinance
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Experimental Study 
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Incremental Homomorphic Merging:  Single stock trading

Q-Table defining the transition probabilities• Actions: Buy,Sell,Hold 1 stock

• Probabilities for Actions derived from Q-table (RL 

Machine Learning)

• Expand tree to estimate investment value at the end of 

3 days
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Example: S&P Investment Profit Optimal and Average Over time

Optimal = Highest valued action chosen each day

Average  = Probability-based action chosen each day



48

Evolution of S&P Profit Probability Distribution over time
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ParaDEVS Simulation Results

No Merging

Homomorphic Merging

Incremental Homomorphic Merging
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Summary: Comparison with Monte Carlo Simulation

Feature ParaDEVS Monte Carlo Simulation

Speed Faster (minutes/hours)
Slower (can take years for com

plex models)

Accuracy
Higher (tree expansion

 method)

Lower (random sampling introd

uces variability)

Flexibility
Can adjust model structure 

dynamically
Requires restarting for changes

Computational Efficiency
Optimized for large-scale

 simulations
Can be resource-intensive

Integration with AI
Seamlessly integrates with 

AI & ML
Limited AI integration
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