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Plant Safety
Asset Reliability
Process Automation

Real-Time KPI Dashboards
Asset Failure Prediction
Remote/Connected Plants

Predictive Operations
Asset Performance Analytics

Operational Performance
Metrics



Al-ML Use Cases

1

Predictive Production
Operations Forecasting

(Predicted Models) (What-If Models)

Operations Integrity
(loT)

4 ) 6

Operational Logs
Analytics

(Simulation)

Defects Detection Asset Performance

(Deep Learning)

(Failure Analytics)
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Business Benefits

Real-time
Decision
Making
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Improve Augment
Asset Operational
Availability Adjustments

Targeted
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Outcomes
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Increase Increase
Operational Asset
Visibility Productivity

Faster Defects
Detection



Al-ML Use Cases

Operations Integrity
(loT)

Defects Detection
(Deep Learning)

Predictive
Operations

(Predicted Models)

Operational Logs
Analytics

(Simulation)
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Production
Forecasting

(What-If Models)

Asset Performance
(Failure Analytics)




Operations Integrity

Business Challenges /i\

» Remote visibility and
monitoring to measure and
control well parameters,
specifically, mud properties,
pump pressure, casing
pressure and gains &
losses is critical

» Managing voluminous data
visualization and data
integration with G&G and
drilling systems is a
challenge

» Requirement of analytics at
the edge or at a local
network for sub-surface
drilling operation

= Support a flexible
implementation framework to
perform advanced drilling
data analytics

} = System should help to

perform 2D/3D visualizations
& analytics to understand
current down hole conditions
through valuable insights
rather than raw data as
needed for effective
collaboration

» System should allow real-
time, micro-batch as well
batch wise visualization as
well as analytics — from a
time + depth perspective

Enables real-time visibility
through a driller’s dashboard

Provides real-time 2D/3D
visualization

Enables visibility to real-time
measurement of well
parameters, such as mud
properties, pump pressure,
casing pressure and gains &
losses

Ability to visualize and predict
current or possible NPT
conditions

Ability to predict lithology and
export trained models as a
service
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Real time data usage for
drilling decisions

Better Data QC & improving
the quality of real time data
through seamless data
sharing

Better operational
collaboration in operations
related to drilling, well
planning, design &
construction

Increased efficiencies in
drilling data analytics, e.q.,
20+% improvements in
Drilling NPT
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Drilling Operations
Insights
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Al-ML Use Cases

Operations Integrity
(lIoT)

Defects Detection
(Deep Learning)

Predictive
Operations

(Predicted Models)

Operational Logs
Analytics

(Simulation)
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Production
Forecasting

(What-If Models)

Asset Performance
(Failure Analytics)
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Predictive Operations

Business Challenges /i\

= Non-productive time (NPT)
Is the actual time (in man
hrs) when drilling
operations do not occur

NPT accounts for 20% -
30% of the total drilling
operations costs and NPT
due to “waiting” factor

Significant waiting delays
(in days) for data relays
from the drilling and logging
sites to the Rig Automation/
Analytics Center and vice
versa

Adopt On-demand,
predictive and agile data-
to-insights (d2i) platform

Solution should enable
combined data-to-insights
process (d2i) to manage
both structured and
unstructured data sources

Platform should allow
instant analysis to identify
lithology patterns,
hydrocarbon zones or
deviations in the sub-
surface zones

Uses prediction models for
sub-surface characteristics,
drilling plans, production,
etc.

Supports application of
AI/ML algorithms for NPT
reduction strategies and
lithology prediction

Monitors events to avoid
drilling surprises/incidents

Uses prediction and
forecasting models for sub-
surface characteristics,
drilling plans, production,
etc.
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= Solution can be plugged in
as part of Digital Oil Field
(DOF) strategy for an
upstream oil & gas firm

= Solution leads up to
reduction of NPT
(nonproductive time)
factor “waiting time” by
20%+

= Customers can analyze
several terabytes of data
from multiple E&P data
clusters instantly
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Lithology Prediction

NBUTES960_GR, NBUTES960_RHOB and NBUTES960_NPHI_LS ...

00 - NBUTES960_NPHI_LS
0.41
@ -
3.00 -
Portal o ——— 002
o
z
Visualisation Layer 2l LVALUE / LVALUE
. ‘9. @ 200- @ COAL/COAL
. Shi A ~~a'zg & @ I COAL/GAS TREND
d Lithology Ty E 4 COAL/GYPSUM
o - @ A COAL/SALT
i . z
JDBC/ODBC/RServe +yt +ableau 1.00 - : gggLT; SE:ADL:E(;I'CI;\‘:-ND
eSS S s E s S S S e Sl e e SR \ An?lym:s and Statistics Layer B GAS TREND | GAS TREND
1 | tithology Formation Top || Drilling data || Production log Openhole | ' H,0.0! & 223 Iiiﬁﬁiilff -
- |Pattern Analysis Prediction analysis analysis log analysis | . 0.00 - T T T T T T ; } : GAS TREND / SHALE TREND
VMimem el mme  egE — r e e — == /. m AL 000 2000 4000 6000 8000 10000 12000  140.00  160.00
! NBUTES960_GR
JDBC/ODBC Calculation/Analytical Views
Appliance DB Layer
[ Data . Data 8 ANA il Coumns
Erocessing [Tab'esJ ["'“"J &odelinsJ o Applicarice ﬁ = Rows
< i ark. Lvalue
e e i s - ooy Prediction m o
r ~ 7750 M GASTREND
| —;[ LAS Adapters WITS Adapaters SEGY Adapaters ]4— I e pgthon LAS-JSON/XML/CSV P t :;vzsw
. 7y | WITS0-JSON/XML/CSV s . P AT oo B seaLE TREND
i %
|
I la§ Well Logs E: il | K f uf.t
; Production Di Seismic | 785 o 0 %%,
! Store | =+ | Spliced -’{I’ransfomled Data s | Data source Layer ) ’.
—e—— ——— D WD G WSSy ¥ o8 o7 S
L
8
# python "‘“'la\ t
7950 v‘ -~
° ® o

Nbutes960 Rhob

CONFIDENTIAL. ALL RIGHTS RESERVED.

..w~

12

Nbutes360 Gr



Lithology Prediction
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Al-ML Use Cases

Operations Integrity
(lIoT)

Defects Detection
(Deep Learning)

Predictive
Operations

(Predicted Models)

Operational Logs
Analytics

(Simulation)
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Production
Forecasting

(What-If Models)

Asset Performance
(Failure Analytics)
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Production Forecasting

Business Challenges /i\

= Accurate forecasting of oll = Support a flexible = Solution addresses the = Real time production

production rate in
petroleum wells

Limited to time series and
based on heuristics and
statistics

Existing regression models
are biased and less
scalable

implementation framework
to perform advanced
production data forecasting

System should help to
perform on-demand
visualizations and analytics
to understand production
conditions and update
based on what-if scenarios

System should include
neural network models for
close-fit predictions

need for real-time
dashboards for crude oil
production forecasting
using machine learning &
deep learning models

Handles real-time
production data for forecast
modelling

Includes open API based
adapters, analytical views,
automation scripts &
dynamic dashboards
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performance KPI
dashboards

* On-demand reports to
summarize trends/outliers
for liquid rate, pressure,
gas-oil ratio, water cut,
water injected, etc.

= Enables visibility to asset
performance, prediction of
production declines &
production optimization
(flow rate forecasting)
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roduction Forecasting
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Al-ML Use Cases

Operations Integrity
(lIoT)

Defects Detection
(Deep Learning)

Predictive
Operations

(Predicted Models)

Operational Logs
Analytics

(Simulation)
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Production
Forecasting

(What-If Models)

Asset Performance
(Failure Analytics)
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Defects Detection

Business Challenges /i\

= Accurate predict defects on
steel sheets and visually
localize the defect

= Support a flexible
implementation framework
to perform advanced outlier
detection

= Existing models are biased
and less scalable. } = System should help to
Requirement of deep perform on-demand
learning models for faster visualizations and analytics
interpretations, as well to understand defects
support to perform what-if
models = System should include

neural network models for

* |n case a default is close-fit predictions

detected, solution should

also showcase the

detected defaults on the

image itself
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= Solution is built using an

open-source computer
vision platform to perform
remote inspections and
detect deviation from
specifications (as defects)
during production

Defects detection using
CNN (Convolution Neural
Networks). Also, this
solution leverages transfer
learning using pretrained
ResNet50 model

Solution generates a pixel-
wise prediction to localize
the defect on the image
using a Res-U-net
architecture

= Solution shows the exact
position of the detected
defaults on the image
(image segmentation)

» App-based streaming on
inspected items is shared
in real-time to the QC
team at production site

= Solution also supports for
3D and AR (Augmented
Reality) models

19



Defects Detection
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Al-ML Use Cases

Operations Integrity
(lIoT)

Defects Detection
(Deep Learning)

Predictive
Operations

(Predicted Models)

Operational Logs
Analytics

(Simulation)
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Production
Forecasting

(What-If Models)

Asset Performance
(Failure Analytics)
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Operational Logs
Analytics

Business Challenges /i\

= Lack of a single platform = Adopt On-demand, = Automation Scripts for * On-demand/ 24*7 real-

that enables E&P data and
logs analysis from multiple
logs spread across
structured as well as
unstructured data sets

Constraints in
implementation of an
integrated framework to
perform advanced 2D/3D
visualization as well as
AlI/ML based model
predictions across E&P logs
from various operations

predictive and a ready
implementation framework

The architecture should
allow to perform advanced
2D/3D visualization as well
as Al/ML based model
predictions

Platform should support
application of Al/ML
algorithms for forecasting
and prediction of
operational interventions

Routine tasks like Splicing,
Merging, Data
Transformation

Supports in splicing and
merging of LAS files. eases
measurement and control
of sub-surface parameters
(relates to well log, drilling,
production, reservoir)

Manages to perform 2D/3D
visualizations and generate
specific domain models to
understand ground
conditions
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time/batch mode availability
for multiple logs
visualization as well
interpretation by G&G team

In-built AI/ML algorithms as
a service for prediction
modelling on logs in their
native formats

Get the solution plugged in
as part of Digital Oil Field
(DOF) strategy of the firm

22



Analytics
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Al-ML Use Cases

Operations Integrity
(lIoT)

Defects Detection
(Deep Learning)

Predictive
Operations

(Predicted Models)

Operational Logs
Analytics

(Simulation)
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Production
Forecasting

(What-If Models)

Asset Performance
(Failure Analytics)
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Asset Performance

Business Challenges /i\

» Failures in production linked

» Risk of ESP failures can be = Solution using an analytics = QOperators get more insight

assets such as Electrical
Submersible Pumps (ESPSs)
can disrupt production and
operator cash flows

Costs of replacing an ESP
and its associated
production losses can be
enormous

If failures could be predicted
with enough advance notice,
then the ESP can be pulled
during scheduled
maintenance

greatly reduced by Al/ML
combined with 10T enabled
surveillance system

Operators need an early-
warning system of ESP
performance degradation in
the form of a probabilistic
and predictive maintenance
model

Solution should support
What-If, Reliability
Analysis, Mean Time to
Failure (MTTF) Prediction,
Failure Distribution

workbench for asset
performance analysis
specific to asset health
insights

Identifies fault behavior
using pattern recognition

Generates Asset Health
prediction reports at regular
intervals

Accurately predicts future
failures using predictive
analytics on a real-time
series of data

CONFIDENTIAL. ALL RIGHTS RESERVED.

on the root causes of
performance anomalies as
well as how to mitigate and
manage them until the
well's next planned
shutdown

Improved ESP uptime and
availability resulted in the
reservoir’s ultimate

profitability
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