Exam Formulae

Formulae that you need to know...

 Everyone needs to know.

For right-angled triangles, label the hypotenuse c \& the other sides a and b Pythagoras' theorem $a^{2}+b^{2}=c^{2}$
For right-angled triangles, label the hypotenuse h, the side adjacent to the angle a \& the side opposite the angle o $\boldsymbol{\operatorname { s i n }} \theta=\frac{o}{h} \quad \boldsymbol{\operatorname { c o s }} \theta=\frac{a}{h} \quad \boldsymbol{\operatorname { t a n }} \theta=\frac{o}{a}$
speed $=\frac{\text { distance }}{\text { time }}$
Compound interest Amount $=P\left(1+\frac{r}{100}\right)^{n}$ where P is principal amount r is interest rate n is times interest applied

$$
\text { Probability } \quad P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

where $P(A)$ is the probability of outcome A $P(B)$ is the probability of outcome B

Higher only.
In any triangle $A B C$ where a, b and c are the lengths of the sides

Area of triangle $=1 / 2 a b \sin C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

The quadratic formula

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Probability

$$
P(A \text { and } B)=P(A \text { given } B) P(B)
$$

where $P(A)$ is the probability of outcome A $P(B)$ is the probability of outcome B

