
Prepared exclusively for Claus Pallisgaard Beck



What Readers Are Saying About The Agile Samurai

Jonathan Rasmusson has written a book for today that captures the

excitement and value of what agile software development meant to us

at the time of the Agile Manifesto. Look to the master, follow the mas-

ter, walk with the master, see through the master, become the master.

Ron Jeffries

Coauthor, the Agile Manifesto, www.XProgramming.com

I love books by practitioners who have their hands thoroughly dirty.

Jonathan has years of real-world experience with agile, and his book

is filled with valuable knowledge. If you’re new to agile or want to

improve your practice of it, you’d do well to learn from this book.

Joshua Kerievsky

Founder and CEO, Industrial Logic, Inc.

The Agile Samurai is the book I wish I’d read before I started my last

agile project. The chapters on agile project inception alone are worth

the price of admission.

Michael J. Sikorsky

CEO, Robots & Pencils, Inc.

Maybe a few stodgy, grumpy types will turn their noses up at the fun

tone. The truth is they don’t deserve a book this good.

Ian Dees

Software Engineer

The Agile Samurai is exactly the book you and your team need to

understand and deliver using the agile method. It makes the concepts

tactile for everyone from the highest level of leadership to the people

pushing forward on the front lines.

Jessica Watson

Business Analyst, Shaw Communications

Prepared exclusively for Claus Pallisgaard Beck



The Agile Samurai helps you steer an agile project from start to finish.

No agile toolkit would be complete without this book.

Wendy Lindemann

Agile Program Manager

In this book, JR distills his many years of experience in delivering

agile projects, with his characteristic warmth, wisdom, and humor. It

should be on the reading list for any team looking to adopt agile soft-

ware delivery. The section on project inceptions alone is required read-

ing for anyone about to undertake a new project (or rescue one that’s

already in trouble!).

Dan North

Senior Developer, DRW

This book was written with the insight and clarity that can only come

from a person who has proved these techniques in the trenches. I

have read many books on agile software development; this is by far

the most engaging, easy to read, and just plain fun of them all. Get

ready to sharpen that sword!

JP Boodhoo

Founder, Develop with Passion

If you want a guide to agile projects backed by real-world success

stories and battle scars, read this book. JR brings us an easy and

humorous read that covers almost any question you may have on

agile and how to make it work. His content is sincere, simple yet com-

prehensive, realistic, and honest about common pitfalls teams will

likely encounter. A great read!

Eric Liu

Lead Consultant, ThoughtWorks

Prepared exclusively for Claus Pallisgaard Beck



Prepared exclusively for Claus Pallisgaard Beck



The Agile Samurai
How Agile Masters Deliver Great Software

Jonathan Rasmusson

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Claus Pallisgaard Beck



Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

Copyright © 2010 Jonathan Rasmusson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-58-1

ISBN-13: 978-1-934356-58-6

Printed on acid-free paper.

P2.0 printing, February 2011

Version: 2011-2-8

Prepared exclusively for Claus Pallisgaard Beck

http://www.pragprog.com


Contents
Acknowledgments 11

It’s Good to See You 12

How to Read This Book . . . . . . . . . . . . . . . . . . . . . . 13

Fun Bits with Purpose . . . . . . . . . . . . . . . . . . . . . . . 13

Online Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I Introducing Agile 15

1 Agile in a Nutshell 16

1.1 Deliver Something of Value Every Week . . . . . . . . . 17

1.2 How Does Agile Planning Work? . . . . . . . . . . . . . 19

1.3 Done Means Done . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Three Simple Truths . . . . . . . . . . . . . . . . . . . . 23

2 Meet Your Agile Team 26

2.1 How Are Agile Projects Different? . . . . . . . . . . . . . 27

2.2 What Makes an Agile Team Tick . . . . . . . . . . . . . 29

2.3 Roles We Typically See . . . . . . . . . . . . . . . . . . . 34

2.4 Tips for Forming Your Agile Team . . . . . . . . . . . . 44

II Agile Project Inception 47

3 How to Get Everyone on the Bus 48

3.1 What Kills Most Projects . . . . . . . . . . . . . . . . . . 49

3.2 Ask the Tough Questions . . . . . . . . . . . . . . . . . 49

3.3 Enter the Inception Deck . . . . . . . . . . . . . . . . . 51

3.4 How It Works . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The Inception Deck in a Nutshell . . . . . . . . . . . . . 52

Prepared exclusively for Claus Pallisgaard Beck



CONTENTS 8

4 Seeing the Big Picture 54

4.1 Ask: Why Are We Here? . . . . . . . . . . . . . . . . . . 55

4.2 Create an Elevator Pitch . . . . . . . . . . . . . . . . . . 57

4.3 Design a Product Box . . . . . . . . . . . . . . . . . . . . 61

4.4 Create a NOT List . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Meet Your Neighbors . . . . . . . . . . . . . . . . . . . . 65

5 Making It Real 72

5.1 Show Your Solution . . . . . . . . . . . . . . . . . . . . . 73

5.2 Ask What Keeps Us Up at Night . . . . . . . . . . . . . . 74

5.3 Size It Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Be Clear on What’s Going to Give . . . . . . . . . . . . . 81

5.5 Show What It’s Going to Take . . . . . . . . . . . . . . . 87

III Agile Project Planning 93

6 Gathering User Stories 94

6.1 The Problem with Documentation . . . . . . . . . . . . 94

6.2 Enter the User Story . . . . . . . . . . . . . . . . . . . . 98

6.3 Elements of Good User Stories . . . . . . . . . . . . . . 99

6.4 How to Host a Story-Gathering Workshop . . . . . . . . 108

7 Estimation: The Fine Art of Guessing 114

7.1 The Problem with High-Level Estimates . . . . . . . . . 114

7.2 Turning Lemons into Lemonade . . . . . . . . . . . . . 116

7.3 How Does It Work? . . . . . . . . . . . . . . . . . . . . . 122

8 Agile Planning: Dealing with Reality 130

8.1 The Problems with Static Plans . . . . . . . . . . . . . . 131

8.2 Enter the Agile Plan . . . . . . . . . . . . . . . . . . . . . 133

8.3 Be Flexible About Scope . . . . . . . . . . . . . . . . . . 137

8.4 Your First Plan . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 The Burn-Down Chart . . . . . . . . . . . . . . . . . . . 148

8.6 Transitioning a Project to Agile . . . . . . . . . . . . . . 151

8.7 Putting It into Practice . . . . . . . . . . . . . . . . . . . 152

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=8


CONTENTS 9

IV Agile Project Execution 160

9 Iteration Management: Making It Happen 161

9.1 How to Deliver Something of Value Every Week . . . . . 162

9.2 The Agile Iteration . . . . . . . . . . . . . . . . . . . . . . 162

9.3 Help Wanted . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4 Step 1: Analysis and Design: Making the Work Ready . 165

9.5 Step 2: Development: Do the Work . . . . . . . . . . . . 171

9.6 Step 3: Test: Check the Work . . . . . . . . . . . . . . . 174

9.7 Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10 Creating an Agile Communication Plan 180

10.1 Four Things to Do During Any Iteration . . . . . . . . . 181

10.2 The Story-Planning Meeting . . . . . . . . . . . . . . . . 181

10.3 The Showcase . . . . . . . . . . . . . . . . . . . . . . . . 183

10.4 Plan the Next Iteration . . . . . . . . . . . . . . . . . . . 183

10.5 How to Host a Mini-Retrospective . . . . . . . . . . . . . 185

10.6 How Not to Host a Daily Stand-Up . . . . . . . . . . . . 187

10.7 Do Whatever Works for You . . . . . . . . . . . . . . . . 188

11 Setting Up a Visual Workspace 192

11.1 Uh-oh...Here Come the Heavies! . . . . . . . . . . . . . 192

11.2 How to Create a Visual Workspace . . . . . . . . . . . . 196

11.3 Show Your Intent . . . . . . . . . . . . . . . . . . . . . . 198

11.4 Create and Share a Common Domain Language . . . . 199

11.5 Watch Those Bugs . . . . . . . . . . . . . . . . . . . . . 200

V Creating Agile Software 203

12 Unit Testing: Knowing It Works 204

12.1 Welcome to Vegas, Baby! . . . . . . . . . . . . . . . . . . 205

12.2 Enter the Unit Test . . . . . . . . . . . . . . . . . . . . . 207

13 Refactoring: Paying Down Your Technical Debt 214

13.1 Turn on a Dime . . . . . . . . . . . . . . . . . . . . . . . 215

13.2 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . 216

13.3 Make Payments Through Refactoring . . . . . . . . . . 217

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=9


CONTENTS 10

14 Test-Driven Development 227

14.1 Write Your Tests First . . . . . . . . . . . . . . . . . . . 228

14.2 Use the Tests to Deal with Complexity . . . . . . . . . . 232

15 Continuous Integration: Making It Production-Ready 238

15.1 Showtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

15.2 A Culture of Production Readiness . . . . . . . . . . . . 241

15.3 What Is Continuous Integration? . . . . . . . . . . . . . 241

15.4 How Does It Work? . . . . . . . . . . . . . . . . . . . . . 243

15.5 Establish a Check-in Process . . . . . . . . . . . . . . . 244

15.6 Create an Automated Build . . . . . . . . . . . . . . . . 245

15.7 Work in Small Chunks . . . . . . . . . . . . . . . . . . . 247

15.8 Where Do I Go from Here? . . . . . . . . . . . . . . . . . 249

VI Appendixes 252

A Agile Principles 253

A.1 The Agile Manifesto . . . . . . . . . . . . . . . . . . . . . 253

A.2 Twelve Agile Principles . . . . . . . . . . . . . . . . . . . 253

B Resources 255

C Bibliography 256

Index 258

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=10


Acknowledgments
This book would not have been possible were it not for the love of

my life, Tannis, and our wonderful three children, Lucas, Rowan, and

Brynn, who supported and loved me every step of the way.

A book like this doesn’t happen without a wonderful editor and pub-

lisher. Everything quality can be attributed to Susannah Pfalzer. Every-

thing else is mine.

Then there are the pioneering people whose shoulders I merely stand

on: Kent Beck, Martin Fowler, Ron Jeffries, Bob Martin, Joshua Keri-

evsky, Tom and Mary Poppendieck, Kathy Sierra, and the wonderful

people at ThoughtWorks.

And of course this book wouldn’t be what it is without the incredi-

ble feedback and insight generously given from its reviewers and com-

menters: Noel Rappin, Alan Francis, Kevin Gisi, Jessica Watson, Tomas

Gendron, Dave Klein, Michael Sikorsky, Dan North, Janet Gregory,

Sanjay Manchiganti, Wendy Lindemann, James Avery, Robin Dymond,

Tom Poppendieck, Alice Toth, Ian Dees, Meghan Armstrong, Ram

Swaminathan, Heather Karp, Chad Fournier, Matt Hughes, Michael

Menard, Tony Semana, Kim Shrier, and Ryheul Kristof. Special thanks

also to Kim Wimpsett and Steve Peter for world-class copy editing and

typesetting.

Thank you, Mom and Dad, for your love and encouragement.

And thanks to Dave and Andy for creating a company that lets aspiring

young authors create and share their work with the world.

Prepared exclusively for Claus Pallisgaard Beck



The Agile Samurai—a fierce software-delivery professional

capable of dispatching the most dire of software projects,

and the toughest delivery schedules, with ease and grace

Master Sensei

It’s Good to See You
Agile is a way of developing software that reminds us that although

computers run the code, it’s people who create and maintain it.

It’s a framework, attitude, and approach to software delivery that is

lean, fast, and pragmatic. It’s no silver bullet, but it dramatically in-

creases your chances of success while bringing out the best your team

has to offer.

In this book I am going to show you how to crush your agile project. I

mean really knock it out of the park. Not only are your projects going to

come in on time and on budget, but your customers are actually going

to enjoy using the software you create for them, and they are going to

love working with you and being part of the process.

Inside, you are going to learn the following:

• How to successfully set up and kick-start your own agile project so

clearly that there won’t be any confusion as to what your project

is about and what it stands for.

• How to gather requirements, estimate, and plan in a clear, open,

and honest way.

• How to execute fiercely. You’ll learn how to turn your agile project

into a well-oiled machine that continuously produces high-quality,

production-ready code.

If you’re a project lead, this book gives you the tools to set up and lead

your agile project from start to finish. If you are an analyst, program-

mer, tester, UX designer, or project manager, this book gives you the

insight and foundation necessary for becoming a valuable agile team

member.

Prepared exclusively for Claus Pallisgaard Beck



HOW TO READ THIS BOOK 13

How to Read This Book

Feel free to jump to any chapter in the book you want. But if you’re

looking for how to set things up right from the start, I suggest going

through the book from beginning to end.

Part I gives you a brief overview of agile and explains how agile teams

work.

Part II introduces one of the most powerful expectation-setting devices

your team will have in its arsenal—the inception deck.

Part III is where we get into agile user stories, estimation, and how to

build your first agile project plan.

Part IV is all about execution. This is where you learn how to take your

plan and turn it into something real—working software your customer

can use.

And Part V wraps up by giving you a high-level look at the core agile

software engineering practices you’re going to need to keep quality up

and long-term maintenance costs of your software down.

Fun Bits with Purpose

You can’t take this stuff too seriously, and it helps if you can approach

the material with a bit of a sense of humor.

To that end, I’ve lightened things up with pictures, stories, and anec-

dotes to show you what working on an agile project is like.

War stories take you to the front line of real life agile projects and share

some of the successes (and failures) I and others have had while prac-

ticing the agile arts.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=13


ONLINE RESOURCES 14

The Now you try exercises are there to snap you out of reading and get

you into thinking and doing.

Now you try

Then there is Master Sensei—the legendary agile master experienced

and wise in all forms of agile software delivery.

Master Sensei
and the

aspiring warrior

He will be your guide and spiritual mentor on your agile journey and

periodically draw your attention to important agile principles, like this:

Agile principle
Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

He will share with you deeper insight and guidance in how to apply the

agile practices.

Online Resources

This book has its own web page, http://pragprog.com/titles/jtrap, where

you can find more information about the book and interact in the fol-

lowing ways:

• Participate in a discussion forum with other readers, agile enthu-

siasts, and me

• Help improve the book by reporting errata, including content sug-

gestions and typos

Let’s begin.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://pragprog.com/titles/jtrap
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=14


Part I

Introducing Agile

Prepared exclusively for Claus Pallisgaard Beck



Chapter 1

Agile in a Nutshell

F e b r u a r y
M T W Th F

Working software
Deliver something of value ...
every week!

What would it take to deliver something of value each and every week?

That’s the question we are going to answer in this chapter. By finding

out what software delivery looks like through the eyes of our customer,

we are going to see how much of what we’ve traditionally served our

customers is waste and how often we’ve missed what really counts—

the regular delivery of working software.

By the end of this chapter, you will have a high-level understanding of

agile planning, how we measure success on an agile project, and how

the acceptance of three simple truths will enable you to face the tight-

est of deadlines with courage and the most dire of projects with ease

and grace.

Prepared exclusively for Claus Pallisgaard Beck



DELIVER SOMETHING OF VALUE EVERY WEEK 17

1.1 Deliver Something of Value Every Week

Forget about agile for a second, and pretend you are the customer. It’s

your money and your project, and you’ve hired a top-notch team to

deliver.

What would give you confidence the team you hired was actually deliv-

ering? A pile of documentation, plans, and reports? Or the regular

delivery of working, tested software made up of your most important

features each and every week?

When you start looking at software delivery from your customer’s point

of view, good things start to happen.

1. You break big problems down into smaller ones.

Build website

3 months

Home page

User accounts

Blog

About us
Legal

FAQ

3 days

1 day 5 days

A week is a relatively short period of time. You can’t possibly do every-

thing in a week! To get anything done, you have to break big, scary

problems down into smaller, simpler, more manageable ones.

2. You focus on the really important stuff and forget everything else.

Most of what we traditionally deliver on software projects is of little or

no value to our customer.

Sure, you need documentation. Sure, you need plans. But they are in

support of only one thing—working software.

By delivering something of value every week, you are forced to get lean

and drop anything that doesn’t add value. As a result, you travel lighter

and take only what you need.

3. You make sure that what you are delivering works.

Delivering something of value every week implies that what you deliver

had better work. That means testing—lots of it, early and often.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=17


DELIVER SOMETHING OF VALUE EVERY WEEK 18

No longer something to be sloughed off until the end of the project, daily

testing becomes a way of life. The buck stops with you.

4. You go looking for feedback.

How do you know whether you’re hitting the bulls-eye if you don’t reg-

ularly stop and ask your customer if you’re aiming at the right target?

Feedback is the headlight that cuts through the fog and keeps you on

the road as you’re barreling down the highway at 100 miles per hour.

Without it, your customer loses the ability to steer—and you end up in

the ditch.

5. You change course when necessary.

Original plan

Actual plan

Stuff happens on projects. Things change. What was really important

one week can be descoped the next. If you create a plan and follow

it blindly, you won’t be able to roll with the punches when they come.

That’s why when reality messes with your plan, you change your plan—

not reality.

6. You become accountable.

When you commit to delivering something of value every week and

showing your customer how you’ve spent their money, you become

accountable.

• That means owning quality.

• That means owning the schedule.

• That means setting expectations.

• That means spending the money as if it were your own.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=18


HOW DOES AGILE PLANNING WORK? 19

- Warning - 

Not everyone likes
working this way

Do I think one day everyone is going to be working this way? No way—

for the same reason most people don’t eat right and exercise.

Delivering something of value every week is not for the faint of heart. It

puts the spotlight on you like never before. There is no place to hide.

Either you produce something of value or you don’t.

But if you like the visibility, have a passion for quality, and have a

fierce desire to execute, working on an agile team can be personally

very rewarding and a heck of a lot of fun.

And in case the one-week thing is stressing you out, don’t worry about

it—it’s irrelevant. Most agile teams start by delivering something of

value every two weeks (really big teams every three).

It’s just a metaphor to get you thinking about regularly putting working

software in front of your customer, getting some feedback, and chang-

ing course when necessary. That’s it.

Agile principle
Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

Let’s now take a look at agile planning.

1.2 How Does Agile Planning Work?

Planning an agile project isn’t all that much different from preparing

for a busy long weekend. Instead of to-do lists and tasks, we use fancy

names like master story lists and user stories.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=19


HOW DOES AGILE PLANNING WORK? 20

1 day        Add user

2 days      Print order

5 days      Create profile

3 days      Search by date

1 day       Update hotel

...

1 day       Cancel trip

5 days     Print receipt

300 days

1 2 3 n

Iterations

Estimates

User stories

Team velocity

When we think we’ll be done

Prioritized

Master story list

In agile, the master story list is your project to-do list. It contains all

the high-level features (user stories) your customer will want to see in

their software. It’s prioritized by your customer, it’s estimated by your

development team, and it forms the basis of your project plan.

The engine for getting stuff done on an agile project is the iteration—a

one- to two-week period where you take your customers’ most impor-

tant stories and transform them into running, tested software.

Your team members will know how much they can take on by mea-

suring the team velocity (how much you can get done per iteration). By

tracking your velocity and using it as a predictor of how much you’ll

get done in the future, you will keep your plans honest and your team

from over-committing.

When you and your customer are faced with too much to do, you do the

only thing you can—you do less. Being flexible on scope is how you’ll

keep your plan balanced and your commitments real.

And when reality disagrees with your plan, you’ll change your plan.

Adaptive planning is a cornerstone of agile delivery.

That’s all there is to agile planning, which we’ll cover in much greater

depth in Chapter 8, Agile Planning: Dealing with Reality, on page 130.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=20


DONE MEANS DONE 21

If death is on the line, then you’d better get it done. Just make sure

you are sacrificing yourself for a worthy cause and not some unrealistic

commitment made more than a year ago at a performance review.

It’s true that unrealistic promises do get made and teams are all too

often asked to do the impossible. But that doesn’t make it right. And

continuing the facade of “management by miracle” is a lousy way to

run your project and an even worse way to set expectations with your

customers.

Unrealistic plan Miracle

Working software

With agile, you won’t need these kinds of miracles, because you are

going to work openly and honestly with your customers from the start—

telling it like it is and letting them make the informed decisions about

scope, money, and dates.

It’s all about choice. You can perpetuate the myth that things will mag-

ically turn around. Or you can work with your customer to create plans

you can both believe in.

Something else you’ll need to know is how agile defines something being

done.

1.3 Done Means Done

Say your grandparents hired the neighbor’s teenage son to rake and bag

the leaves for their front lawn. Would Grandma and Grandpa consider

the job done when the teenager did which of the following:

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=21


DONE MEANS DONE 22

• Produced a report of how he planned to rake the yard?

• Came up with an elegant design?

• Created an elaborate comprehensive test plan?

No way! That kid wouldn’t get a dime until the leaves were raked,

bagged, and sitting at the side of the house.

In agile, we use the same definition. Delivering a feature in agile means

doing everything necessary to produce shippable code.

Master story list

Add user

Create profile

Book reservation

Basic search

Analysis
Testing
Design
Coding
Anything else!

100% complete

Good to go!

The analysis, design, coding, testing, and usability experience and de-

sign (UX)—it’s all there. That doesn’t mean we necessarily get every bell

and whistle on the first version of a feature or that we push our latest

work live at the end of every iteration. But our attitude is we could if we

had to do so.

If it can’t potentially be shipped, it’s not done. And that is why as agile

developers we need to be big on the agile principle and the acceptance

of three simple truths.

Agile principle
Working software is the primary measure
of success.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=22


THREE SIMPLE TRUTHS 23

1.4 Three Simple Truths

The following are three simple project truths that, once accepted, get

rid of much of the drama and dysfunction we regularly see on software

projects.

Three simple truths
1. It is impossible to gather all the
requirements at the beginning
of a project.

2. Whatever requirements you
do gather are guaranteed to 
change.

3. There will always be more to do
than time and money will allow.

Accepting the first truth means you are not afraid to begin your jour-

ney without knowing everything up front. You understand that require-

ments are meant to be discovered and that not proceeding until all are

gathered would mean never starting.

Accepting the second means you no longer fear or avoid change. You

know it is coming. You accept it for what it is. You adapt your plan

when necessary and move on.

And by accepting the third, you no longer get stressed when your to-

do list exceeds your time and resources to deliver. This is the normal

state for any interesting project. You do the only thing you can—you

set some priorities, get the most important stuff done first, and save

the least important for last.

Once you accept these three simple project truths, much of the stress

and anxiety traditionally associated with software delivery disappears.

You are then able to think and innovate with a level of focus and clarity

that escapes most in our industry.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=23


THREE SIMPLE TRUTHS 24

And always remember...

There is no one way!

Crystal Scrum

Lean

Your own!

Extreme 

Programming (XP)

Kanban

Just like there is no one ultimate flavor of ice cream, there is no one

ultimate flavor of agile.

• You’ve got Scrum—a project management wrapper for managing

agile projects.

• You’ve got XP—the highly disciplined, core software engineering

practices essential to every agile project.

• You’ve got Lean—the ultra-efficient, Toyota Production System

equivalent for the ever-improving company.

And then you’ve got your own agile method—the one you use when you

and your family drive halfway across the country only to discover the

amusement park you were planning on visiting is closed for renova-

tions.

This book and all the other literature out there on agile are simply

shared learnings I and others have found useful when trying to serve

customers this way. In this book, I will be sharing with you teachings

and innovations from all the agile methods and several we had to invent

ourselves. Read them, study them, challenge them, and take from them

what you need.

But understand that no book or method can give you everything you’ll

need, and you can’t stop thinking for yourself. Each project is different,

and although certain principles and practices will always hold true,1

how you apply them will depend on your unique situation and context.

1. http://agilemanifesto.org

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://agilemanifesto.org
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=24


THREE SIMPLE TRUTHS 25

A Few Words on Language

Agile terms are pretty consistent across most methodologies, but there

are a few terms that differ between the two most popular methods,

Extreme Programming and Scrum.

Throughout the book I will try to be consistent (I generally prefer the

Extreme Programming terms), but if you hear me say the following,

know these terms are interchangeable and are one and the same:

• Iteration instead of sprint

• Master story list instead of product back log

• Customer instead of product owner

What’s Next?

You’ve got the basics. Now we are going to shift gears and talk about

teams.

In the next chapter on agile teams, we’ll discuss what your agile team

will look like, what it’s like to work on an agile project, and a few things

everyone on your team needs to know before you start your first agile

project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=25


Chapter 2

Meet Your Agile Team

Agile teams are a different beast. On a typical agile project there are

no predefined roles. Anyone can do anything. And yet among all the

chaos, confusion, and lack of formal hierarchy, high-performing agile

teams somehow seem to regularly produce quality software.

In this chapter, we are going to take a close look at what makes the

agile team tick. We’ll look at characteristics of good agile teams, how

agile teams are different, and some tips on how to find quality players.

By the end of the chapter, you’ll know what a typical agile team looks

like, how to form your own, and what they need to know before riding

into battle.

Prepared exclusively for Claus Pallisgaard Beck



HOW ARE AGILE PROJECTS DIFFERENT? 27

2.1 How Are Agile Projects Different?

Before we get into what makes an agile team tick, there are a few things

you need to know about agile projects in general.

For one, roles really blur on agile projects. When it’s done right, joining

an agile team is a lot like working in a mini-startup. People pitch in and

do whatever it takes to make the project successful—regardless of title

or role.

PMDEV

UX

QA BA

Yes, people still have core competencies, and, yes, they generally stick

to what they are good at. But on an agile project, narrowly defined roles

like analyst, programmer, and tester don’t really exist—at least not in

the traditional sense.

The other thing that’s different about an agile team is that analysis,

coding, design, and testing are continuous activities—they never end.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=27


HOW ARE AGILE PROJECTS DIFFERENT? 28

Analysis Design Code Test

A
n

a
lysis

Te
st

D
e

sig
n

C
o

d
e

Traditional

Agile

One-o� activities Continuous activities

That means these activities can’t exist in isolation anymore. The peo-

ple doing the work need to be joined at the hip working together daily

throughout the project.

And the third thing you need to be aware of is just how big agile is on

this concept of one team and team accountability.

One team Multiple silos

vs.

Quality is a team responsibility on an agile project. There is no QA

department—you’re it, whether you are doing analysis, writing the code,

or managing the project. Quality assurance is everywhere, which is why

you’ll never hear the question “How did QA miss that bug?” on an agile

project.

So, blurring roles, continuous development activities, and team ac-

countability are all things you can expect to see on agile teams.

Let’s now take a look at some things agile teams do to make themselves

successful.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=28


WHAT MAKES AN AGILE TEAM TICK 29

2.2 What Makes an Agile Team Tick

Before you and your team can crush it, there are certain things you’re

going to want to fight for to help set yourselves up for success.

Co-location

If there was one thing you could do to dramatically improve the pro-

ductivity of your team, it would be to have everyone sit together.

Co-located teams just work better. Questions get answered fast. Prob-

lems are fixed on the spot. There is less friction between interactions.

Trust is built more quickly. It’s very hard to compete with the power of

a small co-located team.

So if co-located teams are so good, does that mean if your team is

distributed that you can’t run an agile project? Absolutely not.

Distributed teams are becoming a way of life for many. And although a

tight co-located team will always have an advantage over a distributed

one, there are things you can do to close the gap.

For one, you can reserve some budget at the beginning of your project

to bring everyone together. Even if it’s just for a few days (even better

if you can swing a couple weeks), that time spent getting to know each

other, joking around, and eating together goes a long way in turning

your ragtag bunch into a tight, high-performing team. So, try to bring

everyone together at the start.

After that, you can use every communication tool and trick in the book

(Skype, video conferencing, social media tools) to make your distributed

team seem like a co-located one even though you’re not.

Engaged Customers

There is a lot of software that still gets written today by teams that don’t

have engaged customers. It’s sad, and it ought to be a crime.

How can teams be expected to build compelling, innovative products if

the very people they are building them for aren’t part of the process?

Engaged customers are those who show up to demos, answer ques-

tions, give feedback, and provide the guidance and insight necessary

for the team to build compelling software. They are core members of

the team and full-on partners during delivery.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=29


WHAT MAKES AN AGILE TEAM TICK 30

Encourage Unplanned Collaborations

In the documentary The Pixar Touch, Steve Jobs commented
on how dependent Pixar was on unplanned collaborations for
the success of its movies. After the release of Toy Story II (which
just about killed them), he knew they were too spread out, they
were too silo’d, and they ran the risk of losing the magic if they
didn’t do something to bring everyone together.

It was for that reason Pixar acquired 20 acres in Emeryville, Cal-
ifornia, and brought the whole company together under one
roof. The result was instant. Communication improved, collabo-
ration ensued, and they were able to ramp up their production
schedule to one major release per year.

That’s why agile methods like Extreme Programming and Scrum fight

hard for customer engagement through practices like the on-site cus-

tomer and Scrum’s dedicated role of product owner. It’s a big important

job. We’ll talk more about these roles shortly.

That is also why an engaged customer is necessary for any successful

agile project.

Agile principle
Business people and developers must work
together daily throughout the project.

Now you may be wondering, “What should I do if I don’t have an en-

gaged customer?” Maybe they’ve been let down in the past, maybe this

is a project that they don’t think they need, or maybe they just don’t

think you are going to deliver.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=30


WHAT MAKES AN AGILE TEAM TICK 31

Whatever the issue, if you need to build some customer credibility, do

this...

The next time you get in front of your customer, tell them that two

weeks from now you are going to make some problem of theirs go away.

Don’t ask for permission. Don’t make a big ceremony out of it. Just

take some problem, or some itch that they have, and make it go away.

Then do it. Come back two weeks later, show them how you’ve com-

pletely solved their problem, and then do it again. Take some other

problem, and make it go away.

You may need to do this three or four times (maybe more) before they

start to pay much attention, but eventually they will.

They are going to start looking at you differently and see you for what

you really are: a fierce executor who can be counted on to get things

done.

Look, there could be a thousand reasons why your customer isn’t en-

gaged. Maybe they are tired of having projects done to them by the IT

department. Maybe they don’t want (or need) the software in the first

place. Maybe you didn’t do a good job setting expectations around how

important their role would be to the success of the project. Or maybe

they’re just really busy.

All I am saying is that if you need to build some credibility, start by

making small deposits in the trust bucket, and eventually you’ll win

them over.

Self-Organizing

Agile teams like to be given a goal and then have everyone stand back

as they collectively figure out how to get there. To do that, agile teams

need to be able to self-organize.

Self-organization is about checking your ego at the door and working

with your team to figure out how you as a team (with all your unique

skills, passions, and talents) can best deliver this project.

“Sure, Bobby can cut code. But he also has a great eye for design, so

he’s going to be helping out with some of the mock-ups.”

“Yes, Suzy is one of our best testers, but where she really shines is in

setting expectations with the customer. She just has a way, and she

loves doing it.”

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=31


WHAT MAKES AN AGILE TEAM TICK 32

This doesn’t mean developers need to be experts in visual design or

testers are now expected to handle the project management.

It’s more an acknowledgment that the best way to build teams is to let

the role fit the person, instead of making the person fit the role.

So, how do you get your team to self-organize?

• You let them create the plan, come up with the estimates, and take

ownership of the project.

• You worry less about titles and roles and become more interested

in seeing the continuous production of working, tested software.

• You look for people who can take initiative, like being the masters

of their own destiny, and don’t sit back and wait for orders.

In short, you let the reins go and trust and empower them to get the

job done.

Agile principle
The best architectures, requirements, and
designs emerge from self-organizing teams.

Now, self-organization by itself is great, but the real magic kicks in

because of what that leads to—empowerment and accountability.

Accountable and Empowered

A good agile team will always want to be held accountable for the results

they produce. They know customers are counting on them to come

through, and they won’t shirk from the responsibility that comes with

having to deliver value from day one.

Of course, being accountable works only if teams are truly empowered.

Giving your team the reins to make their own decisions and do what

they think is right frees them to take initiative and act on their own

accord. They solve their own problems, and they don’t wait for anyone

to give them permission.

Sure, you’ll make an occasional mistake. But the upside is so big that

it’s worth the risk.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=32


WHAT MAKES AN AGILE TEAM TICK 33

Agile principle
Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

Now, creating an empowered and accountable team is easier said than

done—not everyone wants to be empowered. Why bother when it’s so

much easier just to show up, chop the vegetables, and do what you’re

told?

If you think you have an issue with accountability, there is an easy

fix—get your team to demo their software.

The simple act of putting teams in front of real live customers and

having them demo their software will go miles toward making your team

more accountable.

First, your team will see that real people are counting on them to

deliver. They will realize there are real people, with real problems, who

need real software to make their lives better.

Second, it will take only one bad demo for your team to take a sudden

interest in making sure the software is ready for feedback and every-

thing works. They will insist on becoming empowered to make this hap-

pen. If they don’t, you have a bigger problem.

Cross-Functional

A cross-functional team is one that can serve their customer from end

to end. That means having the necessary skills and expertise on your

team to take any feature your customer would need and be able to

deliver it fully.

When recruiting people for your team, you’ll want generalists, people

who are comfortable doing a wide variety of things. For programmers,

that means finding people who are comfortable walking the entire tech-

nology stack (not just the front end or back end). For testers and ana-

lysts, that means people who are just as comfortable testing as they are

doing a deep-dive analysis on the requirements.

Specialists are used on occasion when the team lacks some sort of

specific skill (such as database tuning). But mostly the team sticks

together and works together as one for the duration of the project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=33


ROLES WE TYPICALLY SEE 34

Who Moved My Cheese?

Who Moved My Cheese? [Joh98] is a business fable about mice
who wake up one day to discover that the big block of cheese
they have built a comfortable life around is gone. Someone has
moved it. And now they are at a loss as to what to do.

For some, transitioning to agile can feel a bit like someone has
moved their cheese.

For the project manager, it can be the realization that no mat-
ter how hard they try, the requirements are going to change.

For the analyst, it’s the realization that analysis on an agile
project never ends.

For the developer, it’s the expectation that they will be
expected to write tests (and lots of them!).

So, understand that when you are changing how people work,
you are moving someone’s cheese. And anything you can do
to help them find the new cheese (such as showing them how
their roles will change) will help.

Of course, the real beauty of the cross-functional team is the speed at

which they can go. Without having to wait for permission or negotiate

for resources from others, they can start delivering value from day one,

with no one in their way to stop them.

OK, so those are some expectations you’re going to want to set and

some things you’re going to want to fight for when forming your team.

Now let’s take a look at some roles.

2.3 Roles We Typically See

Agile methods like Scrum and XP don’t have a lot of formal roles when

it comes to projects. There are people who know what needs to be built

(customers) and people who can build it (the development team).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=34


ROLES WE TYPICALLY SEE 35

Development teamCustomer

The agile team

Decides what gets built Decides how to build it

Now if you are wondering where all the programmers, testers, and ana-

lysts are, don’t worry—they’re still there. Agile is just less concerned

about who plays what role and more worried about the right roles being

played.

Let’s start though by taking a look at one of the most important roles

on any agile project: the agile customer.

The Agile Customer

Master story list

Add user

Print order

Create profile

Search by date

Update hotel

Master story list

Add user

Print order

Create profile

Search by date

Update hotel

Most 
important

Master story list

Add user

Print order

Create profile

Search by date

Update hotel

Out of scopeCustomer 
involvement => Project

success

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=35


ROLES WE TYPICALLY SEE 36

The agile customer is the “source of the truth” from which all require-

ments flow on an agile project. They are the people for whom the soft-

ware is being built.

Ideally they would be a subject-matter expert. It’s someone intimately

familiar with the business, who really cares what the software does,

what it looks like, and how it works, and who is committed to guiding

the team, answering questions, and giving feedback.

They also set the priorities. They decide what gets built and when.

This isn’t done in a vacuum. It’s a collaborative process with the devel-

opment team because there may be technical reasons why it makes

more sense to work on some features before others (in other words, to

reduce technical risk).

But generally they set the priorities from a business point of view, and

then they work with the development team to come up with a plan to

make it happen.

And they have the fun job of deciding what not to build as deadlines

approach and time and money start to run out.

Of course, to do all these things, it helps if the customer is working very

closely with the development team—ideally full-time. In early versions

of XP, this is referred to as the on-site customer, and in Scrum it is

known as the full-time role of product owner.

Now don’t panic if you don’t have or can’t get a full-time customer—few

teams can. You can still do agile and still have a very successful project.

Not all projects need or require a full-time customer.

What’s more important is to understand the spirit of where agile meth-

ods like XP and Scrum are coming from, which is that the more direct

involvement you have with your customer, the better.

So, get as much customer involvement as you can, make sure they

understand the importance of their role, and make sure they are em-

powered and willing to make the kinds of decisions that need to be

made for the success of the project.

Let’s now take a look at the development team.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=36


ROLES WE TYPICALLY SEE 37

The Development Team

Development team

Business analysts
Technical writers

Programmers

UX designers
Everyone else!

Project managers

Database 

administrators

Testers

The agile development team is a cross-functional group of people who

can take any feature the customer would like developed and turn it into

production-ready, working software. This includes analysts, develop-

ers, testers, database administrators (DBAs), and anyone else required

to turn user stories into working software.

Now, as much I as like the spirit and intent behind the no-formal-

role agile team, taking a deeply traditional software team and suddenly

telling them they need to “self-organize” has never really worked for me

in practice.

To be sure, you can’t mince words and need to make it crystal clear

that roles blur on agile projects and they are going to be expected to

wear many hats. But I’ve had more success transitioning teams when I

present agile in terms and words they already know and understand.

If your team falls into this category, here are some agile role descrip-

tions to help your team make the transition and explain how their roles

change on an agile project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=37


ROLES WE TYPICALLY SEE 38

The Agile Analyst

Analysis artifacts

Build web site

3 months

When a feature comes up for development, someone has to get in there

and figure out all the nitty-gritty details of how it needs to work. That’s

our agile analyst.

The analyst is the relentless detective who asks the deep probing ques-

tions and gets a thrill from working closely with the customer to really

understand what they need of their software.

Analysts do lots of things on agile projects. They help customers write

user stories (Chapter 6, Gathering User Stories, on page 94). They do the

deep dive on the analysis when a story comes up for development. And

they can help create mock-ups, create prototypes, and use everything

in their analysis toolkit to help communicate the essence of the story.

We’ll talk more about how agile analysis works in Section 9.4, Step 1:

Analysis and Design: Making the Work Ready, on page 165.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=38


ROLES WE TYPICALLY SEE 39

The Agile Programmer

if X

then Y;

Basic search

1 pt
3 pts
5 pts

Create permit

It’s all good intentions until someone writes some code. This is where

our agile programmers come in.

Agile programmers are pros because they take things like software

quality very seriously. The best are passionate testers who take pride in

their work and are always looking for an edge in writing higher-quality

code.

To that end, there are certain things agile programmers do when regu-

larly creating high-quality, production-ready software.

• They write lots of tests and will often use tests as a means of

driving out their designs (Chapter 12, Unit Testing: Knowing It

Works, on page 204, and Chapter 14, Test-Driven Development,

on page 227).

• They are continuously designing and improving the architecture

of their software as they go (Chapter 13, Refactoring: Paying Down

Your Technical Debt, on page 214).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=39


ROLES WE TYPICALLY SEE 40

• They make sure the code base is always in a state of production

readiness and ready to deploy at a moment’s notice (Chapter 15,

Continuous Integration: Making It Production-Ready, on page 238).

And they work very closely with the customer, and everyone else on

the team, to ensure that what gets built works, that it is as simple as

possible, and that pushing software live into production is a nonevent.

The Agile Tester

Load

Integration

Exploratory

Security

Test 1
Test 2
Test 3

Stress
Other forms

of testing

Basic search

Create permit

Test#1 Experiment#2

Agile testers know that although it’s one thing to build it, it is another

to know it works. For that reason, the agile tester will insert themselves

into the agile project early, ensuring that success for user stories gets

defined up front and that when working software is produced, it works.

Because everything on an agile project needs to be tested, you will find

the agile tester everywhere.

You’ll find them working side-by-side with the customer helping them

capture their requirements in the form of tests.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=40


ROLES WE TYPICALLY SEE 41

What If You Started Every Project Off Like This?

Imagine if you started every project by sharing the answers to
four simple questions about yourself with the team:

• What am I good at?

• How do I perform?

• What do I value?

• What results can you expect me to deliver?

Then with this newfound insight, what if you asked them to
answer the same questions and to tell you what they were
good at, how they performed, what they valued, and the
results they could be expected to deliver on the project?

This is the idea behind what I call the Drucker Exercise.∗ It’s a
simple yet powerful team-building exercise for forming the nec-
essary communication and trust patterns essential to any high-
performing team.

∗. http://agilewarrior.wordpress.com/2009/11/27/the-drucker-exercise

You’ll find them working closely with developers, helping with test auto-

mation, looking for holes, and doing extensive exploratory testing by

trying to break the application from all possible angles.

They will also have in mind the big testing picture and never lose sight

of load testing, scalability, and anything else the team could be doing

to produce high-quality software.

Janet Gregory and Lisa Crispin’s book Agile Testing: A Practical Guide

for Testers and Agile Teams [GC09] is a good reference for more about

the important role of agile testing.

We talk more about the mechanics of agile testing in Section 9.6, Step

3: Test: Check the Work, on page 174.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://agilewarrior.wordpress.com/2009/11/27/the-drucker-exercise
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=41


ROLES WE TYPICALLY SEE 42

The Agile Project Manager

E�ort

Time

Master story list

Add user

Print order

Create profile

Search by date

Update hotel

June 15th

The agile project manager (PM) knows that the only way they’ll be suc-

cessful is if the team is successful. That is why a good PM will go to the

ends of the earth to remove anything standing in the way of their team

and success.

Part of this means continuously planning, replanning, and adjusting

course when necessary (Chapter 8, Agile Planning: Dealing with Reality,

on page 130).

It also means setting expectations upward and outward to the greater

project community: getting status reports to stakeholders, forging rela-

tionships within the company, and shielding the team from outside

forces when necessary. It’s all the good stuff PMs normally do.

A good agile PM doesn’t tell the team what to do, though—they don’t

have to do that. They’ve helped create an environment such that the

team is mostly independent and would continue to deliver fine in the

PM’s absence. In fact, the hallmark of a good agile PM is the ability to

disappear for a week and no one be the wiser.

We talk more about agile project management in Chapter 8, Agile Plan-

ning: Dealing with Reality, on page 130 and in Chapter 9, Iteration Man-

agement: Making It Happen, on page 161.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=42


ROLES WE TYPICALLY SEE 43

The Agile UX Designer

Personas

Concept designsPaper prototypes

Storyboards

User experience designers are deeply focused on creating useful,

usable, desirable experiences for the customer. Someone passionate

about usability would be deeply interested in understanding what the

customer needs and then collaborating with the rest of the team to

figure out how best to meet them.

Fortunately, many of the practices used by usability experts dovetail

nicely with the spirit of agile software delivery. Focusing on value, rapid

feedback, and building the best product you can for your customer is

something both the UX and agile communities have in common.

As well, UX designers aren’t afraid to design incrementally and iter-

atively. They will build and design features as the code gets written

(instead of trying to design everything up front and getting miles ahead

of everyone else).

If you have the luxury of getting someone steeped in usability on your

project, consider yourself lucky. They can bring a lot of useful experi-

ence and knowledge to the project and really help out in the area of

analysis and user experience design.

Everyone Else

And then there’s all the other important roles and people we didn’t

mention: database administrators (DBAs), system administrators (SAs),

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=43


TIPS FOR FORMING YOUR AGILE TEAM 44

technical writers, trainers, business improvement, infrastructure, and

networking. They are all part of the development team and treated just

like anyone else on the project.

Scrum has a role called scrum master, which is kind of like an agile

coach and rock-star project manager all rolled up in one. Agile coaches

can be very helpful in getting new teams going. They can help explain

and promote the agile principles and philosophies, and they can ensure

teams stay the course and don’t slip back into old bad habits. For a

good book on coaching, check out Agile Coaching [SD09].

Experienced teams typically don’t need dedicated coaches, but new

projects can definitely benefit from having them around.

One final thing: when you present these roles, make sure people under-

stand that it’s OK (and expected) for people to wear multiple hats on an

agile project.

In other words, let your analysts know that it’s OK for developers to

talk directly to the customer (in fact, it’s encouraged). Let your testers

know that developers are going to be expected to write a lot of auto-

mated tests. And just because your project doesn’t have a dedicated

UX designer doesn’t mean usability and design don’t get done. They

do—just by someone else wearing that hat on the team.

Let’s wrap up by going over some things to look for when recruiting

players for your team.

2.4 Tips for Forming Your Agile Team

Although most people would enjoy working on any high-performing

agile team, there are some things to look for when finding quality play-

ers.

Look for Generalists

Generalists do well on agile projects because agile requires people to

follow through and own opportunities from end to end. For program-

mers, that means coders who can walk the entire stack (front end to

back). For analysts and testers, that means being comfortable doing

analysis and testing.

Generalists are also comfortable wearing many hats. They might be

coding one day, doing analysis the next, and testing after that.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=44


TIPS FOR FORMING YOUR AGILE TEAM 45

People Who Are Comfortable with Ambiguity

Not everything is going to be neat and tidy on an agile project. The

requirements won’t all be there—you’re going to need to discover them.

The plan is going to change, and you are going to have to adapt and

change with it.

Look for people who don’t panic when curve balls are thrown at them,

who can take a punch, and who can deal with the change train as it

comes rolling down the track.

Team Players Who Can Check Their Egos at the Door

It sounds like a cliche, but agile works best with folks who can act as

an ensemble and check their egos at the door.

Not everyone likes the role blurring agile brings. Some people get pro-

tective over what they see as “their” turf.

Just look for people who are comfortable in their own skins, aren’t

afraid to share, and sincerely enjoy learning and growing with others.

Master Sensei
and the

aspiring warrior

STUDENT: Master, I am confused. If there are no predefined roles on

agile project, how does anything ever get done?

MASTER: That which needs to be done, the team will do.

STUDENT: Yes, Master, but if there is no dedicated role of tester, how

can we be sure that enough testing will be done?

MASTER: Testing is something that needs to be done. So, testing is

something the team will do. How much testing and in what capacity is

up to the team to decide.

STUDENT: What if no one wants to test? What if everyone just wants

to sit around and write code?

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=45


TIPS FOR FORMING YOUR AGILE TEAM 46

MASTER: Then you’d best find people who have a passion for testing

and make sure they become valued members of your team.

STUDENT: Thank you, Master. I will think about this more.

What’s Next?

You now see how roles blur on agile projects, why we would ideally

like our teams to be co-located, and how, when finding people for your

team, you are going to want generalists and people who are cool with

dealing with ambiguity.

You are now ready for what is perhaps one of the most important steps

in kick-starting your agile project (and an area that most agile methods

are completely silent on)—agile project inception.

Turn the page, to Part II of the book, and find out how to set your

project up for success from the start and make sure you have the right

people.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=46


Part II

Agile Project Inception

Prepared exclusively for Claus Pallisgaard Beck



Chapter 3

How to Get Everyone on the Bus

Many projects get killed before they even get out of the starting blocks.

This is mostly because of the following reasons:

• They fail to ask the right questions.

• They don’t have the courage to ask the tough ones.

In this part, we are going to look at a powerful expectation-setting tool

called the inception deck—ten questions you’d be crazy not to ask before

starting any software project. By harnessing the power of the inception

deck, you’ll make sure you get the right people on your bus and that

it’s headed in the right direction long before the first line of code ever

gets written.

Prepared exclusively for Claus Pallisgaard Beck



WHAT KILLS MOST PROJECTS 49

3.1 What Kills Most Projects

At the start of any new project, people usually have wildly different

ideas about what success looks like.

We are all in agreement then. Oh.

This can be deadly for projects because although we will all be using

the same words and phrases to describe what we want, it’s only when

we start delivering that we realize we’re all thinking completely different

things.

And the problem isn’t that we aren’t all aligned at the start (that’s nat-

ural). It’s that we start our projects before everyone is on board.

The assumption of consensus where none exists is what kills most

projects.

What we need is something that does the following:

• Communicates the goals, vision, and context of the project to the

team so they can make intelligent decisions while executing

• Gives the stakeholders the information they need to help them

make that go/no-go decision on whether or not to proceed with

the project

Ah!What if we did this ...

And the only way to get this is to ask the tough questions.

3.2 Ask the Tough Questions

Working Down Under, I had the opportunity to ride shotgun with one of

ThoughtWorks’ top professional services salespeople—a gentleman by

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=49


ASK THE TOUGH QUESTIONS 50

the name of Keith Dodds. One of the many things Keith taught me was

the importance of asking the tough questions at the start of any new

engagement or sale.

Ask tough questions here

Start

End
Your project

Too late!

You see, in the beginning of any new engagement or project, you have

a lot of leeway in the questions you can ask with little to lose. You can

ask wide-open questions like the following:

• How much experience does your team have?

• Have you ever done this type of thing before?

• How much money do we have?

• Who’s calling the shots on this project?

• Do you see any challenges with having two analysts and thirty

developers?

• Which other projects have you worked on where you were able to

take a team of junior developers with little or no object-oriented

experience and successfully rewrite a legacy mainframe system in

Ruby on Rails using agile?

You want to take the same approach when kicking off your agile project.

You want to ask all the scary questions up front. And one tool for help-

ing you do that is the inception deck.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=50


ENTER THE INCEPTION DECK 51

3.3 Enter the Inception Deck

Why are
we here?

Elevator
pitch

Product
box

NOT list
Meet the
neighbors

Show
solution

Up at night Size it up
What’s
going 
to give

What’s it 
going to 

take

The inception deck is your flashlight for dispelling the mist and mystery

around your agile project. It’s a collection of ten tough questions and

exercises you’d be crazy not to do and ask before starting any project.

We used it often at ThoughtWorks to cover an area of project initiation

that agile methods like Extreme Programming (XP) and Scrum were

silent on—project chartering. We knew heavy six-month analysis and

requirements-gathering exercises weren’t the way to go, but we didn’t

have any lightweight alternatives. It was in this spirit that Robin Gib-

bons created the original inception deck: a fast, lightweight way to dis-

till a project to its very core and communicate that shared understand-

ing to the greater team and community.

3.4 How It Works

The idea behind the inception deck is that if we can get the right people

in the room and ask them the right questions, this will do wonders for

collectively setting expectations about our project.

By putting the team through a series of exercises and capturing the

output on a slide deck (usually PowerPoint), we can collectively get a

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=51


THE INCEPTION DECK IN A NUTSHELL 52

pretty good idea about what this project is, what it isn’t, and what it’s

going to take to deliver.

The right people for the inception deck are anyone directly involved

in the project. This includes customers, stakeholders, team members,

developers, testers, analysts—anyone who can materially contribute to

the effective execution of the project.

It is also really important that you get the stakeholders involved, be-

cause the inception deck is not only a tool for us but also for them to

help make that critical go/no-go decision on whether we should even

proceed.

A typical inception deck can take anywhere from a couple days to about

two weeks to build. It’s good for about six months of project planning

and should be revisited anytime there is a major change in the spirit or

direction of the project.

That’s because the inception deck is a living, breathing artifact. It’s not

something we do once and then file away. Upon completion, teams like

to put it up on the wall in their work areas to let it serve as a reminder

about what they are working on and why.

And of course, the questions and exercises presented here are just the

beginning. You are going to think of other questions, exercises, and

things you are going to want to clarify before you start.

So, use this as a starting point, but don’t follow it blindly or be afraid

to change it up to make it your own.

3.5 The Inception Deck in a Nutshell

Here’s a high-level overview of the inception deck questions and exer-

cises:

1. Ask why we are here.

• This is a quick reminder about why we are here, who our

customers are, and why we decided to do this project in the

first place.

2. Create an elevator pitch.

• If we had thirty seconds and two sentences to describe our

project, what would we say?

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=52


THE INCEPTION DECK IN A NUTSHELL 53

3. Design a product box.

• If we were flipping through a magazine and we saw an adver-

tisement for our product or service, what would it say, and,

more importantly, would we buy it?

4. Create a NOT list.

• It’s pretty clear what we want to do on this project. Let’s be

even clearer and show what we are not doing.

5. Meet your neighbors.

• Our project community is always bigger than we think. Why

don’t we invite them over for coffee and introduce ourselves?

6. Show the solution.

• Let’s draw the high-level blueprints of the technical architec-

ture to make sure we are all thinking of the same thing.

7. Ask what keeps us up at night.

• Some of the things that happen on projects are downright

scary. But talking about them, and what we can do to avoid

them, can make them less scary.

8. Size it up.

• Is this thing a three-, six-, or nine-month project?

9. Be clear on what’s going to give.

• Projects have levers like time, scope, budget, and quality.

What’s most and least important for this project at this time?

10. Show what it’s going to take.

• How long is it going to take? How much will it cost? And what

kind of team are we going to need to pull this off?

We’ll cover the inception deck in two parts. In Chapter 4, Seeing the

Big Picture, on the next page, we’ll go over the why behind the project,

while in Chapter 5, Making It Real, on page 72 we’ll go over the how.

Let’s start with the why.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=53


Chapter 4

Seeing the Big Picture

Software is one of those unique activities that combines design, con-

struction, art, and science all rolled up into one. Teams face thousands

of decisions and trade-offs every day. And without the right context or

big-picture understanding, it’s impossible for them to make the right

trade-offs in an informed or balanced way.

In the first half of the inception deck, we are going to get really clear on

the why behind our project by answering questions like the following:

• Why are we here?

• What’s our elevator pitch?

• What would an ad for our product look like?

Prepared exclusively for Claus Pallisgaard Beck



ASK: WHY ARE WE HERE? 55

• What are we not going to do?

• Who’s in our neighborhood?

By the end of this chapter, you and your team will have a clear under-

standing of what the goal of the project is, will know why you are build-

ing it, and will be able to communicate clearly and quickly to others.

But let’s first start by asking our sponsors why we are here.

4.1 Ask: Why Are We Here?

Why are we here?

To safely track and monitor work 
activities on the construction site

Before any project team can be really successful, they need to under-

stand the why behind what they are building. When they understand

the why, teams can do the following:

• Make better, more informed decisions

• Do a better job of balancing the conflicting forces and trade-offs

• Come up with better, more innovative solutions because they are

empowered to think for themselves

It’s all about discovering your commander’s intent and going and seeing

for yourself.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=55


ASK: WHY ARE WE HERE? 56

Toyota: The Masters of Go and See

In his excellent book The Toyota Way [Lik04], Jeffrey Liker
describes the story of how the chief engineer charged with
redesigning the 2004 Toyota Sienna wanted to improve the
design for North Americans. To get a feel for how North Amer-
icans lived, worked, and played with their vehicles, he and his
team drove a Toyota Sienna through every U.S. state and its
provinces, Canada, and Mexico.

What he discovered was the following:

• North American drivers eat and drink more in their cars
than drivers do in Japan (where driving distances are typ-
ically shorter). For that reason, you will find a center tray
and fourteen cup holders standard in every Toyota Sienna.

• Roads in Canada have a higher crown than in America
(bowed up in the middle), so controlling the “drift” while
driving was very important.

• Severe cross winds in Ontario made side-wind stability a
much bigger issue to be dealt with. If you drive any place
with a strong cross wind, the new Sienna is much more
stable and easier to handle.

While the chief engineer might have been able to read about
these issues in a marketing report, he would not have gained
the new level of appreciation and understanding he now has
by going and seeing these things for himself.

Go and See for Yourself

It’s one thing to intellectually understand why we’re here. It’s something

else entirely to know it. To really get inside your customers’ heads and

really understand what they need, you must go and see for yourself.

Going and seeing is about getting your team off their butts and out into

the field where the action is.

For example, if you are building a permit system for a construction

company out at the mine site, go to the construction site. Hang with

the safety officers. See the trailers. Observe the cramped conditions,

flaky Internet connections, and confined spaces your customers work

in. Spend a day at the site, and work with the people who are going to

be using your system day in and day out.

Get engaged, ask questions, and become your customer.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=56


CREATE AN ELEVATOR PITCH 57

Discover Your Commander’s Intent

Commander’s intent is a concise expression, phrase, or statement that

summarizes the goal or purpose of your project or mission. It’s that

statement, or guiding light, you can turn to in the 11th hour, in the

thick of the battle, that helps you decide whether to press the attack or

hold your ground.

In Made to stick [HH07], Chip and Dan Heath describe a story where

Southwest Airlines was debating whether to add a Caesar chicken salad

to one of its flights.

When asked if it would lower the cost of the price of the ticket (CEO

Herbs Kelleher’s commander’s intent), it became clear that adding the

option of a chicken salad didn’t make sense.

The commander’s intent for your project doesn’t have to be something

big or aspirational. It can be something really simple and focused for

your project.

The key to this exercise is to get people talking about why they think

they are here and then validate with your customer whether that’s

really what it’s all about.

4.2 Create an Elevator Pitch

The Elevator Pitch

For [construction managers]

who [need to track what type of work is being

done on the construction site],

the [CSWP*]

is a [safety work permit system],

that [creates, tracks, and audits safety work

permits].

Unlike [the current paper-based system]

our product [is web based and can be accessed

any time from anywhere].

 *CSWP: Construction Safety Work Permit

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=57


CREATE AN ELEVATOR PITCH 58

There Are a Dozen Reasons for Doing Your Project

I recently did this exercise with a team charged with creating
invoices for a new division of the company and was amazed by
the variety of reasons why the team thought they were there.

Some thought it was to reduce the number of pages on the
invoice to save paper. Others thought it was to simplify the
invoice and thus reduce call center volume. Still others thought
it was an opportunity to run targeted marketing campaigns in
an attempt to up-sell customers on products and services.

All were good answers, and any of them would have war-
ranted a project in their own right. But it was only through much
discussion, debate, and understanding that the true goal of
the project emerged—which was to simplify the invoice and
reduce call center volume.

Quick! The venture capitalist (VC) you have been trying to get in front

of for the last three months just walked into the elevator, and you have

thirty seconds to pitch the idea for your new fledgling start-up. Success

means fuel for your venture. Failure means more Kraft dinner.

That’s the idea behind the elevator pitch—a way of communicating the

essence of your idea in a very short period of time. Elevator pitches

aren’t just for aspiring entrepreneurs, though. They are also great for

concisely defining new software projects.

A good elevator pitch will do a number of things for your project.

1. It brings clarity.

Instead of trying to be all things to all people, the elevator pitch

forces teams to answer tough questions about what the product is

and who it’s for.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=58


CREATE AN ELEVATOR PITCH 59

2. It forces teams to think about the customer.

By bringing focus into what the product does and why, teams gain

valuable insight into what’s compelling about the product and why

their customers are buying it in the first place.

3. It gets to the point.

Like a laser, the elevator pitch cuts through a lot of cruft and gets

to the heart of what the project is about. This clarity helps set

priorities and greatly increases the signal-to-noise ratio of what

really matters.

Let’s now look at a template to help form your pitch.

The Elevator Pitch Template

For [target customer]

who [statement of need or opportunity]

the [product name]

is a [product category]

that [key benefit, compelling reason to buy].

Unlike [primary competitive alternative]

our product [statement of primary differentiation].

There’s no one way to do an elevator pitch. The one I like comes from

Geoffrey Moore’s book Crossing the Chasm [Moo91].

• For [target customer]—Explains who the project is for or who

would benefit from its usage.

• who [statement of need or opportunity]—Expands on the problem

or need the customer has to solve.

• the [product name]—Gives life to our project by giving it a name.

Names are important because they communicate intent.

• is a [product category]—Explains what this service or product

actually is or does.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=59


CREATE AN ELEVATOR PITCH 60

Being Brief Is Tough

One of the reasons the elevator pitch is so powerful is because it
is short. But don’t be fooled into thinking that writing something
short is easy.

It may take you and your team a couple tries before you get
a good pitch, so don’t worry if you don’t nail it the first time.
Writing a good elevator pitch can be hard work—but so worth
it.

I would have written you a shorter letter, but I didn’t have the
time. —derived from Blaise Pascal, Provincial Letters XVI

• that [key benefit, compelling reason to buy]—Explains why our

customer would want to buy this product in the first place.

• Unlike [primary competitive alternative]—Covers why we wouldn’t

already use what’s out there.

• our product [statement of primary differentiation]—Differentiate

and explains how our service is different or better than the com-

peting alternatives. This is the big one. It is where we are really

justifying the expenditure of money on our project.

• The two sentences of the elevator pitch beautifully capture every-

thing we need to quickly communicate the essence of our project

or idea. They tell us what our product is, who it’s for, and why

anyone would want to buy it in the first place.

There are a couple of ways you can do the elevator pitch with your team.

You can print the template and have everyone take a stab at filling it

out themselves before bringing everyone together.

Or, if you want to save a few trees, you can just beam the template up

onto the screen and tackle filling it out as a group, going through each

element of the template one section at a time.

With your elevator pitch in hand, let’s now turn on your creative juices

and design a box for your product.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=60


DESIGN A PRODUCT BOX 61

4.3 Design a Product Box

The Construction
Safety Permit System

Ideal for mine sites

Process permits faster!

Process permits safer!

Track people’s time better!

Where you need it. When you need it.

Software is sometimes a necessary evil for companies. Rather than take

on all the risk and uncertainty that comes with large projects, many

would rather walk into their local Wal-Mart, whip out the credit card,

and simply buy whatever it is they need.

While shrink-wrapped million-dollar software packages on supermar-

ket shelves might still be a long way off, it does raise an interesting

question. If we could buy our software off the supermarket shelf, what

would the product box look like? And more importantly, would we buy

it?

Creating a product box for your project, and asking why someone would

buy it, gets your team focused on what’s compelling for your customer

and the underlying benefits of your product. Both are good things for

teams to be aware of while delivering.

How Does It Work?

Now, I know what you’re thinking. “I’m not creative. I’m not in adver-

tising. I couldn’t possibly create an ad for my product.”

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=61


DESIGN A PRODUCT BOX 62

Well, I’ve got news for you. You absolutely can. And I am going to show

you how in three easy steps.

Step 1: Brainstorm Your Product’s Benefits

Never tell your customers about your product’s features—they won’t

care. What people are interested in, however, is how your product is

going to make their lives easier, in other words, your product’s benefits.

For example, say we were trying to convince a family on the merits of

purchasing a mini-van. We could show them a list of all the features.

Or we could show them the benefits of how the mini-van would make

their lives better.

Features Benefits

245 horsepower engine Pass easy on the highway

Cruise control Save money

Anti-lock brakes Brake safely with loved ones

Be sure to convert any features into benefits!
See the difference?

So, step 1 in creating your product box is to sit down with your team

and customer and brainstorm all the reasons why people would want

to use your product. Then pick your top three.

Step 2: Create a Slogan

The key to any good slogan is to say as much as possible in very few

words. I don’t have to tell you what these companies stand for because

their slogans say it all:

• Acura—The true definition of luxury. Yours.

• FedEx—Peace of mind.

• Starbucks—Rewarding everyday moments.

Did you feel the emotion that came from these slogans?

Now relax. These are some pretty sweet slogans, and yours doesn’t have

to be quite so pro. Just get together with your team, time-box your slo-

gan brainstorming to ten or fifteen minutes, and have some fun exercis-

ing that creative part of your brain. Remember, no slogan is too cheesy.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=62


DESIGN A PRODUCT BOX 63

Step 3: Design the Box

Excellent! You are almost there. With your three compelling reasons to

buy and your irresistible catchy slogan, you are now ready to bring it

together.

Product Name here

Best slogan here

Bene�t #1

Bene�t #2
Bene�t #3

Cool picture

For this exercise, imagine your customer walked into your local soft-

ware store and saw your product box sitting there on the shelf. And

when they picked it up, it looked so compelling that they instantly

bought ten copies for themselves and their friends.

Now quick, draw that box!

Don’t worry about creating the Mona Lisa. Just use flip chart paper,

colored markers, papers, stickies, and whatever you can get your hands

on. Shout out your slogan. Show your customers the benefits. Spend

fifteen minutes designing the best product box you can.

Excellent! See, that wasn’t so hard. Have some fun with this exercise

(it’s not every day you get to use crayons and draw compelling product

pictures). It’s a great team builder and a fun way to think critically

about the why behind your software.

Now let’s see what we can do to start setting expectations around the

scope of your project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=63


CREATE A NOT LIST 64

4.4 Create a NOT List

IN SCOPE OUT OF SCOPE

UNRESOLVED

Create new permit
Update/Read/Delete
 existing permits
Search
Basic reporting
Print

Interfacing with legacy
 road closure system
Offline capability

Integration with logistics tracking
Security card swipe system

When setting expectations about the scope of your project, saying what

you are not going to do can be just as important as what you are.

By creating a NOT list, you will clearly state what is in and out of scope

for your project. Doing this will not only set clear expectations with your

customer, but will also ensure that you and your team are focusing on

the really important stuff while ignoring everything else.

How Does It Work?

The NOT list is a great visual for clearly showing what’s in and out of

scope for your project. Basically, you get together with your customer

and team and fill in the blanks brainstorming all the high-level features

they’d like to see in their software.

Stuff we 
aren’t going 
to sweat

IN

UNRESOLVED

OUT

Big rocks we 
need to move

Things we still need to sort out

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=64


MEET YOUR NEIGHBORS 65

IN contains the stuff we want to focus on. Here we are saying, “These

are the big rocks we are going to be moving on this project.” They can be

high-level features (that is, reporting), or they could be general objec-

tives (that is, Amazon-like scalability).

OUT contains the stuff that we aren’t going to sweat. It might be stuff

we are going to defer to the next release, or it’s simply beyond the scope

of this project. But for now, we aren’t going worry about it. It’s off the

table.

UNRESOLVED lists the things we still need to make a decision about.

This is a great section because it reflects the reality about most soft-

ware projects. They could be many things to many people—which is

exactly what we want to avoid. Eventually, we would like to move all

our UNRESOLVED to the IN or OUT sections.

The beauty of this visual is how much it communicates at a glance. By

listing the big ticket items in scope on the left, out of scope on the right,

and then unresolved on the bottom, everyone can get a clear picture at

a glance of where the boundaries of our project lie.

With our scope clearly defined, let’s now move on and see who’s in our

project neighborhood.

4.5 Meet Your Neighbors

Core team

Technical writers
Safety o!cers

Production 

support

Database

administrators Everyone else!

Help desk

Infrastructure

Security

Good neighbors can be your best friends. They are there when you lock

yourself out of the house. They are there when you need that power

tool. And it feels pretty darn good when you help them set up that

wireless home network.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=65


MEET YOUR NEIGHBORS 66

The Million-Dollar Question

I was once doing an inception deck with a large Canadian
utility when the VP of the division asked how this new system
was going to integrate with the existing legacy mainframe.

You could have heard a pin drop in the room. The VP, the one
signing the checks and ultimately responsible for the success of
this project, didn’t understand that the new system was never
going to integrate with the old one. It was going to replace it
entirely.

It was only because we threw up the NOT list that we avoided
a major expectation reset at some later point in the project. It’s
better to do it now than try to reset something like that when
the project is already underway.

Believe it or not, you have neighbors on your projects too. Only instead

of keeping a spare key and lending you power tools, they manage data-

bases, do security audits, and keep your networks running.

By meeting your neighbors, you can build relationships up front that

will give big dividends down the road. It’s also courteous to say “hi”

instead of just running to them when your house is on fire. And most

important, it’s essential for building the foundation of every successful

project community—trust.

My First Big Project Blunder

We all make mistakes. One of my biggest was as a team lead at Thought-

Works while we were doing some work at Microsoft.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=66


MEET YOUR NEIGHBORS 67

I went in there and started executing the project thinking our project

community looked something like this:

Core team

BA/QA

PMDev

Customer

And for a while everything was fine. The team was doing agile. We were

regularly delivering working software, and life was good.

Then near the end of the project something strange started to happen.

Groups and people I had never seen or met suddenly started coming

out of nowhere and making ridiculous demands of me and the team.

• One group wanted to review our architecture (as if our architec-

ture needed reviewing!).

• Another wanted to make sure we were complying with corporate

security policies (bah!).

• And another wanted to review our documentation (what documen-

tation!).

Who were these people? Where did they come from? And why were they

so intent on messing up our schedule?

Overnight, our nice little project community went from a small team of

six to something much bigger and vast.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=67


MEET YOUR NEIGHBORS 68

Greater community

Technical writers

SQL Server team

.NET team

U.S. Visa o!ce

MS Security

ASP.NET team

O!ce team

Core team

BA/QA

PMDev

Customer

While I felt like blaming others for impacts to our schedule, the reality

was I didn’t appreciate that your project community is always bigger

than you think it is.1

With “Meet the neighbors,” you want to map out who is in your project

community, get them on your radar, and start building relationships

before you need them. That way, when the time comes, you won’t be

complete strangers, and they’ll be in a much better position to help

you.

How Does It Work?

With your team, get together and brainstorm everyone you think you

are going to need to interact with before your project can go live. Team

members who have been with the company a long time and are aware of

all the corporate policies and organizational hoops you’ll need to jump

through will be invaluable here.

1. The Blind Men and the Elephant [Sch03]

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=68


MEET YOUR NEIGHBORS 69

Coffee, Donuts, and Sincerity

When it comes to building respectful relationships with neigh-
bors, it’s hard to beat a good cup of coffee and a sweet-tasting
donut...

Coffee because it comes served in a nice warm vessel, and
as they’re enjoying it, they will associate you with feelings of
warmth.

Donuts because as you are telling your neighbor how much you
appreciate having them around, their bodies will be rejoicing
with the taste of pure sugar, and so they will associate you with
sweetness.

But the ultimate tool for great relationships with your neighbors
is sincerity.

To truly make your neighbors feel appreciated and valued, you
gotta mean it. They will see through insincere flattery in an
instant. But genuine appreciation and sincere thanks will go
miles to winning them over. And you and your project will pros-
per more for it.

Core team

Greater community

Governance (SOX)
Security audit
Production readiness
Business transformation
Change management
Database administrators
Corporate architecture
Training group
Technical writers
Legal
Help desk
Networking/infrastructure
Practice leadership team
Risk and compliance
Branch supervisors

Put your core team
members here ...

and everyone else
out here.

People to start building
relationships with

Then once you’ve gotten the lay of the land, talk about each group

and see whether you can start assigning contact names. Your project

manager, or whomever on the team is going to take lead on building

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=69


MEET YOUR NEIGHBORS 70

these external project relationships, can then come up with a game

plan of engaging these groups.

Master Sensei
and the

aspiring warrior

STUDENT: Master, many of these exercises require time from your

sponsors and stakeholders. What if they are unavailable or are just too

busy to answer these types of questions about the project?

MASTER: Then you should congratulate yourself. For you have just

discovered your first major project risk.

STUDENT: What risk is that?

MASTER: Customer engagement. Without an engaged customer, your

project is in trouble before it even begins. If your customers don’t have

time to tell you why you are writing this software for them in the first

place, maybe it shouldn’t be written at all.

STUDENT: Are you saying we should stop the project?

MASTER: I am saying that to have a successful project, you need cus-

tomer and stakeholder commitment. And that without it, you are already

stalled whether you like it or not.

STUDENT: If this is the case, then what should I do?

MASTER: You need to clearly, and forcefully, explain to your customers

what it is going to take to make this project a success. Their involvement,

commitment, and engagement are required. This may not be the time for

this project. Perhaps they really are busy and simply have too much on

their plate. If this is the case, tell them that you will be here for them

when they are ready. Until then, you have other customers to serve.

STUDENT: Thank you, Sensei. I will think about this more.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=70


MEET YOUR NEIGHBORS 71

What’s Next?

Before we go any further, let’s stop to take a breather.

Can you feel it?

Can you see what is happening here?

With each passing inception deck exercise, the spirit and scope of the

project are becoming more clear.

• We now know the why behind our project.

• We have a good elevator pitch.

• We know what our product box would look like.

• We’re putting some stakes in the ground around scope.

• We have a pretty good idea about who’s in our neighborhood.

Now I know what you’re thinking. Enough context already! When will

we get down to business and start talking about how we are going to

build this thing? And the answer is right now.

In Chapter 5, Making It Real, on the next page, we are going to start

to visualize what the technical solution for your project is going to look

like and what it’s going to take to deliver.

So, turn the page, and get ready to start making it real.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=71


Chapter 5

Making It Real

Now that we’ve got the why, we can start getting smart about the how.

In these sections of the inception deck, we are going to start getting

more concrete with our solution and start putting some stakes in the

ground.

Here, we are going to do the following:

• Present a technical solution

• Look at some risks

• Size things up

• Be clear on what has to give (something always has to give)

• Show our sponsors what this project is really going to take

But let’s start first by getting real with the solution.

Prepared exclusively for Claus Pallisgaard Beck



SHOW YOUR SOLUTION 73

5.1 Show Your Solution

Our technical architecture

ServicesBrowser

Security
Validation Webservices

Domain logic

Third-party card
swipe system

SQL Server

DB2
Mainframe

ETL
Batch

SQL Server
Clustered

SAP HR

Tibco

Out of scope

?

Unresolved
No test
environment

Beware!

To be decided

Visualizing the solution is about getting a read on what we’re going up

against technically and making sure everyone is cool with how we are

going to build this thing.

Talking about your solution and getting it out there in front of your

team and customer is good for a number of reasons:

• It sets expectations around tools and technology.

• It visualizes assumptions around project boundaries and scope.

• It communicates risk.

Even if you suspect everyone is on board with your solution, put it up

there for all to see anyway. Worst case, you will reconfirm what everyone

knows. Best case, you save yourself a lot of pain by not betting the farm

on something that turns out not to be true.

How Does It Work?

You just get together with the technical folks on your team and talk

about how you are going to build this thing. You draw architectural

diagrams, play what-if scenarios, and generally try to get a feel for how

big and how complex this thing is.

If there are open source or proprietary frameworks you are thinking

about using, share those with the team (some companies limit which

open source tools they allow).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=73


ASK WHAT KEEPS US UP AT NIGHT 74

You Pick Your Architecture When You Pick Your Team

To a team with a big hammer, everything looks like a nail.

A team strong in databases will naturally want to do most of
the heavy lifting in SQL, while a team strong in object-oriented
design (OO) will want to put all the complexity in there.

So if you’ve picked your team, you’ve already taken a big step
toward picking your architecture whether you like it or not.

That’s why it’s important that you telegraph your technical
punches early—not because your solution is perfect or you
have all the answers but more because you want to get the
right people on your project and ensure they are aligned with
your proposed solution.

But that’s basically it. Draw enough pictures to show everyone how you

are going to build the system, set expectations around the risky areas,

and make sure everyone is on board with the technical solution.

5.2 Ask What Keeps Us Up at Night

Project risks

Director of construction availability

Team not co-located

New security architecture

Timing of new logistics tracking

system

Many a manager has lost a good night’s sleep over the state of a soft-

ware project—and with good reason. Estimates can be overly optimistic.

Customers can (and do) continuously change their minds. There always

seem to be more things to do than time and money allow. And these are

the project risks we know about!

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=74


ASK WHAT KEEPS US UP AT NIGHT 75

Asking ourselves what keeps us up and night invites a healthy discus-

sion about some of the challenges you and the team might face when

you’re delivering and what you can do to prevent them from ever seeing

the light of day.

Why Talking About Risk Is Good

Talking about project risk is one of those things that most people would

rather skip when starting projects. No one wants to look like Chicken

Little, running around saying the sky is falling.

But talking about risk is a great way of letting people know what you

need for the success of your project.

Take co-location, for example. To someone in facilities, who has never

worked on a software project before, not having everyone sitting to-

gether may not be such a big deal.

To an agile project, however, co-location is king, and talking about risks

is your chance to throw your cards on the table and make it very clear

that if the following are true, then all bets are off on the success of this

project:

• You don’t have a co-located team.

• You don’t have an engaged customer.

• You don’t have control over your own development environment.

• You don’t have something else that you think you need to be

successful.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=75


ASK WHAT KEEPS US UP AT NIGHT 76

Bloomberg on Risk

Michael Bloomberg should know a thing or two about risk.
As the founder of the Bloomberg financial company and the
mayor of New York, he has had to navigate some pretty shark-
infested waters.

In Bloomberg by Bloomberg [Blo01], Michael explains his
favorite technique for handling risk:

1. Write everything down that could possibly go wrong.

2. Think really hard about how to stop those things from
happening.

3. Then tear it up.

Michael’s philosophy is that you can never see everything com-
ing and that no plan is perfect. Life is going to throw curveballs
and sliders at you that you don’t get to bat against in the prac-
tice cage. Get used to it. Either you know what’s coming or you
don’t and never will. For the rest, just take it as it comes.

This is your chance to take a stand and ask for what you need. You may

not get everything you’d like, but at least you’ve made the case and set

expectations with everyone about the consequences of not doing what

you suggest.

Here are some other good reasons for talking about risk early in the

project:

• It highlights project challenges early.

The time to talk about risk is now—at the beginning. It’s too late

once the bomb has gone off. If you have any issues or have seen

any showstoppers, now is the time to air them.

• It gives you a chance to call the craziness.

If you heard some crazy talk over the course of doing the inception

deck, this is your chance to call it out.

• It just feels good.

There is something good about sharing and discussing your fears

with others. It gives the team a chance to bond, share war stories,

and just learn from each others’ experiences.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=76


ASK WHAT KEEPS US UP AT NIGHT 77

Remember, you have a lot of leeway here at the beginning of the project,

and this is your chance to lay it on the line. Use it.

Identify Those Risks Worth Sweating

Get together with your team (including your customer) and brainstorm

all the possible risks you could see happening on your project. You are

the sword your customer is going to be swinging on this project, so

anything that’s going to affect your ability to chop would be good for

them to hear.

Then with your great big list, take all your risks and split them into two

categories: those worth sweating and those that aren’t.

Risks worth tackling

Slow computers

Customer availability

Team not sitting together
Economy cratering

Company getting acquired

Customer getting a promotion

Those that aren’t

For example, although there is a slim chance the entire economy could

crash and we could all be out of jobs, it’s not something we can really

do anything about. So, don’t sweat it.

Losing our lead programmer in a hot job market, however, could hap-

pen. So, we will want to take steps to ensure that knowledge is being

shared and no one becomes too specialized in one area.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=77


SIZE IT UP 78

And for those moments when you’re feeling overwhelmed or struggling

to figure out whether a particular issue is worth the sweat, there’s

always the serenity prayer:

Grant me the serenity
to accept the things I cannot change;
the courage to change the things I can;
and the wisdom to know the difference.

5.3 Size It Up

Rough timeline

Construction UAT Training Ship it!

~3 months 1 wk 1 wk

This is about trying to figure out whether we have a one-, three-, or

six-month project on our hands. We can’t get much more precise than

that at this point in our project, but we still need to give our sponsors

some idea of when they can expect their software to be delivered, even

if it is only a really rough guess.

We’ll go over all the details of how agile estimation works in Chapter 7,

Estimation: The Fine Art of Guessing, on page 114. But for now, pretend

the team has already done the estimates for the project, and here we

are just presenting the results.

Before we do that, though, let’s first go over the importance of thinking

small.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=78


SIZE IT UP 79

1 2 3 6 9 12 months

Risk

Project length

Figure 5.1: The risk of project failure increases greatly over time.

Think Small

You may not have heard of him, but Randy Mott is kind of a rock star

in the Fortune 500 world. Randy helped develop the world-famous Wal-

Mart data warehouse/inventory system that lets store managers track

in real time what flavor of Pop-Tart is selling best at any given store in

the country. He did the same thing at Dell, allowing Dell to quickly spot

rising inventory and offer discounts on overstocked items. And now as

CIO of HP, Randy is helping facilitate HP’s $1 billion makeover of its

internal systems.

Randy obviously did a lot of things right to help companies like Wal-

Mart, Dell, and HP get to where they are. But one of his self-proclaimed

secrets was the insistence that no development cycle take longer than

six months (Figure 5.1).

The problem with large, open-ended projects is they seem to perpetually

over-promise and under-deliver. There is always one more thing to add

or one more feature to be included. And before long costs escalate,

estimates are thrown out the window, and the project collapses under

the girth of its own ever-expanding weight.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=79


SIZE IT UP 80

Randy’s sweet spot for IT projects is six months or less. Anything longer

he finds too risky. That doesn’t mean every IT initiative he wanted

to deliver could be built in six months. He just realized he had been

burned enough times to know that if he wanted to deliver something

really big, he needed to break it down into smaller, more manageable

pieces.

Randy and agile sing from the same song sheet when it comes to sizing

up IT projects: the smaller, the better—preferably six months or less.

Set Some Expectations About Size

Sizing it up basically involves looking at your estimates and coming

up with a rough plan for your stakeholders. You have to factor in user

acceptance testing (UAT), training, and anything else you need to do

before going live. But all you are really doing is giving them a best

guess of how big you think this thing is and whether it can be done in

a reasonable period of time.

You have a couple of options when it comes to presenting your plan.

You can put a stake in the ground and say you are going to deliver

by date. Or you can commit to delivering a core set of features and be

more flexible on the date. We’ll cover the differences between the two

and when you would want to choose one or the other in Section 8.4,

Step 5: Pick Some Dates, on page 146.

Note: Under no conditions can you let your customer think the plans

you are presenting here are hard commitments. They are not. They

are simply unvalidated high-level guesses that can be vetted only by

building something, measuring how long that takes, and feeding that

information back into the plan.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=80


BE CLEAR ON WHAT’S GOING TO GIVE 81

5.4 Be Clear on What’s Going to Give

Trade-off sliders

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

Scope

Budget

Time

Quality

Ease of use

Simple simple simple

Detailed audits

Flex here

There are certain laws and forces that demand respect on our projects.

Budgets and dates tend to be fixed. Scope regularly seems to increase

with reckless abandon. And quality is always #1.

Yet these forces are often in conflict. Giving in to one means taking

something away from the others. If left unbalanced for too long, the

force of one can overwhelm a project until it finally breaks and snaps.

Something has to give. The question is what?

Agile has a way of taming these wild and dangerous forces, and I am

going to leave you in the capable hands of Master Sensei to show you

how.

Together, you will study which forces are in play on our projects, the

trade-offs they force us to make, and how you can use their power for

the good of your project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=81


BE CLEAR ON WHAT’S GOING TO GIVE 82

The Test

1. Which of these forces is most precious to a software project?

• a) Quality.

• b) Time.

• c) Scope.

• d) Budget.

2. When faced with too much to do and not enough time, is it better to

do the following:

• a) Cut scope

• b) Add more people to the project

• c) Push out the release date

• d) Sacrifice quality

3. Which is most painful?

• a) Walking on fire

• b) Chewing broken glass

• c) Doing the Macarena

• d) Asking your sponsor for more money

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=82


BE CLEAR ON WHAT’S GOING TO GIVE 83

How did you feel answering these questions?

Did you find yourself thinking, “It depends”?

There are no absolute right or wrong answers to these questions. They

are intended to show you that there are forces at work on your project

and striking the right balance between them takes work.

It is time you learned about these forces and how to tame them. It is

time you learned the secrets of...the Furious Four.

The Furious Four

Since the dawn of time, all projects have been bound and governed by

four interwoven and connected forces. They are known as the Furious

Four: time, budget, quality, and scope.

With us on every project, they are there causing mayhem and mischief

every time:

• Our schedules get squeezed.

• Our budgets get cut.

• Our bug list grows.

• We have too much to do.

As fierce as the Furious Four are, however, they can be tamed. Let’s now

consider each in turn and how we might work with them harmoniously

on our projects.

Time

Time is finite. We can neither create it nor store it. We must simply do

our best with that which is given.

That is why agile warriors favor time-boxing their delivery efforts. A

warrior knows that continuously pushing out release dates and delay-

ing the shipment of valuable software reduces the customer’s return

on investment and runs the risk of never releasing anything at all—the

worst possible fate for any software project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=83


BE CLEAR ON WHAT’S GOING TO GIVE 84

And so the agile warrior fixes time.

Budget

Budget is the twin of time. It too is fixed, finite, and usually not forth-

coming in abundance.

One of the most difficult things for a customer to do is to go to the

sponsor and ask for more money. It does happen on occasion—but the

experience is never pleasant.

To avoid this unpleasantness, the warrior treats budget the same way

as time. Fixed.

Quality

There are those who believe quality can be sacrificed in the interest of

time. They are wrong. Any short-term gain in speed, resulting from a

reduction in quality, is a false and temporary illusion.

Reducing quality is like juggling flaming machetes on a cold winter’s

day. Yes, we may warm our hands briefly for a few moments, but at

some point we are going to cut ourselves and get badly burned.

And so quality too is fixed and always held to the highest standard.

Scope

With time, budget, and quality fixed, the agile warrior is left but with

one force around which to bend on a project: scope.

If there is too much to do, the warrior will do less. If reality disagrees

with the plan, the warrior will change the plan instead of reality.

This makes some of my students uncomfortable. Many come to my dojo

having been taught that plans are fixed, immovable, rigid things, never

to be changed or altered. Nothing could be further from the truth.

A date may be fixed. But a plan is not.

And so, out of the four forces arrayed against him, the agile warrior will

fix time, budget, and quality, and flex the project around scope.

You are now ready for the trade-off sliders.

The Trade-off Sliders

The ancient trade-off sliders are one tool a warrior can use to enter

discussion with their customer about the impact of the Furious Four

on their project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=84


BE CLEAR ON WHAT’S GOING TO GIVE 85

Training vs. Delivery

Training vs. delivery was something we always had to balance
on projects at ThoughtWorks. Although we never viewed our-
selves as a training company, it was a good hook for our sales
guys, and it got us in the door to a lot of places.

However, training is one thing. Delivery is another.

By using the slider board and asking the customer to rank these
two competing forces, we could set expectations with the cus-
tomer and act accordingly.

For example, the warrior will want to gain insight into how their cus-

tomer views things like time, budget, and quality. Likewise, the warrior

will want to set expectations around the importance of being flexible on

scope and not get too married to all the features (user stories) on the

to-do (master story) list.

ON OFF Scope

Make sure they 
understand you
are going to be
flexible on scope

Once the forces are named and plain for all to see, the warrior will ask

their customers to rank these forces in order of relative importance. No

two forces can occupy the same level of ranking (in other words, they

can’t all be #1).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=85


BE CLEAR ON WHAT’S GOING TO GIVE 86

ON OFF Scope

They can’t
all be #1xON OFF Budget

ON OFF Time

ON OFF Quality

Most customers understand that something has to give on their

projects. Should they become nervous about ranking them, remind

them that everything on the board is important. In other words, just

because quality has a lower ranking than time doesn’t mean quality is

not important. We are simply communicating that we can’t miss our

ship date—no matter what. Hence, time has the higher ranking.

ON OFF Scope No two can
occupy the 
same level

x
ON OFF Budget

As important as the Furious Four are, however, there are other forces

we must also keep at bay. Let’s now see what other forces might be at

work on your projects.

On Time and on Budget Are Not Enough

Consider this:

• What good is the computer game that is no fun to play?

• Does an online dating community exist if there is no one there to

court?

• What sound does an online radio station make if no one is

listening?

As important as it is to maintain balance among the Furious Four,

the whole story they do not tell. There are other forces at work on our

projects of equal if not greater value.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=86


SHOW WHAT IT’S GOING TO TAKE 87

ON OFF

ON OFF

ON OFF

Insanely fun computer game

Reduce call center traffic (20%)

Customer self-service

Be sure to list ‘the intangibles’

Things that can make or break your project
You may have felt them during your inception deck training. Or perhaps

they were hinted at during your story-gathering workshops with your

customer (Section 6.4, How to Host a Story-Gathering Workshop, on

page 108).

When you present the trade-off sliders to your customer, reserve the

bottom level for those “intangibles” that will make or break your project.

Only by making them visible and putting them up for all to see will

you demonstrate you truly understand that which is most important to

your customer.

Phew! You made it. Let’s see how we can bring it all together now in one

final plan and present to our sponsors what it’s going to take.

5.5 Show What It’s Going to Take

The first release

Construction UAT Training Ship it!

~3 months 1 wk 1 wk

7 people, 3 ½ months, $336K

You are almost there!

You’ve got the vision.

You’ve got the plan.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=87


SHOW WHAT IT’S GOING TO TAKE 88

Now you just have to figure out what it’s going to take and how much

it’s going to cost.

In this section, you are going to lay it all out before your sponsors. This

is the team. This is the plan. And this is how much it is going to cost.

Let’s start with the team.

Assemble Your A-Team

At this point in the game you’ll have a pretty good idea what kind of

team you are going to need to pull this mission off. Here we simply

want to spell it out.

# Role Competencies/Expectations

Project manager Comfortable with ambiguity
Can function without going command and control

1

Developers C#, ASP.NET, MVC experience
Unit testing, TDD, refactoring, continuous integration

3

Analyst Comfortable with just-in-time analysis
XP-style story card development
Willing to help test

1

Customer
Available one hour a day for questions
Can meet once per week for feedback
Able to direct, steer, and make decisions about project

1

1 Tester
Automated testing experience
Works well with developers & customer
Good at exploratory testing

1 UX designer
Capable of rapid prototyping (paper prototypes)
Wireframes & mockups, user flows, HTML/CSS a plus

This is a good time to talk about roles and responsibilities (Chapter 2,

Meet Your Agile Team, on page 26) and what is going to be expected of

everyone when they join this project.

One role I usually spend a few extra minutes on is the customer. First,

it’s super-important, and second, it’s not really baked into most com-

panies’ DNA. Here I like to look the customer in the eye and make sure

they understand what they’re signing up for when they choose to join

an agile project.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=88


SHOW WHAT IT’S GOING TO TAKE 89

Can they commit the time?

Are they empowered to make the necessary decisions?

Are they willing to direct and steer the development of this project?

Developers, testers, and analysts can usually figure out their new roles.

But the agile customer is new for some, so it’s worth emphasizing.

One other thing you’ll want to be clear on (especially if you have multi-

ple stakeholders) is who’s calling the shots.

Clarify Who’s Calling the Shots

There’s nothing more confusing to a team than not knowing who to take

their marching orders from.

The director of IT wants to prove the latest technology. The VP of strat-

egy wants to be first to market. The VP of sales just publicly committed

to a new version for the second quarter.

The core team

Stakeholders

Get to give input

Our customer

The decider
Sets direction
Calls the shots

Where the team gets
their marching orders

You can’t have multiple stakeholders, all approaching the team with

different ideas about where the team should be headed, what the pri-

orities are, and what to work on next.

Instead, you want to make it very clear up front who’s driving the bus.

That doesn’t mean other stakeholders don’t have a say—far from it. We

just want the customer to speak to the team in one voice.

By putting this slide up and raising this issue now, you can avoid a lot

of confusion and costly rework and realignment later.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=89


SHOW WHAT IT’S GOING TO TAKE 90

Even if you think you know who is calling the shots, ask anyway. Not

only will this remove any doubt, it will also make it crystal clear to the

team and the other stakeholders who the ultimate decider really is.

Now let’s talk about money.

Estimate How Much It’s Going to Cost

You may never need to talk about money on your project. Your budget

may have already been set, and you will simply be told how much you

have to work with.

If you do need to create a rough budget for your project, however, here’s

a quick and easy way to get some rough numbers:

8 people x 3 ½ months @ $100/hr
Rough budget

$448K

* assuming 160 hr/month

Simply multiply the number of team members over the duration of your

project, at some blended rate, and voila—you have your budget.

Sure, you may have some software costs, and yes, your company may

have a special way of accounting for this or that. But almost without a

doubt, the greatest cost to your project walks on two legs and sits at a

computer.

Now let’s bring it all together and help them make that go/no-go deci-

sion.

Bringing It All Together

This is the slide most stakeholders will be super-keen on because at the

end of the day there’s only two questions they really need answered:

• When is it going to be done?

• How much is it going to cost?

To be clear, we can’t commit 100 percent to these dates and numbers

at the moment. Yes, we’ve done some great homework, and sure, we’ve

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=90


SHOW WHAT IT’S GOING TO TAKE 91

answered some fundamental questions, but there are simply too many

unknowns at this point (like how fast the team can go) to treat these

numbers as anything other than best guesses.

One way to present the numbers is in a slide like that presented at

the beginning of the section. If it’s a program of projects, or something

bigger, use your creativity and ask yourself what you’d like to see if it

were your money, you were the head honcho, and you needed to decide

whether this project was a go.

Inception Deck Wrap-Up

Congratulations! You made it! You’ve just completed your first crucial

step to successfully defining, getting people aligned, and kick-starting

your very own agile project.

Just look at the picture and story you, your team, your sponsor, and

your customer can now share and tell. Collectively, you all know the

following:

• What you are building and why

• What’s compelling about your project

• What big rocks you need to move

• Who’s in your neighborhood

• What your solution looks like

• What major challenges and risks you’re going to face

• How big this thing is

• Where you are prepared to bend and flex

• Approximately what it is going to take (time and money)

Master Sensei
and the

aspiring warrior

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=91


SHOW WHAT IT’S GOING TO TAKE 92

MASTER: Tell me what you have learned so far regarding the inception

deck.

STUDENT: I now see the importance of asking the tough questions at

the start of a project and seeking alignment before the project begins.

MASTER: Very good. What else?

STUDENT: I now see that project chartering doesn’t have to take

months of scoping and planning. With the inception deck, we can scope

and set expectations quickly, usually within a couple of days.

MASTER: And what if something important in spirit, scope, or intent of

a project changes? What should we do then?

STUDENT: Update the deck. Run it by everyone again, and ensure the

alignment and shared understanding is still there.

MASTER: Very good. You are ready for the next stage of your journey.

What’s Next?

With the why of your project, we are now going to go over a few of the

details we glossed over earlier in the chapter.

In agile planning, we are going to go over everything you’ll need to cre-

ate your very own agile project plan. Estimation, master story lists,

concepts like team velocity—we’re going to cover it all.

And there is no better place to start than with the unit of work from

which all agile projects are made—the humble user story.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=92


Part III

Agile Project Planning

Prepared exclusively for Claus Pallisgaard Beck



Chapter 6

Gathering User Stories

Because life is too short ...
to write everything down.

In Part III we are going to get into the basics of agile planning: user

stories, estimation, and adaptive planning.

By learning how to gather requirements as user stories, you will see

how agile plans are always kept up-to-date, contain only the latest and

greatest information, and avoid one of the greatest wastes our industry

has ever known—premature up-front analysis.

Let’s start by looking at how we used to gather requirements and some

of the challenges that come with trying to write everything down.

6.1 The Problem with Documentation

Heavy documentation as a means of capturing requirements has never

really worked for software projects. Customers seldom get what they

want. Teams seldom build what is needed. And vast amounts of time

and energy are spent debating what was written, instead of doing what

needs to be done.

Prepared exclusively for Claus Pallisgaard Beck



THE PROBLEM WITH DOCUMENTATION 95

Here are some other problems teams run into when they rely too heavily

on documentation for their software requirements:

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=95


THE PROBLEM WITH DOCUMENTATION 96

What If We Just Tried Documenting More?

The problem with gathering requirements as documentation isn’t one of

volume—it’s one of communication. First, you can’t have a conversation

with a document (at least not a very engaging one).

Second, it’s just really easy to misinterpret what someone wrote.

I didn’t say she took the money.

I, didn’t say she took the money.

I didn’t say she took the money.

I didn’t say she took the money.

I didn’t say she took the money.

I didn’t say she took the money.

Words are slippery things!

I didn’t say it.

I said something else ...

But someone else might have!

She spent it instead.

Nope. Instead she stole my 
heart and left for San Francisco.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=96


THE PROBLEM WITH DOCUMENTATION 97

Is a Requirement Really a Requirement?

Agile warriors don’t believe in requirements. The term is just plain
wrong, as Kent Beck, one of the great agile warriors puts it in
Extreme Programming Explained: Embrace Change [Bec00]:

“Software development has been steered wrong by the term
requirement, defined in the dictionary as something that is
mandatory or obligatory. The word carries a connotation of
absolutism and permanence, inhibitors for embracing change.
And the word “requirement” is just plain wrong.

“Out of the thousands of pages used to describe requirements,
if you deliver the right 5, 10 or 20 percent, you will likely real-
ize all of the business benefit envisioned for the whole system.
So what were the other 80 percent? Not requirements—they
weren’t mandatory or obligatory.”

I remember Martin Fowler once lamenting that even after spending

years working on a book, he was continually surprised by the num-

ber of times people missed the core message of what he was trying to

say.

In extreme cases, mistakes in grammar cost companies millions of dol-

lars.1 But mostly, they just serve as a poor means of describing and

capturing what customers would like to see in their software.

This leads us to one of the most important principles of agile:

Agile principle
The most efficient and effective method of 
conveying information to and within a 
development team is face-to-face conversation.

So, what we need is something that enables us to have a conversation

about a requirement, captures the essence of what our customer wants,

and is small enough for planning yet descriptive enough to remind us

what we are talking about.

1. http://www.nytimes.com/2006/10/25/business/worldbusiness/25comma.html

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://www.nytimes.com/2006/10/25/business/worldbusiness/25comma.html
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=97


ENTER THE USER STORY 98

6.2 Enter the User Story

Agile user stories are short descriptions of features our customer would

like to one day see in their software. They are usually written on small

index cards (to remind us not to try to write everything down) and are

there to encourage us to get off our butts and go talk to our customers.

When you first see an agile user story, you may be tempted to ask,

“Where’s the beef?” Don’t be fooled. The beef is there—just not where

you think it is.

Validation Error checking
Screen shots

Terms & definitions

Security requirementsBusiness rules

Student logs inwith expired account

Not exactly—more that they don’t have to.

Agile encourages teams to use index cards (small recipe cards) to re-

mind teams that the initial goal of the requirements-gathering exercise

isn’t to get into all the details. It’s to write down a few key words to

capture the spirit of the feature and file it away for a later date.

Why capture just a few key words and not go to town on the full require-

ment? It’s because we don’t know at this point when we are going to get

to that feature or whether we are even going to need it! We may not get

to this feature for months. And by the time we do, the world, and our

software, is going to look a lot different.

So, to save us the time and energy of going pro on it now and having

to redo it all later, we defer diving into the low-level details until later

(more on this in Section 9.4, Step 1: Analysis and Design: Making the

Work Ready, on page 165).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=98


ELEMENTS OF GOOD USER STORIES 99

So, think of a user story as a promise of a conversation. At some point,

we’ll do the deep dive and get in there. But we’re not going to do it until

we are sure we’re going to need it.

6.3 Elements of Good User Stories

The first element of a good user story is that it’s something of value to

our customers. What’s valuable? Something they would pay for.

For example, which restaurant do you think your hungry customer

would rather dine at?

Ernie’s Tech Diner

C++

Connection pooling

Model-View-Presenter pattern

The system will be written in C++.

All database access will be handled
by a database connection pool.

The system will separate presentation
logic from business logic.

3 days

2 days

5 days

Sam’s Business Pancake House

Create user account

Notify subscribers of new listings

Cancel subscription

Users will have individual, personalized
accounts to log into your system.

Subscribers will be notified every time
a new house is listed in their market.

Embedded in every email will be an 
unsubscribed option.

3 days

2 days

1 day

User stories have to make sense to business. That’s why we always try

to write them in simple terms that they understand and stay away from

any technical mumbo jumbo.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=99


ELEMENTS OF GOOD USER STORIES 100

That doesn’t mean that we can’t use connection pooling or design pat-

terns when building our systems. It means that it’s better if we put it

in terms that they understand.

Add database
connection pooling

Reduce page load
time from 10 secs
to 2 secs

So, whenever you’re tempted
to write something technical 
as a story ...

... instead try to rewrite it in 
terms of something valuable 
to the business.

Something they can get excited about!

The second characteristic of a really good user story is one that goes

from end to end—or as we like to call it, “slices the cake.”

User interface (HTML, Ajax, CSS)

Middle tier (C#, Java, Python)

Data tier (Oracle, SQL Server)

Just like most of us wouldn’t want the cake without the icing, our cus-

tomers don’t want a half or a third of a solution. That’s why a good user

story goes end-to-end slicing through all the layers of the architecture

and delivers something of value.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=100


ELEMENTS OF GOOD USER STORIES 101

Good user stories also have the following characteristics:

Add user

Create vacation

schedule

Independent

Things change on projects. What was really important last week can

suddenly becomes not so important this week. If all of our stories are

intertwined and dependent on one another, making trade-offs becomes

hard.

We don’t always succeed (we need an application before we can cre-

ate the reports), but slicing our stories from end to end and gathering

them by feature enables us to treat the vast majority of our stories as

independent and be flexible on scope when necessary.

Negotiable

How much can you afford?

There are always multiple ways to deliver any given story. We could

build the Ford Focus, Honda Accord, or Porsche 911 version of any

given feature.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=101


ELEMENTS OF GOOD USER STORIES 102

Negotiable stories are nice because they give us the wiggle room we

sometimes need to work within our budgets. Sometimes we will need

the Porsche. Other times the more spartan Ford will do.

Login with expired

account

Testable

Allow regular logins

Re-direct expired logins

Display appropriate

error message

Handle nonexistent

user account

We like our stories to be testable (as opposed to detestable) because we

like to know when something is working. By writing tests against our

user stories, we give the development team a stake in the ground and a

way of knowing when they are done.

Build website

?

Small and Estimatable

Think you boys can get this done in a week?

And speaking of done, how do we know a story will fit in within the

time frames we have? By making our stories small (one to five days), we

can ensure they can fit into our one- to two-week iterations, which will

enable us to estimate more confidently.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=102


ELEMENTS OF GOOD USER STORIES 103

Thanks to Bill Wake for coming up with the handy INVEST acronym for

“Independent, Negotiable, Valuable, Estimatable, Small, and Testable.”

In summary, here are what user stories give us when compared to doc-

umentation for gathering requirements:

User stories
Specifications &
requirement docs

Lean, accurate, just-in-time

Encourage face-to-face communication

Simplified planning

Cheap, fast, easy to create

Never out-of-date

Based on latest learnings

Enable real-time feedback

Avoid false sense of accuracy

Heavy, inaccurate, out-of-date

Encourage guesswork (false assumptions)

Complex planning

Expensive, slow, hard to create

Always out-of-date

Based on little or no learning

Disable real-time feedback

Promote false sense of accuracy

Allow for team-based collaboration
and innovation

Discourage open collaboration and innovation

That’s enough theory. Let’s get real and gather some stories for a local

dude getting ready for the summer surf scene.

Welcome to Big Wave Dave’s Surf Shop

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=103


ELEMENTS OF GOOD USER STORIES 104

It’s OK to Help Customers Write Stories

Don’t take earlier agile books too literally when they tell you
that customers should write all the user stories. That advice is
right in spirit—but not in practice.

It’s true that customers should provide the content for our user
stories (because they are the ones who know what they want
built). In practice, however, it will be you who will be doing most
of the writing.

So, don’t be worried if you find yourself giving them a hand. Just
make sure your customers are active participants in the process
and you are capturing their needs in the cards.

Dave hired a local company a few months ago to build a website, but

they spent the budget writing up the requirements (surprise!) and never

got around to actually building the website (sheesh!). Fortunately, Dave

has come to us for help.

Let’s Find Out What Dave Needs

Sitting down with Dave, we ask him to list all the features he would like

to see on his website. This is nothing too deep—just high-level descrip-

tions of features he would like his website to have and things he would

like it to do.

First, I want the website to be a place for the local scene. Somewhere

the kids can come and check out upcoming events—surf competitions,

lessons, things like that.

Second, I need a place to sell merchandise. Boards, wet suits, clothes,

videos, and things like that. But it’s gotta be easy to use and look really

good.

Third, I’ve always wanted a webcam pointing at the beach. This way,

you don’t have to come down to check out the conditions. You can just

open your laptop, go to the website, and see whether it’s worth getting

up. This also means the website has to be fast.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=104


ELEMENTS OF GOOD USER STORIES 105

Now you try

See whether you can extract six user stories based on Dave’s descrip-

tion of his website. Don’t worry about writing perfect stories. Just prac-

tice taking what your customer says they would like to see in their

software and extracting user stories from what you hear.

List sales
(clothes & videos)

Write your 
stories here

Now looking at each one of your stories, how did they measure up

against our INVEST criteria (Independent, Negotiable, Valuable, Esti-

matable, Small, and Testable)?

Don’t worry if they aren’t perfect (they never are). Just get used to grab-

bing the idea, making sure it’s something your customer understands

and would find value in, and writing it down on a card.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=105


ELEMENTS OF GOOD USER STORIES 106

Let’s pretend our first pass through the story list looked something like

this:

What about these two?

List upcoming
events and 
competitions

List upcoming
sales

Display local

surf report

View webcam
of beach

Show lesson

packages and rates
Used board and

equipment section

Website must 

be super-fast!
Design should 

look really good

Real-time updates

What do you think about the last two stories on our list?

• The website must be super-fast!

• The design should look really good.

Are these good stories? Why not?

If you are thinking The website must be super-fast! is a little vague and

ambiguous, you’re right! How fast is super-fast? How do we test for

whether something looks really good?

Stories like these, we call constraints. They aren’t your typical user sto-

ries that we can deliver in a week. But they are important because they

describe characteristics our customers would like to see in their soft-

ware.

Sometimes, we’ll be able to translate these into testable stories.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=106


ELEMENTS OF GOOD USER STORIES 107

For example, we could rewrite The website must be super-fast! like this:

All web pages must
load in less than 2 sec A constraint card

That is certainly clearer (because we now know what super-fast means).

And we can certainly write tests for that.

Constraints are important, but they don’t form the bulk of our user

stories. Capture them on different colored cards. Make sure everyone

on the team is aware of them, and test for them periodically while you’re

developing your software.

The User Story Template

A few short, well-chosen words are usually enough to remind the team

about what a particular user story was about. Some teams, however,

like a little more context.

If you fall into this camp, try using this user story template:

whoAs a   <type of user>

I want <some goal>

so that <some reason>.

what

why

is this story for

they want to do

they want to do it

For example, using the template, some of our stories for Big Wave

Dave’s surf shop might look like this:

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=107


HOW TO HOST A STORY-GATHERING WORKSHOP 108

As a surfer who likes to sleep,
I want to check local surf conditions via a webcam
so that I don’t have to get out of bed if there is no swell.

As a land-locked Canadian hockey player,
I want to sign up for some adrenaline-pumping lessons
so I can feel the thrill of going “over the falls.”

As a grommet looking for the latest surf wear,
I want to see all the latest board shorts and designs
so that I can look stylin’ for the Sheilas this summer.

The nice thing about the user story template is it answers three impor-

tant questions about the user story: the who, the what, and the why.

It gives a little more context and really emphasizes and focuses on the

business, which is a good thing.

The disadvantage of the story is all the extra verbiage makes it harder

to parse and figure out what the story is about. Some people like the

extra context. Others find it too much noise.

Try them both and see what you like—it doesn’t have to be one or the

other. For example, you could use a short name like “Add user” for

planning and then on the back of the card the longer template version

for analysis later if that helps.

6.4 How to Host a Story-Gathering Workshop

Now, before we can go off and create our agile project plan, we need a

list of all the features our customers think they would like to see in their

software. One way to do this is to host a story-gathering workshop—a

venue for the development team and customer to get together and write

user stories about the system they would like to build.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=108


HOW TO HOST A STORY-GATHERING WORKSHOP 109

The goal of the story-gathering workshop is breadth. You want to cast

your net wide and discover as many features as possible. It is not be-

cause you are necessarily going to build them all; it’s more because

you want to get everything on the table and make sure you have the big

picture.

The NOT list (Section 4.4, Create a NOT List, on page 64) you cre-

ated as part of the inception deck can help you get going here. But

it usually comes down to sitting down with your customer, drawing

some pictures, and writing story cards as you talk about the system.

That’s it!

Here are some tips on how to host a good story-gathering workshop.

Step 1: Get a Big Open Room

You want something you can get up and move around in—a room where

you can stick pictures on the wall, collect cards on a big open table, and

do whatever it takes to get the story discovery juices flowing.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=109


HOW TO HOST A STORY-GATHERING WORKSHOP 110

Step 2: Draw Lots of Pictures

Personas Flowcharts Scenarios

Concept designsProcess !owsSystem maps

Storyboards Paper prototypes Your own

?
Pictures are a great way to brainstorm ideas about the system and are

a treasure trove for discovering stories.

Personas (descriptions of the people who are going to be using your sys-

tem) are good for getting to know your customers. Flowcharts, process

flows, and scenarios are great for role playing and really getting a feel

for how the system needs to work. System maps and information archi-

tecture diagrams help organize and break down the work. And concept

designs and paper prototypes are cheap ways of just trying stuff out

and seeing what works.

Remember, we’re shooting for breadth here. So, be careful not to dive

too deep on the details—you want to keep it high level.

But once you have a few good pictures and an understanding of how

the system needs to work, you’re ready to start mining the pictures for

stories.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=110


HOW TO HOST A STORY-GATHERING WORKSHOP 111

Step 3: Write Lots of Stories

Using your new diagrams and pictures, walk through them with your

customer, extracting user stories as you go.

Create permit Approve Pick up permit Cancel

Reject
Give reason 

Cancel
Give date

Walk the flowchart extracting user stories as you go

Create permit Approve permit Cancel permit

If most of your application hangs off one or two screens, take those

screens and break them down into smaller pieces of functionality.

Create permit

Approve permit

Find permit

Display permit

Reject permit

Print permit

From one flow chart, backed by a few lo-fi paper prototypes, you can

usually get the most of the core stories for your project.

When you’re extracting your user stories, look for small, discrete, end-

to-end pieces of functionality (usually one to five days worth of effort).

It’s OK if some of your stories are kind of big. We call these epics—big

stories that take a couple weeks of work.

Epics are handy for high-level planning or for capturing big stories that

we think we may have to take on but are not really sure yet. If you have

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=111


HOW TO HOST A STORY-GATHERING WORKSHOP 112

some major pieces of functionality like this, treat them like any other

story, and break them down if and when they come up for development.

At the end of the day, ten to forty high-level stories are usually enough

for three to six months of planning. If your stories number in the hun-

dreds, either you’re planning too far ahead or you’re going into too

much detail. We are shooting for breadth (not depth) here. So, don’t

dive too deep and get lost in the weeds.

Step 4: Brainstorm Everything Else

As good as the pictures are, they don’t capture everything we need

to do on your project: data migration, load testing, SOX compliance

paper work, production support documentation, training materials, two

weeks for user acceptance testing (UAT), and so on. All these things and

more need to be captured in the cards and prioritized and treated like

any other deliverable for project.

This is a good time to pull out your picture from Section 4.5, Meet Your

Neighbors, on page 65 and brainstorm all the other things you are going

to need to do to make this project a huge success.

If there is something you need to do (even if it’s not software related),

create a card for it and write it down.

Step 5: Scrub the List and Make It Shine

Once you have your initial list, it’s good to go through it a few times

looking for duplicates, looking for things you may have missed, group-

ing logical stories together, and consolidating it into a simple, easy-to-

understand to-do list of things you need to deliver. Congratulations!

You now have the beginning of your project plan!

Master Sensei
and the

aspiring warrior

STUDENT: Master, if face-to-face communication is the most efficient

way of sharing information about the system, does that mean I should
Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=112


HOW TO HOST A STORY-GATHERING WORKSHOP 113

spend more time talking to my customer about their requirements and

less time writing them down?

MASTER: That is correct.

STUDENT: Does this mean I should never use documentation when

gathering requirements?

MASTER: No. The goal isn’t the elimination of all documentation—

documentation is neither good nor bad. The goal is to remind ourselves

of that which is most effective for sharing information about our project.

STUDENT: So, some documentation is permitted when gathering

requirements?

MASTER: Of course. Just do not make it your primary focus. Instead,

concentrate on understanding your customer and what they need from

their software. Know the limits of documentation as you describe. Make

it your last resort for understanding. Not your first.

STUDENT: Thank you, Master. I will meditate on this more.

What’s Next?

Well done, amigo! Now that you see user stories are nothing more than

short descriptions of features our customers would like to see in their

software, you are one step away from being able to create your very first

agile project plan.

In the next chapter on estimation, we’ll see how to size our stories so

they can withstand the inevitable hiccups we encounter during delivery.

So, onward and upward, as we demystify the art and science behind

agile estimation.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=113


Chapter 7

Estimation:
The Fine Art of Guessing

Get ready to bring some reality back to the estimation process. Agile

dispenses with the pleasantries and reminds us what our initial high-

level estimates really are—really, they’re bad guesses.

But by learning how to estimate the agile way, you’ll stop trying to get

something your up-front estimates can’t give (precision and accuracy)

and instead focus on what really matters—building a plan you and your

customer can work with and believe in.

In this chapter, you’ll learn how to estimate your user stories the agile

way, as well as some powerful group estimation techniques for sizing

up things.

7.1 The Problem with High-Level Estimates

Let’s face it. Our industry has had some challenges when it comes to

setting expectations around estimates on software projects.

Prepared exclusively for Claus Pallisgaard Beck



THE PROBLEM WITH HIGH-LEVEL ESTIMATES 115

The Point of Estimation

"The primary purpose of software estimation is not to predict a
project’s outcome; it is to determine whether a project’s targets
are realistic enough to allow the project to be controlled to
meet them."

—Steve McConnell, Software Estimation: Demystifying the Black
Art [McC06]

It’s not that our estimates are necessarily wrong (though they almost

always are). It’s more that people have looked to estimates for some-

thing they can never give—an accurate prediction of the future.

It’s like somewhere along the way, people lost sight of the fact that

And it is when these up-front, inaccurate, high-level estimates get

turned prematurely into hard commitments that most projects get into

trouble.

Steve McConnell refers to this dysfunctional behavior as the cone of

uncertainty (Figure 7.1, on the following page), which reminds us that

initial estimates can vary by as much as 400 percent at the inception

phase of our project.

The simple fact is that accurate up-front estimates aren’t possible, and

we need to stop pretending they are.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=115


TURNING LEMONS INTO LEMONADE 116

4x

2x

1.25x

0.8x

0.5x

0.25x

Don’t make promises you can’t keep up here

Make them down here once you’ve had
a chance to firm things up

time

Inception

Elaboration

Construction

Done

E
s
ti
m

a
ti
o

n
 v

s
 V

a
ri
a

b
lil

it
y

Figure 7.1: The cone of uncertainty reminds us of how greatly our esti-

mates can vary at different stages throughout the project.

The only question our up-front estimates can attempt to answer is this:

What we need is a way of estimating that does the following:

• Allows us to plan for the future

• Reminds us that our estimates are guesses

• Acknowledges the inherent complexities in creating software

7.2 Turning Lemons into Lemonade

In agile, we accept that our initial, high-level estimates aren’t to be

trusted. However, we also understand that budgets need to be created

and expectations need to be set.

To make that happen, the warrior does what anyone would do who is

looking to firm up any estimate. They build something, measure how

long that takes, and use that for planning going forward.

For that to work, we need two things:

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=116


TURNING LEMONS INTO LEMONADE 117

• Stories that are sized relatively to each other

• A point-based system to track progress

Let’s look at each of these in more detail and see how they help us plan.

Relative Sizing

Imagine you knew it took ten seconds to eat one chocolate chip cookie,

and you were asked to estimate how long it would take you to devour a

pile of seven and fourteen cookies (glass of milk included). What would

your guess be?

If it takes 10 secs to eat 
one of these ...

how long should it take to
devour these?

10 secs ? secs ? secs

Om nom nom
7 cookies 14 cookies

Now imagine you were asked to estimate something else—something

simple but maybe something you haven’t done many times before. How

long do you think it would take you do these four simple tasks?

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=117


TURNING LEMONS INTO LEMONADE 118

Roll a snake-eyes (two ones)
three times using two die

? secs

Find the two missing cards

in a deck of cards

? secs

Blow up six birthday balloons

? secs

Build a two-story house
of cards

? secs

If you are like most people, you probably found estimating the cookies

relatively easy (pun intended) and the other tasks absolutely harder.

If one cookie = 10 sec
then seven cookies = 10 sec x 7 = 70 sec
and fourteen cookies = 10 sec x 14 = 140 secs

x2 as big

The difference between the two exercises was that with the cookies we

estimated relatively while the card counting we estimated absolutely.

Science has shown that estimating relatively is something we humans

are actually pretty good at. When you put two rocks in front of us, we

can tell quite accurately how much bigger one rock is than the other.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=118


TURNING LEMONS INTO LEMONADE 119

Create new hockey 
pool

4 days Update existing
hockey pool

2 days

This 

looks x2 as big

as that

Where we struggle is with telling you precisely how much bigger it is

(estimating absolutely).

This simple principle forms the cornerstone of agile estimation and

planning. By sizing our stories relatively to each other and measur-

ing how fast we can go, we have all the ingredients we need to begin

forming our agile plan.

Add user
Print itinerary
Cancel trip
Book permit
Update permit
Search
Create device
Add swap trade
Add option
Cancel plan
Book car
Update hotel

Agile planning 101

Once we know how fast the team can go ...

Velocity
and our stories
are sized relatively ...

we can start setting expectations around dates.

Now, one challenge with estimating relatively is that a single day in our

estimates won’t always equal one day in our plans. The team will work

either slower or faster than we originally estimated.

To account for this discrepancy and avoid continuously having to rees-

timate all our stories, agile does estimation using a point-based system.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=119


TURNING LEMONS INTO LEMONADE 120

Point-Based Systems

Point-based systems enable us to track progress and estimate relatively

without having to worry about how our actuals compared with our

estimates.

Say, for example, we originally estimated a story to take three days

when in reality it ends up taking closer to four.

Highlight pending
road closures

3 days

Highlight pending
road closures

4 days

Estimate
Actual

We could try to adjust all our estimates by 33 percent.

Actual

1.33 days

X 1.33 
4 days

6.66 days

Yech!

Much harder
to work with

But who wants to work with numbers like 1.33 and 6.66 days? Not

only is there a false sense of precision, but what do we do when after

delivering a few more stories we find our 1.33 day estimates are closer

to 1.66? Readjust again?

To get away from this constant, never-ending rejigging of the num-

bers, agile recommends freezing your estimates on a simple, easy-to-

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=120


TURNING LEMONS INTO LEMONADE 121

use point-based system and not tying them to elapsed time on the

calendar.

5 pts3 pts1 pt

Small
Medium

Large

No sweat Nothing we can’t handle This is going to take 
some effort

With a point-based system, our units of measure don’t matter. The mea-

sure is one of relativity—not absoluteness.

Story #1

* NUTS: Nebulous Units of Time

Units don’t matter

All we are trying to do is capture the bigness of a task with a number

and size it relatively to all the others. If it helps, you can think of agile

estimation as trying to sort your stories according to T-shirt size: small,

medium, or large.

Also, as caught up as we tend to get with our estimates, at the end of

the day, it doesn’t really matter. So long as we size our stories similarly

to each other, for every story we over-estimate, there’s usually another

we under-estimate. So, it all comes out even in the end.

Using a point-based system does the following for us, and studies show

we are actually pretty good at it:

• It reminds us that our estimates are guesses.

• It is a measure of pure size (they don’t decay over time).

• It’s fast, easy, and simple.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=121


HOW DOES IT WORK? 122

You got me. Before we got to agile estimation, whenever the topic of esti-

mation came up, I used the term days when really I should have been

using points. I did this for two reasons. First, we hadn’t had a chance

to talk about the concept of estimation using points. Second, because

some agile teams do estimate in days, they just call them something

else—ideal days.

Ideal days are just another form of story point. An ideal day is the

perfect day where you have no interruptions and are able to work for

eight hours straight of uninterrupted bliss.

Of course, we never get ideal days at work, but some teams find the

concept useful.

Ideal days can work, but I generally prefer sticking to points. Mostly

it’s because it makes the fact we are estimating in points explicit, but

also because with points I don’t have to worry about my ideal day not

equaling yours.

For the rest of the book, don’t panic if you see points instead of days.

I’ll stick with points for the remainder of the book, but if you see days,

know they are the same thing.

7.3 How Does It Work?

That’s enough talk. It’s time to get real. Here are two simple estimation

techniques you and your team can use to size your stories appropriately

for agile planning.

Triangulation

Triangulation is about taking a few sample reference stories and sizing

our other stories relatively to these.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=122


HOW DOES IT WORK? 123

Small Medium Large

Our baseline ...

against which we size our remaining stories

Say, for example, there is a local bike shop that just purchased a new

inventory system. They’ve already done their homework and created

a good list of user stories. Where they could use some help is in the

estimation department.

Mike’s Bike Emporium Need a bike? Talk to Mike!

Set up user accounts Create monthly

sales report
Set up 

MasterCard

Create sales report

Download
bank information

Process new 
bike sale

Create inventory
dashboard Get inventory

from warehouse

Set up 

American Express
Process returns

exchanges and

trade-ins

Set up 
Visa

Write employee
training manual

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=123


HOW DOES IT WORK? 124

Let’s study this list and see whether there are any good candidates that

would make good reference stories. Ideally, we would want something

small, something medium, and something large enough to fit within

one iteration (typically one to two weeks). We could also look for the

following:

• Logical groupings

• Stories that go end-to-end (to flesh out the architecture)

• Anything typical of what we’d see throughout the life of the project

These are the kinds of things we want to have in the back of our mind

when we are searching for candidate stories. They’re just your run-of-

the-mill mom-and-pop stories typical of what we’d see while delivering.

After looking at the list, let’s say we decide to start with these three as

reference stories:

Baseline

Remaining stories to be sized

Set up user

accounts

Set up MasterCard Process returns,
exchanges, and
trade-ins

1 pt 3 pts 5 pts

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=124


HOW DOES IT WORK? 125

Now that we have something to compare to, we can go through the rest

of the stories and size them up against these candidates:

Set up user

accounts
Process returns,
exchanges, and
trade-ins

1 pt 3 pts 5 pts

Download 
bank information

Set up MasterCard

Set up Visa

Set up
American Express

Write employee
training manual

Create inventory 
dashboard

Now you may be wondering whether you should ever reestimate your

stories. The answer is yes. If you start building some stories and you

find out you incorrectly sized a few, absolutely you should resize those

outliers and give them a more realistic number.

But once you have them correctly sized relatively to each other, it’s best

to leave them alone. You don’t want to be continuously resizing your

stories because every time you do, you have to recalibrate your team

velocity (which makes planning a little hairier because you will have

different velocities for different parts of the plan).

Also, if you ever run into something you’ve never done before and you

don’t know how to size it, do a spike. A spike is a time-boxed experiment

where we do just enough investigation to come up with an estimate and

then stop (we don’t actually do the story).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=125


HOW DOES IT WORK? 126

The Wisdom of Crowds

James Surowiecki’s The Wisdom of Crowds. [Sur05] tells this story:
in 1906 the British scientist Francis Galton was shocked by the
outcome of an experiment he performed at a county fair.
Expecting a professional butcher to be able to more accurately
guess the weight of a butchered ox, he was surprised and dis-
mayed to find that a crowd of simpletons (with little or no meat-
cutting experience) were able not only to guess the final weight
of the beast, but they were able to do it within a pound.

This debunked Sir Francis’ notion that the experts were always
right and would handily outperform a crowd.

When we play planning poker, we similarly look to harness the
wisdom of the crowds with regard to our estimates. We are bet-
ting that the crowd will be able to come up with a better guess
than any one, single individual.

Spikes are usually no more than a couple days and are a great way

to try something out fast and get just enough information to tell your

customer how much it is really going to cost. They can then decide

whether it’s worth the investment.

Before we wrap up, there is one more handy tool you should know

about for doing team-based estimation and building consensus—it’s

called planning poker.

Planning Poker

Planning poker is a game where the development team estimates stories

individually first (using a deck of cards with numbers like one, three,

and five points on them) and then compares the results collectively

together after.

If everyone’s estimate is more or less the same, the estimate is kept. If

there are differences, however, the team discusses them and estimates

again until consensus is reached.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=126


HOW DOES IT WORK? 127

? @ #
1. Customer reads
    story.

1 4 5
2. Team estimates.

Discussion ...

3. Team discusses.

Development team
asks questions

4 4 4

4. Team estimates again.
Repeat until consensus reached.

This includes testing.

Planning poker works because the people doing the estimating are the

ones doing the work. This includes developers, but it could also include

DBAs, designers, technical writers, or anyone else responsible for the

delivery of the story.

It’s powerful because of the discussion. When someone says a story

is really small and someone else says it’s really big, it doesn’t matter

who’s right or wrong (that will sort itself out). A valuable discussion is

about to take place, and that’s what matters.

Just to be clear, planning poker isn’t a voting system (that is, three

juniors don’t outvote one experienced senior). But it is a way for people

to voice their opinions and ideally arrive at a better estimate for having

done so.

And don’t be fooled by commercial planning poker decks full of cards

with numbers like 8, 13, 20, 40, and 100—you don’t need them.

Keep it simple. Size your stories small (one, three, and five points with

the occasional epic) and avoid the false sense of precision and noise

these other numbers bring.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=127


HOW DOES IT WORK? 128

Master Sensei
and the

aspiring warrior

STUDENT: Master, is it true that agile doesn’t care about accuracy

when estimating and relative sizing is all that counts?

MASTER: When estimating, one should always give his best, most

accurate estimate possible. Hence, it would be misleading to say agile

has no regard for accuracy.

STUDENT: So, we should shoot for both accuracy and relativity when

estimating stories?

MASTER: Yes. Estimate as accurately as you can; just understand

that you won’t be that accurate. Only once our stories are sized relatively

and we have measured our team’s rate of productivity will the sun shine

and our plans grow firmer.

STUDENT: So, I should give my best estimate but spend more time

ensuring my stories are sized relatively to each other?

MASTER: That is so. A little effort goes a long way when estimating.

Do not dwell on the inaccuracy of your estimates. Size stories relatively.

Accept them for what they are, and set expectations accordingly.

STUDENT: Thank you, Master. I will think about this more.

What’s Next?

Congratulations! By learning how to estimate user stories relatively

using a point-based system, you now have everything you need to build

your first agile plan.

In agile project planning, we’ll go over all the tools you need to forecast,

track, and create a project plan you and your customer can believe in.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=128


HOW DOES IT WORK? 129

Then, with your plan in hand and inception deck at your side, we’ll

be ready to get into the meat and potatoes of delivery—agile project

execution.

Turn the page to learn the secrets of agile project planning.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=129


Chapter 8

Agile Planning:
Dealing with Reality

x x

x
Get used to it, pretty boy. Murphy’s law takes no prisoners when it

comes to disrupting the best-laid plans. If you don’t have a strategy for

dealing with change, your project is going to eat you alive.

In this chapter, you’re going to learn how to create plans you can believe

in and follow through on commitments you and your team make.

By learning how to plan projects the agile way, you’ll sleep easier know-

ing your plan is always up-to-date, you’ve set expectations openly and

honestly, and change isn’t something to be feared but instead used as

a competitive advantage.

Prepared exclusively for Claus Pallisgaard Beck



THE PROBLEMS WITH STATIC PLANS 131

8.1 The Problems with Static Plans

Has this ever happened to you? Your project starts off beautifully. You

have the perfect team. The right technology. The perfect plan. And for

the first couple weeks of your project, life couldn’t be better. Then out

of nowhere...bam!

Your lead developer gets poached by another project of great strategic

importance (funny, that’s what they used to say about yours). “OK,

we’ve got time,” you think, “we can handle this.” When all of sud-

den...kapow!

What you thought your team could do and what they can actually do

are two different things. Then, just about halfway through the project...

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=131


THE PROBLEMS WITH STATIC PLANS 132

That simple, easy-to-build web application suddenly looks a lot more

daunting and complex. What looked like a slam dunk now looks virtu-

ally impossible with the remaining time and resources you have. And

then the real bomb goes off.

M  T  W  Th  F

O c t o b e r

It turns out business needs your application sooner rather than later.

In a rush to meet the new deadline, testing gets cut. The team is asked

to cancel their vacations. And when it finally does go live, it’s of such

poor quality nobody can use it. It becomes another late, over-budget,

failed IT project.

If this story hits close to home, take comfort—you are not alone. Chang-

ing teams, reduced schedules, and ever-shifting requirements are the

norm for any interesting software project.

To deal with these realities, we need a way of planning that does the

following:

• Delivers great value to our customers

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=132


ENTER THE AGILE PLAN 133

• Is highly visible, open, and honest

• Lets us make promises we can keep

• Enables us to adapt and change the plan when necessary

Ready - fire - aim - aim - aim

Ready - aim - fire

With this context of having to deal with change, let’s now take a look at

the agile plan.

8.2 Enter the Agile Plan

In its simplest form, agile planning is nothing more than measuring

the speed a team can turn user stories into working, production-ready

software and then using that to figure out when they’ll be done.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=133


ENTER THE AGILE PLAN 134

The One Time I Was Asked to Leave a Project

I was once at a client site where we were trying to build a $2 mil-
lion gas accounting system for $700,000, and when it became
apparent that the budget was about half of what it needed to
be, the company started to tighten the screws asking us to work
overtime and weekends to get the project “back on schedule.”

Well, you can imagine how this went over. Every time we got
together during our iteration planning meetings, they would
insist we double our current velocity, and we would refuse.

One day it came to a head. They pulled me aside and said
that by not signing up for more work, we had just ruined over a
year’s worth of building credibility with the end customer and
that my services would no longer be required on the project.

At the end of the day, I failed that client. To be fair, we made
some big mistakes (such as not doing an inception deck in
the beginning and not clearly explaining how agile planning
worked).

But culture is important, and not everyone likes the visibility and
transparency that agile brings. Make sure your customers know
how agile planning works going in and where you are going to
flex when reality and the plan start to differ.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=134


ENTER THE AGILE PLAN 135

Add user
Print itinerary
Cancel trip
Book permit
Update permit
Search
Create device
Add swap trade
Add option
Cancel plan

How fast we are going

Team velocity

When we expect to be done

How much we have to do

Master story list

Our to-do list on an agile project is called the master story list. It con-

tains a list of all the features our customers would like to see in their

software.

The speed at which we turn user stories into working software is called

the team velocity. It’s what we use for measuring our team’s productiv-

ity and for setting expectations about delivery dates in the future.

The engine for getting things done is the agile iteration—one- to two-

week sprints of work where we turn user stories into working, produc-

tion-ready software.

To give us a rough idea about delivery dates, we take the total effort

for the project, divide it by our estimated team velocity, and calculate

how many iterations we think we’ll require to deliver our project. This

becomes our project plan.

# iterations = total effort / estimated team velocity

For example:

# iterations = 100 pts / 10 pts per iteration = 10 iterations

It’s really important to understand that our first project plan isn’t a

hard commitment. It’s a guess. We don’t know our team’s velocity at

the beginning of the project, and until we build something of value and

measure how long that takes, we won’t know how realistic our dates

are looking.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=135


ENTER THE AGILE PLAN 136

Treating initial plans as hard commitments is what kills projects before

they’ve even started.

Now, as we start delivering, one of two things is going to happen. We

are going to discover that a) we are going faster than expected or b) we

are going slower than we originally thought.

Time

Faster than
expected

Slower than
expected

Effort
remaining

Faster than expected means you and your team are ahead of schedule.

Slower than expected (more the norm) means you have too much to do

and not enough time.

When faced with too much to do, agile teams will do less (kind of like

what you and I do when faced with a really busy weekend). Instead of

sticking with the original plan, they will change it, usually by reducing

scope.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=136


BE FLEXIBLE ABOUT SCOPE 137

8.3 Be Flexible About Scope

Add user
Print itinerary
Cancel trip
Book permit
Update permit
...
Create device
Add swap trade
Add option

Master story list

1 day
2 days
5 days
5 days
3 days

2 days
3 days
1 day

100 days

New story
in

Old story
out

Most 
important

Limited capacity !

Being flexible around scope is how agile projects maintain the integrity

of their plans.

By insisting their customers drop an old story every time a new one

comes in, agile teams work within the means of their projects while

giving their customers the ability to change their minds (without paying

an exorbitant price).

Agile principle
Welcome changing requirements, even late in
development. Agile processes harness change
for the customer’s competitive advantage.

This gets customers away from the notion that they have to throw in

the kitchen sink with gathering requirements (less waste), and it lets

them and the team learn as they go instead of trying to get everything

perfectly right up front.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=137


BE FLEXIBLE ABOUT SCOPE 138

Now technically speaking, the customer doesn’t always have to drop an

old story when a new story comes in. For example, if it’s a feature they

really want and are prepared to pay for it, they could push out the date.

Time

Effort
remaining

Team
 velocity

Ship it!

* Recommended

You can be flexible on date scope.*or

What customers can’t do, however, is add something to the list and not

expect something of equal size to come off. That’s wishful thinking, and

there is no place for that in agile planning.

When it comes to pushing out the date or being flexible about scope,

agilists generally prefer the latter. Perpetually pushing out release dates

is something our industry is unfortunately really good at. What we

aren’t good at is shipping working software on time.

But regardless of whether you are delivering to a fixed date or working

to a core set of features, being flexible about scope is a concept you and

your customer need to start getting very good at to keep your plans real

and your teams from biting off more than they can chew.

Now you may be wondering what to do if your customer refuses to be

flexible about scope, while insisting that you and the team take on more

work.

You have a couple of options here.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=138


YOUR FIRST PLAN 139

First, you could perpetuate the lie, turn a blind eye, and continue to

follow the old plan just like everyone else. Or you could give overly

optimistic estimates, pad your numbers, ignore your team velocity, and

hope and pray that things will turn out in the end (often referred to as

management by miracle).

Or, when all else fails, you could present the facts as they are, tell it like

it is, and then sit and wait in that awkward silence until they realize

that you aren’t going to cave. You aren’t going to continue the facade,

and you aren’t going to be a willing accomplice in what has been one of

the greatest lies our industry has perpetuated over the past 40 years.

No one said being a samurai was easy.

Now let’s take a look at how to build your first agile plan.

8.4 Your First Plan

Creating your first agile plan isn’t all that much different from prepar-

ing for a busy weekend. It all starts with a good list.

Step 1: Create Your Master Story List

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Add option

Master story list

1 - 6 months of effort

A release

Story-planning
workshop

A logical grouping
of stories

The master story list is a collection of user stories (features) your cus-

tomer is going to want to see in their software. It is prioritized by your

customers, it is estimated by your team, and it forms the basis of your

project plan.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=139


YOUR FIRST PLAN 140

A good master story list will usually have about one to six months worth

of work. There is no point tracking stories much beyond that because

a) you don’t know what the world will look like six months from now

and b) you’ll probably never get to them anyway, so why bother?

Now sometimes you’ll deliver everything on your list, but more likely

you won’t because there is always more to do than time and money

allow.

So, to set expectations around what is in and what is out of scope, agile

teams will take a subset of stories from the master story list and refer

to them as a release.

Define Your Release

A release is a logical grouping of stories that makes sense to your

customer—something worth bundling up and deploying. It’s also some-

times referred to as a minimal marketable feature set (or MMF1).

The first M in MMF, minimal, is there to remind us that we want to

start delivering value fast (and that 80 percent of a system’s value often

comes from a mere 20 percent of its features). So, you want to choose

the fewest number of features that deliver the most value in the first

release of your software.

Agile principle
Simplicity—the art of maximizing the amount
of work not done—is essential.

The second M, marketable, reminds us that whatever we release needs

to be of value to our customer (or else they’ll never use it). So, minimal

and marketable are two key drivers when choosing candidate stories

for your first release.

1. Software by Numbers: Low-Risk, High-Return Development [DCH03]

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=140


YOUR FIRST PLAN 141

Add user
Print itinerary
Cancel trip
Book permit
Update permit
...
Create device
Add swap trade
Add option
Print receipt

Master story list

High
 priority

1 - 5 days

Release 1

Release 2
1 - 6 months

1 - 3 months

1 - 2 wks

Iterations

(if we ever get here)

Once you have your release and master story list defined, the next thing

you need to do is size things up.

Step 2: Size It Up

In Chapter 7, Estimation: The Fine Art of Guessing, on page 114, we saw

how teams can use agile estimation techniques to size stories up.

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Add option

Master story list

1, 3, or 6 months ?
Triangulation
planning poker

Large
Medium

Small

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

1 pt

Estimation

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=141


YOUR FIRST PLAN 142

The #1 Source of Waste on Projects

Did you know that 64 percent of features are seldom or never
used? It’s true!∗

Never used     45%

Rarely     19%

Sometimes     16%

Always     7%

Often     13%

Breakdown of 
features typically
used on software projects

Think about it. How much functionality do you use in Microsoft
Word? 5 percent? 10 percent? Maybe 20 percent if you are a
real power user?

By asking our customers to focus only on the really important
stuff—and parking everything else—we can save them a lot of
time and money while putting their software to work for them
fast.

∗. Standish Group study reported at XP2002 by Jim Johnson, chairman

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=142


YOUR FIRST PLAN 143

Here you want to get a sense of how big this thing is and whether you

are looking at a one-, three-, six-, or nine-month journey.

Once your to-do list is sized, you’re ready to talk priorities.

Step 3: Prioritize

Lightning could strike at any moment (meaning the project could be

canceled or shortened), so we gotta get the important stuff in first. Hav-

ing your customer prioritize the master story list from a business point

of view ensures they’ll get the biggest bang for their buck.

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Add option

Master story list

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

1 pt

Most important

Least important

Biggest bang
for buck

Most technical risk

Nice to haves

Ones we may never get to

Although your customers have the ultimate say in what gets built and

when, you also have a duty to make suggestions about what stories

would be good candidates to build in the beginning to reduce architec-

tural risk.

For example, good candidate stories to tackle early are those that are

important to the customer and prove the architecture. By connecting

the dots early and going end-to-end, you can eliminate a lot of risk

while gaining invaluable insight into how to best build the system. So,

don’t be afraid to speak up—your expertise and experience matter.

With our prioritized, estimated list in hand, we are almost ready to start

talking dates. But before you can do that, you need to guess how fast

you and your team can go.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=143


YOUR FIRST PLAN 144

Velocity—It’s a Team Thing!

When we create plans based on our team’s velocity, we are
making a commitment as a team. We’re saying, “We as a team
feel we do deliver this much value, each and every iteration.”

This is very different from measuring individual productivity—
which leads to the dark side of project management.

If you want more bugs, more rework, more miscommunication,
less collaboration, less skill, and less knowledge sharing, then by
all means, promote, highlight, and reward individual developer
productivity.

Just understand that by doing so, you are killing the very spirit
and behavior we want to foster and promote on our projects:
sharing ideas, helping each other out, and watching for things
that fall through the cracks.

Step 4: Estimate Your Team’s Velocity

Agile plans work because we plan for the future based on what we’ve

proven we could deliver in the past. And since we don’t know how fast

our team can go at the start of a project, we have to guess.

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Master story list

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

100 pts

Best case (5%) Worst case (90%)Appetite for risk

Time

Team velocity

Need to guess

Now if all your stories were the same size, then this would be one sim-

plified way of looking at it:

Team velocity = stories completed/iteration

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=144


YOUR FIRST PLAN 145

More often than not, however, our stories will vary by size, in which

case team velocity is usually this:

Team velocity = story pts completed / iteration

Now in the beginning of your project, your velocity is going to fluctuate,

so don’t panic. This is normal while your team sorts themselves out

and figures out best how to work together.

I1 IterationsI2 I3 I4

14 pts

25 pts

22 pts

18 pts

Average ~ 20 pts

time

Velocity
(pts)

But after three or four iterations, your velocity should start to settle

down, and you’ll start to get an idea of how fast your team can go.

There are no hard-and-fast rules on how to estimate your team’s veloc-

ity. Ask your team what they think they can get done per iteration, and

be sure to take things into account like availability to customer and

whether your team is co-located.

Also remind the team what the definition of done is (Section 1.3, Done

Means Done, on page 21) and that delivering a story in agile means

analysis, testing, design, and coding. The whole thing.

It’s also best to not be too aggressive in your initial estimate. The secret

to happiness is lowered expectations, and if you shoot too high, you

are going to have a harder conversation than if you shoot too low. So,

be conservative, remind your stakeholders that it’s a guess, and start

measuring from day one.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=145


YOUR FIRST PLAN 146

With our list in hand and our velocity estimated, we are now in a good

place to start setting expectations around dates.

Step 5: Pick Some Dates

You have two options for setting expectations around dates. You can

deliver by date or you can deliver by feature set.

Deliver by Date

Time

Effort
remaining

A
ctual velocity

Ship it!

Be hard on the date ... but flexible about
the features

Delivery by date is about drawing a line in the sand and saying, “We

are going to ship product on this date no matter what.”

When new important user stories are discovered, then older, less impor-

tant ones of equal size come off.

It forces the tough decision and trade-offs up front (around things such

as scope) while creating just enough urgency to let everyone know we

gotta get going.

If you can be flexible about the date and are more concerned about a

core set of features, you can also deliver by feature set.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=146


YOUR FIRST PLAN 147

Deliver by Feature Set

Time

Effort
remaining

Ship it!but be flexible
about the dateDeliver these

core features

This is about picking a core set of features and working on them until

they are done.

Being flexible about scope is still part of the equation (as you are still

going to discover new features along the way), but the spirit here is

that there are a few big rocks the team needs to deliver, and you are

prepared to be flexible about the date to make sure those core features

collectively get shipped.

The advantage of delivery by feature set is you get your core set of

features and the cost of accepting some risk around the date. How

much risk is a decision for your customers and sponsors to make.

And that is how you create an agile plan! You create a estimated, pri-

oritized master story list, estimate your team’s velocity, and pick your

date.

Before we go too much further, there is one more excellent expectation

setting–tool you need to know about before we leave the art of agile

planning: the burn-down chart.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=147


THE BURN-DOWN CHART 148

8.5 The Burn-Down Chart

Although we haven’t formally introduced the project burn-down chart,

we’ve seen glimpses of it on our travels. It’s the graph that shows how

quickly we as a team are burning through our customer’s user stories,

and it tells us when we can expect to be done.

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Master story list

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

100 pts

Iteration 1

Iteration 2

Iteration (n)

Effort

v = 15 pts

v = 15 pts

v = 15 pts

I1 I2 I(n)

How quickly we are burning
through our customer’s stories

Done !

On the y-axis we track the amount of work remaining (days of effort

or points), and on the x-axis we track time by iteration. Simply record

the amount of work (pts) remaining each iteration, and plot that on the

graph. The slope of the line is the team velocity (how much the team

got done each iteration).

The burn-down chart is a great vehicle for showing the state of your

project. With nothing more than a glance you can tell the following:

• How much work has been done

• How much work remains

• The team’s velocity

• Our expected completion date

Each column (iteration) on the chart represents the amount of work

remaining in the project. We are done when the column burns down to

nothing.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=148


THE BURN-DOWN CHART 149

I1 I2 I3 Iterations

Effort
remaining
(pts)

Time

15 pts

15 pts
15 pts

You are here

Team velocity

Work done
that iteration

Work remaining

Work done 
so far

Now, in a perfect world, our velocity would be constant. It would start at

15 pts, gently descend from left to right, and stay there for the duration

of the project.

In reality, however, our burn-down charts usually look a lot more like

this:

I1 I2 I3 Iterations

Effort
remaining
(pts)

Time

10 pts

14 pts

12 pts

Rats, we aren’t going as
fast as we expected

Whoa! 5 new reports

Big innovation by Richard

Had to squash 
some bugs

Big push!

Things don’t go according to plan. Our team’s velocity fluctuates. New

stories get discovered. Old stories get dropped.

The burn-down chart makes all these events in your project visible. If

the customer decides to add scope to the project, you can instantly see

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=149


THE BURN-DOWN CHART 150

the impact that will have on your delivery date. If the team is slowing

down because you lost a valuable team member, that will show up as a

drop in team velocity too.

Burn-down charts also tell the story behind the numbers. When some-

thing shows up on our burn-down chart, it can help us facilitate a con-

versation with our stakeholders around things that happen to projects

and the impact of decisions that get made.

Project burn-down charts tell it like it is. This is the highly visible part

of agile planning. We don’t hide anything or sugar-coat the facts. By

regularly reviewing the burn-down chart with our customer, we can set

expectations openly and honestly and make sure everyone understands

when we expect to be done.

The Burn-Up Chart

Another popular form of the burn-down chart is the burn-up chart. It’s

the same chart, only flipped.

I1 I2 I3 Iterations

Effort
remaining
(pts)

Time

Total amount of work

New stories

When we expect
to be done

Team velocity

Some people prefer using the burn-up chart because of the way it

presents the discovery of new stories. By drawing a steady line across

the top, any increase in scope is immediately seen, and it’s a bit easier

to track over time.

If you like the scope visibility of the burn-up but prefer the simplicity

and concept of burning down, you can combine the two. Simply track

the total work down each iteration on the burn-down along with the

work remaining.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=150


TRANSITIONING A PROJECT TO AGILE 151

I1 I2 I3 Iterations

Effort
remaining
(pts)

Time

Total amount
of work done

Work remaining

New features

Burn-up or burn-down chart—it’s totally up to you. Just make sure

you have an easy, visible way to set expectations around how much

work is remaining and when you expect to be done.

8.6 Transitioning a Project to Agile

There are lots of ways to transition to agile if you’re already mid-project.

You’re probably thinking about doing this because:

a) what you are currently doing isn’t working, or

b) you need to get something out the door fast.

If your problem is one of alignment, create an inception deck (Chap-

ter 3, How to Get Everyone on the Bus, on page 48).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=151


PUTTING IT INTO PRACTICE 152

You may not need a full-on deck, but you need to make sure everyone

knows the following:

• Why you are there

• What you are trying to accomplish

• Who’s the customer

• What big rocks you need to move

• Who’s calling the shots

If there is any doubt about these or any other of the inception deck

questions, play the appropriate inception deck card, ask the tough

questions, and get some alignment.

If you have to ship something fast, throw out the current plan, and cre-

ate a new one you can believe in. Just as if you are creating a new agile

plan from scratch, create a to-do list, size things up, set some priorities,

and deliver the minimal amount of functionality to get something out

the door.

If you need to show progress but have to work within the confines of

your original plan, start delivering something of value every week. Take

one or two valuable features each week and just do them—completely.

Once you’ve shown you can deliver (and regained an element of trust),

slowly rework the plan and define a release based on your now mea-

sured team velocity and how much work there is remaining.

Then simply keep delivering until you have something you can ship.

Update the plan as you go, execute fiercely, and use the sense of ur-

gency you’ve been given to blow through anything standing in your

way.

Let’s see what some of this stuff looks like practice.

8.7 Putting It into Practice

We’ve done the heavy lifting. You now know all the theory. Let’s put

the theory into practice and revisit the four challenges we faced at the

beginning of the chapter and see how we could handle them with our

new agile plan.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=152


PUTTING IT INTO PRACTICE 153

Ignorance Was Bliss

I remember once asking a VP what he thought of agile. He
said, “It’s a love-hate relationship.” On one hand, he loved the
visibility agile brought to a project. But he also hated the visibility
agile brought to a project. Before, he could just bury his head
in the sand and at least pretend everything was going OK. But
now it’s there. Every day. Staring him right in the face. The true
state of the project. It served as a constant reminder of how
much they had to improve, which he admitted was a good
thing.

Scenario #1: Your Customer Discovers Some New Requirements

Effort
remaining

Iterations Time

New features discovered

You can either:
 - be flexible about scope (recommended)
 - or push out the date

The impact

When your customer discovers what they really want in their software,

ask them how they’d like to handle it. You can push out the release

date (which is like saying we are going to need more money), or you can

drop some of the less important stories (preferred).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=153


PUTTING IT INTO PRACTICE 154

Don’t get emotional when you have this conversation. It’s not your call

to make. You are simply the vessel for communicating that which is and

can be completely impartial toward the outcome. Your responsibility is

to make them aware of the impact of their decisions and give them the

information they need to make an informed decision.

If your customer really wants it all, create a nice-to-have list and tell

them that if there is time at the end of the project, these are the first

stories you’ll tackle. But make it clear. The nice-to-haves are currently

off the table and aren’t part of the core plan.

Scenario #2: You Aren’t Going as Fast as You’d Hoped

Effort
remaining

Iterations Time

Estim
ated velocity

Actual velocity

If after three or four iterations you notice your velocity isn’t where you

had hoped it would be, don’t panic. We knew this might happen, which

is why we set expectations accordingly and told our customer not to

trust our initial plans. The good news is that we know about it now and

can adjust course as necessary.

Being flexible about scope is the preferred method for restoring balance.

You can also look at adding resources (this will initially slow you down)

or pushing out the date (both less than ideal).

The important thing is to have the conversation and give your customer

some options. Yes, this may make you uncomfortable, but you can’t

hide this stuff. Bad news early is the agile way.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=154


PUTTING IT INTO PRACTICE 155

Now, we are not completely defenseless when it comes to figuring out

whether we have enough time. There is one strategy for ensuring that

when you do have the “too much to do, not enough time” conversation,

you are coming at it from a place of complete honesty, transparency,

and integrity.

The Way of the Spartan Warrior

The way of the Spartan warrior is based on a simple premise. If we can’t

deliver a stripped-down, minimalist version of the application with the

time and resources we’ve got, then the plan is clearly wrong and needs

to change.

Effort
remaining

Iterations Time

Actual velocity

Start with a stripped down
bare-bones version ...

then see how
realistic this 
date is looking

It works like this: take one or two really important features for your

project (something core that goes from end to end through your entire

architecture), and measure how long it takes to build a stripped-down,

bare-bones, minimalistic version of those features.

Then use that against your remaining relatively sized stories to see

whether a minimalistic version of the application is even possible with

the time and resources you have.

If your dates are looking good, right on! Keep on truckin’.

If your dates are looking bad, great! At least you know about it now.

Going Spartan lets you have the “we need to change the plan” conver-

sation from a place of strength and integrity. It’s not based on wishful

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=155


PUTTING IT INTO PRACTICE 156

thinking. There’s no need to get emotional. It’s just the facts. It’s better

to know this now than later.

And with this information, you and your customer can now have a real

discussion about what features to go Spartan on and which ones might

need a little more spit and polish. Then you can tune your project plan

to deliver the greatest bang for your buck, all while working within your

means.

Scenario #3: You Lose a Valuable Team Member

Effort
remaining

Iterations Time

Lose valuable
team member here

Impact ?

Gauging the impact of losing a valuable team member is never easy.

You know you are going to take a hit; it’s just hard to say how much.

When it comes to setting expectations around changing team members,

you don’t need to get too scientific. Just tell your customer that the

project is obviously going to take a hit (guess if you can), and once

you’ve had a chance to measure the impact through your team velocity

(two or three iterations), you’ll be able to tell them exactly how much.

Of course, your manager might turn around and say the new person

they’ve hired is every bit as good (even better) than the teammate you

are losing and you shouldn’t experience any loss of velocity.

Maybe. But don’t count on it. The new person may not fit in. Or they

may have bluffed their way through the interview process with a great

resume and a firm handshake. Believe it when you see it. Until then,

be skeptical and set expectations accordingly.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=156


PUTTING IT INTO PRACTICE 157

Scenario #4: You Run Out of Time

Effort
remaining

Time

Old dateNew date

Be flexible about scope

The textbook answer here is to be flexible about scope. If you halve the

schedule, you gotta halve the number of features you want delivered.

It’s that simple.

The nontextbook answer, however, is to sit down with your customer

and to look for innovative ways to help them.

Maybe there are some stories that can be delivered in a stripped-down

or Spartan state. Or maybe twenty static reports can be replaced with

one really good dynamic one.

Helping them out in their time of need will go a long way to building the

kind of relationship you want with your customer. You want to be seen

as a trusted advisor, and one way of doing that is to give them options.

Just don’t be strong-armed or bullied into committing to something

you and the team can’t deliver. That’s not doing anyone any favors.

And this collaboration thing has to be two-way. Just be honest, and tell

them what it’s going to take.

Master Sensei would now like to spend a round with you in the agile

dojo to see what you have learned.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=157


PUTTING IT INTO PRACTICE 158

Master Sensei
and the

aspiring warrior

Welcome, student. I am glad to see you are still alive. Here I would like

to take you through a real-world scenario one of our students recently

experienced in the field of battle.

Scenario: Everything is fixed on the project, and there is no ability to

change the plan.

Add device

Create meter

Generate flow

Calculate value

Nominate trade

...

Flow report

Admin console

Master story list

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

100 pts

Highly regulated 
government-run utility

Change not 

welcome!

Fixed scope

Fixed date

Fixed budget

How can this project 
be run agile? Change

MASTER: This project is for a large government agency. Because they

are spending taxpayers’ money, they are closely audited and can’t afford

anything in the way of change with regard to scope, cost, and deadlines.

Everything is fixed. Should this project consider using agile as a means

of delivery?

STUDENT: If the scope, date, and budget are truly fixed and they are

not able to update or change the plan, I don’t see how agile can be used

in this situation, Master.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=158


PUTTING IT INTO PRACTICE 159

MASTER: Is that so? When projects try to fix time, budget, scope, and

quality, they soon discover that these Furious Four cannot be contained.

Something must always give, because change is ever-present. Their only

choice is whether they want to make the change visible or hide it.

STUDENT: But how can one make the change visible and yet comply

with the mandate of no change?

MASTER: This is where the warrior must use all of her experience and

skill. What if the creation of a parking lot for old stories that were no

longer in scope were sufficient for the auditors to trace what changes

had occurred on the project? This would give them the traceability to

show differences between the original and actual plan, while losing none

of the plan’s original integrity.

STUDENT: So, Master, you are saying that regardless of whether they

like it or not, the plan is going to change.

MASTER: Hai.

STUDENT: And that by simply documenting the changes, they may be

able to meet the requirements of the auditor, while building a system that

meets the needs of their customers.

MASTER: That is so.

STUDENT: Thank you, Master. I will meditate on this more.

Lesson: Change will always be there. Sometimes we just need to be cre-

ative in how we present and manage it.

What’s Next?

Well done, mon ami! You’ve survived the inception deck. You’ve mas-

tered the art and science of user stories and estimation. And you’ve

now learned how to bring it all together in the agile plan.

You are now ready for the next leg of your journey—agile project execu-

tion. Here you are going to learn how to turn those good intentions and

plans into something real—working, tested, production-ready software.

And it all begins with the humble iteration.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=159


Part IV

Agile Project Execution

Prepared exclusively for Claus Pallisgaard Beck



Chapter 9

Iteration Management:
Making It Happen

User story

Working software

?

Welcome to Part IV, “Agile Project Execution.” Here we take the plans we

created in Parts II and III and turn those good intentions into something

our customers can use—working software.

In this chapter on iteration management, I am going to take you behind

the scenes and show you how agile projects get things done through the

power of the iteration.

Afterwards, in Chapter 10, Creating an Agile Communication Plan, on

page 180, you’ll see how a typical agile iteration works and the various

meetings and sync points agile teams use to keep it all moving, and in

Chapter 11, Setting Up a Visual Workspace, on page 192, you’ll find out

how making a few simple changes to your workspace will enable you to

work with even greater clarity and focus.

Prepared exclusively for Claus Pallisgaard Beck



HOW TO DELIVER SOMETHING OF VALUE EVERY WEEK 162

9.1 How to Deliver Something of Value Every Week

So, you have the plan. You know why you are here, and you are ready

to execute. Now what? How do you turn an index card with a few words

scribbled on it into production-ready, working software?

Well, first, you won’t have time to write everything down. You are going

to need a way of doing analysis that is light, that is accurate, and that

gives exactly what you need, just when you need it.

Second, your development practices will need to be rock-solid. We won’t

have time to continuously go back and fix buggy code. It has to work

out of the gate. That means well-designed, well-tested, completely inte-

grated code as you go.

Third, your testing will have to be lockstep with development. You can’t

afford to wait until the end of the project to see whether everything

works. You are going to have to maintain the health and integrity of the

system from day one of the project.

1 - 2 weeks
Stories Working software

Analysis Testing

Development

just-in-time early & often

rock solid

But if you could do these three things, you might just be able to produce

something of value every week. And one great, disciplined way to do that

is to make use of the agile iteration.

9.2 The Agile Iteration

By now you probably have a pretty good idea of what an agile iteration

looks like. It’s that time-boxed (one- to two-week) period where we take

our customers’ top stories and convert them into working software.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=162


THE AGILE ITERATION 163

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Master story list

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

100 pts

Iteration 1

Iteration 2

Iteration (n)

Working software

It’s your engine for getting stuff done on an agile project. The goal is to

produce something of value every time we turn the crank. That means

whatever it takes to produce working, tested software needs to happen

during an iteration.

Analysis &
Design

Development Test

Everything else!

Stories Working 
software

Feedback

Iterations also enable us to adjust course when necessary. If our pri-

orities change or reality does something unexpected, we can adjust

course at the end of each iteration. We usually don’t change stories

mid-iteration (because that would be too disruptive for the team). But

as you’ll see shortly in Chapter 10, Creating an Agile Communication

Plan, on page 180, the opportunity to refocus is there if you need it.

But enough talk. The best way to see how an iteration works is to see

it in action. Let’s now take a user story and see what it takes to turn it

into production-ready, working software.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=163


HELP WANTED 164

9.3 Help Wanted

Help! The start date for BigCo’s construction project has just been

moved up a month, and our good friend Mr. Kelly needs a website his

contractors can access to create construction safety work permits.

We obviously won’t have time to build the entire website in a single

iteration, but Mr. Kelly would really appreciate it if we could deliver

these two stories in the next two weeks.

Create work permit

5 pts

Print work permit

3 pts

This iteration’s stories

To make that happen, there are three steps all user stories go through

when getting converted into working software:

1. Analysis and design (making the work ready)

2. Development (doing the work)

3. Testing (checking the work)

Let’s now take a closer look and see what’s involved in each of these

steps.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=164


STEP 1: ANALYSIS AND DESIGN: MAKING THE WORK READY 165

9.4 Step 1: Analysis and Design: Making the Work Ready

There are two key concepts to agile analysis: just-enough and just-in-

time. Just-enough analysis is about doing whatever it takes to make

the work ready—nothing more, nothing less.

Index card
& 

conversation

One pager Something
heavier

Start light ... and add weight only when necessary.

Do just enough analysis for what you need

A small, co-located team, with an on-site customer, isn’t going to need

a lot in the way of formal documentation. A card and a conversation

(backed by a few well chosen diagrams and pictures) are often enough.

A medium-sized team that’s a little more spread out (but still walking

distance from each other) might need a little more. A one pager with a

short description, a task breakdown, and a list of test criteria might be

better suited for them.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=165


STEP 1: ANALYSIS AND DESIGN: MAKING THE WORK READY 166

Story name: Create work permit

Description

Before contractors can legally work on the 
construction site, they need a work permit.
This permit is what they will take to the 
job site when they are ready to begin
construction.

Tasks

1. Create permit page.

2. Save permit to database.

3. Add basic validation.

4. Ignore security (for now).

Test criteria
1. Requestor can save basic permit.

2. Permit gets saved to the database.

3. Invalid permits are rejected.

4. Permit defaults to next weekÕs start date.

A really large project, with a distributed team living in Chicago, London,

and Singapore, will obviously need something more to keep everyone

aligned and headed in the right direction.

The point is there is no one right level of detail for agile analysis. There

is only what is right for you and your project.

You can always add weight later if you need it, but carrying any unnec-

essary extra baggage is only going to slow you down. So, start light and

add weight if and when you need it.

The other pillar of agile analysis is just-in-time.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=166


STEP 1: ANALYSIS AND DESIGN: MAKING THE WORK READY 167

Add user

Print itinerary

Cancel trip

Book permit

Update permit

...

Create device

Add swap trade

Master story list

1 pt

2 pts

5 pts

3 pts

1 pt

...

5 pts

3 pts

100 pts

Least important

Analysis effort

Go deep Sweat the details

Stuff you may never need

Do your deep dive analysis just-in-time

Just-in-time analysis is about doing the deep-dive analysis on your

user story just before you need it (usually the iteration before).

Iteration (n)

Iteration (n+1)

Do your analysis here ...

for stories you want 
to develop here

We don’t know what the world is going to look like a month from now.

Things change. So, sprinting ahead and trying to get everything right

up front usually ends up being a big waste. Instead, you want to hold

off on doing the deep-dive analysis on a story until the last possible

moment—just before you need it.

Doing it this way ensures the following:

• Analysis gets done with the latest and greatest information.

• You and your customer give yourself a chance to learn and inno-

vate as you go.

• You avoid having to do a lot of rework.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=167


STEP 1: ANALYSIS AND DESIGN: MAKING THE WORK READY 168

If what you are doing is really complex and requires more time, take

it. Do whatever it takes to make the work ready. Just don’t go so far

ahead that you end up having to throw it all away because of how much

things have changed.

So, what would the analysis artifacts look like for a story like “Create

work permit”?

Well, there’s nothing like a good flowchart to kick things off.

Start with a good flowchart

Create/update permit
24 hrs in advance

Approve
?

Worker comes to trailer
to pick up permit

Reject permit
Record reason

N

Y

Flowcharts are great because in a simple, visible way, they show how

systems work, they show the steps people need to go through, and they

can be annotated to show just about anything you need to capture from

a process flow point of view.

You can then gain some insight and understanding into who the users

of your system are and what they are trying to do with personas.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=168


STEP 1: ANALYSIS AND DESIGN: MAKING THE WORK READY 169

“Amanda”

Administrator

“Robert”

Requestor

.

“Mr. Kelly”

Approver

Then create some personas

Needs to be able to add and remove users
to the system.

Is comfortable with computers.

Runs the office (all permits are distributed
through her for new construc!on workers).

Construc!on manager or engineer who will
request permits on behalf of his/her 
employees.

WIll know details about the work.

Responsible for ensuring permits are 
requested on !me.

Safety and loss management officer 
responsible for overall safety at construc!on
site.

Must approve any permits before being
issued.

Final word on validity of permit.

Personas are simple descriptions or stereotypes for the roles different

people will play when they use your software. They help bring some

personality to the system. These are real people, with real problems,

and understanding where they are coming from will help you meet their

needs.

Then when it comes to actual design, the world is our oyster! Instead

of just latching onto the first design you think of, rapidly prototype a

number of different designs and options quickly with cheap, inexpen-

sive paper prototypes.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=169


STEP 1: ANALYSIS AND DESIGN: MAKING THE WORK READY 170

Try different designs fast using paper prototypes

Option #1

Option #2

Option #3

The nice thing about getting your team together and collaborating on

paper is you almost always end up with something better than what

any one person would come up with on their own.

Once you’ve worked out a design, you can then sit down with your

customer and write out some test criteria and be really clear on what

success for this story looks like.

Then define success by writing some acceptance tests

Create work permit

5 pts

Test criteria

1. ____________________

2. ____________________

3. ____________________

... on the back

Write three things you think we could test for this story
(if you don’t know just try and make something up)

This is where you sit down with your customer and ask, “How are we

going to know when this thing is working?”

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=170


STEP 2: DEVELOPMENT: DO THE WORK 171

You can go into as much or as little detail here as you want. You can

start high level and just make sure the team understands what major

pieces of functionality need to work for the story to be a success.

Or, if your story is very technical in nature and has a lot of business

rules and details, you may need to spend more time and write those

out too (even better if you can eventually capture those in some form of

automated test).

Are there other tools and techniques we could be using for analysis? For

sure! Storyboards, concurrency diagrams, process maps, wireframes,

and all the other useful analysis and user experience techniques known

to man are at your disposal (for other analysis ideas, see Section 6.4,

How to Host a Story-Gathering Workshop, on page 108).

Remember, no one went to school to be taught how to do this stuff. Be

creative. There is no one right way.

Oh yeah, and if you’re wondering what happened to the print story, it

turned out we didn’t need it. Printing the permit through the browser

will be good enough for the first release, so we dropped it. Good thing

we didn’t waste any time on the analysis!

With our analysis done, we’re now ready to do the work.

9.5 Step 2: Development: Do the Work

Here we take our just-in-time analysis and convert it into pure gold—or

in our case, production-ready working software.

Create work permit

5 pts

if (userAccountExists)
   RedirectToLoginPage();
else
   DenyAccess();

Java, C#, Ruby, Python, HTML, CSS

Something we
could deploy

Now production-ready software, like gold, doesn’t come for free. It takes

hard work, great discipline, and technical excellence.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=171


STEP 2: DEVELOPMENT: DO THE WORK 172

What About Pair Programming?

Few agile/XP practices have attracted more attention and
controversy than this one.

Pair programming is the act of two programmers sitting down
at one computer and working together on a story.

Seeing two valuable resources sitting down at one computer
would understandably make any manager nervous. They think
their team’s productivity has just been halved, and that would
be true if programming were merely typing.

But it’s not. And one good idea or innovation can often save
teams a ton of work and rework later. With pairing you spread
valuable knowledge and practices throughout the team, you
catch more bugs early, and you increase code quality by hav-
ing two people reviewing every line of code.

It’s not for everyone, and you have to respect how people
work. But if your team is open to pairing (this applies to analysis
and testing too), it can often more than pay for itself in return.

For example, on agile projects there are certain things we need to do:

• We need to write automated tests.

• We need to continuously evolve and improve our designs.

• We need to continuously integrate our code to produce working

software.

• We need to make sure the code matches the language our cus-

tomers use when they talk about the system.

We don’t have the time or space to cover every good software engineer-

ing practice out there, but what we are going to cover are those I like to

call the non-negotiables (or the ones you’d be crazy to go without).

In future chapters, such as Chapter 12, Unit Testing: Knowing It Works,

on page 204; Chapter 13, Refactoring: Paying Down Your Technical Debt,

on page 214; Chapter 14, Test-Driven Development, on page 227; as well

as Chapter 15, Continuous Integration: Making It Production-Ready, on

page 238, we will cover refactoring, TDD, and continuous integration in

great detail and show how they all work to produce production-ready

code.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=172


STEP 2: DEVELOPMENT: DO THE WORK 173

For now just appreciate that none of this agile magic happens unless

it is backed by some hard-core software engineering work behind the

scenes.

Let’s now take a look at a special case iteration for your project—the

first one (or what is otherwise known as iteration 0).

Setting Things Up with Iteration 0

Depending on how you look at it, iteration 0 is your first iteration, or

it’s the iteration before you really start. It’s about setup.

If we were mid-project, we would normally just dive in and start doing

the work on a given story after doing the analysis. But if we are just

starting a new project, there are certain things we’d like to have in

place before we begin our work. We call this setup phase iteration 0.

Things we usually need to do before we 
can really get going on our stories

Source control
Automated build

Development/test environments

Bonus: Thin architectural spike

svn, git
Ant, NAnt, Rake

Not a show stopper, but nice-to-have

Do this if you really want to show off

Iteration 0 is about getting our house in order. It’s about setting up

things such as version control, creating our automated build, and get-

ting our development and test (and if we can, production) environments

working so we have something to deploy against.

If you really want to show off, slip in a basic version of one of the upcom-

ing stories (something that goes end-to-end and tests the architecture).

Once the development work is done, we are almost there. All we need

to do now is check the work.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=173


STEP 3: TEST: CHECK THE WORK 174

Collective Code Ownership

Nobody owns the code on an agile project. It belongs to
the team. That means anyone, at any time, is expected and
encouraged to make any changes necessary to complete the
work they are doing.

XP calls this practice collective code ownership, and it is how
agile projects promote communication, consistent architec-
ture, and coding standards across the code base.

9.6 Step 3: Test: Check the Work

Now it would be pretty embarrassing if we did all this heavy lifting and

then didn’t follow through to make sure everything worked. Checking

the work is where we make sure our work is up to snuff while getting

some feedback from our customer.

Test criteria

Verify can save permit to database

Confirm only valid users can access

Verify invalid permits are rejected x Automate what you can

High-level smoke screen tests

Feedback

Walking the test criteria while demoing your software to your customer

is one good way to show them it works. It’s even better if you can

get your customer to drive through the demo while you sit back and

observe how they use the software.

Now I know what you’re thinking. With all the testing that goes on with

an agile project, do we even need a formal user acceptance test (UAT)

as we get ready to go into production? And the answer is yes, you do.

Here’s why.

Your goal as an agile developer (meaning anyone on the development

team) is to make UAT a nonevent. That is, you do such a good job of

testing, and getting feedback from the customer during delivery, that

when UAT does finally roll around, people really struggle to find any-

thing wrong with the system.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=174


KANBAN 175

Few teams reach this level of quality the first time around (many never

do). So, my advice is to keep your UAT around until you can prove to

yourself and your sponsors that you and the team can write code of

such quality that a formal, full-blown UAT is no longer required. Until

then, keep it.

Absolutely. There is a style of agile better suited for this kind of opera-

tion/support style of work. It’s a flavor of agile called Kanban.

9.7 Kanban

Kanban is a card-based signaling system Toyota developed to coordi-

nate the replenishment of parts on its assembly lines. It’s very similar

to our storyboard with a few key differences.

Sample Kanban Board

ToDo Analysis Dev Test Deploy Done

WIP = 4

This team can only take on 4 things at once

No fixed iteration length
No story/task limit size

* WIP: Work in progress

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=175


KANBAN 176

What If You Weren’t Allowed to Track Bugs?

Imagine we were no longer allowed to track bugs on our
projects. What would you have to do differently?

Well, for one, you’d have to squash bugs on the spot because
you wouldn’t be able track them.

Second, you would need a way of regression testing that was
fast and cheap that ensured that when you did squash a bug,
it was really dead and never worked its way back into your
system.

Third, if you were producing a lot of bugs, you’d want to slow
down to find out what was causing so much pain and take
steps to fix the root cause.

This is the kind of attitude and behavior you want to foster on
your team. It’s not about debating which bug-tracking system
you use. It’s about thinking how you can write software so you
don’t need the bug tracker in the first place.

For one, in Kanban work is limited by a concept called work in progress

(WIP). A team is only allowed to work on a finite number of things at

once.

For example, if the team can handle only four things at once, then their

WIP becomes four. Anything else that needs to be done gets thrown on

the back burner and prioritized, and the team gets to it when they get

to it.

The other thing that is different is that Kanban doesn’t require itera-

tions. You can simply take the next most important thing off the list

and pull the work when your team is ready.

The goal of Kanban is flow. You want to flow things across the board as

quickly as you can by working on only a few things at once. Here are

some advantages to working this way:

• You don’t have to get stressed about iterations.

– If you are split between operations and project work, you no

longer need to get stressed about being interrupted during an

iteration (because of, say, production support issues) because

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=176


KANBAN 177

there is no iteration. You simply pick up the next item when

you are ready and don’t have to reset iteration expectations

as you go.

• You are not limited to taking on tasks that fit within a single

iteration.

– Although it’s generally a good idea to break big things down,

there may be times where something is just really big and

you are going to need a couple of weeks to move it across the

board. So be it.

• It’s a nice way to manage expectations

– Most teams still do some form of estimation, or at least size

their Kanban board tasks according to relative sizing (at least

it’s recommended if you want to set some kind of expectation

around when you are going to get to something).

But there is a certain simplicity to Kanban. It’s kinda like,

“Hey, dude. We’re working hard here. We’ll get to your stuff,

but we can work on only four things at a time.” No points.

No need to explain estimates. Just simple life stuff. We can

handle only so many things at once.

Now if all this sounds crazy, because we’ve just spent most of the book

talking about how great iterations are, relax.

Agile iterations are powerful, and if you are doing project-based work

with constraints around things such as time and money, in today’s

industrialized world of annual budgets, iterations are the way to go.

But agile is more than just iterations. Being agile means doing whatever

works for you. So if working without iterations is better for you, go for

it. Kanban is a great fit for operations/support teams that need to react

quickly and don’t have the luxury of fixed-length iterations.

My advice is to stick with fixed-length iterations. If you are just starting

out and doing project-based work, you’ll appreciate the discipline and

rigor that comes with having to regularly deliver working software to

your customer each and every week.

If you’re doing operational type work, give Kanban a try. The principles

are all the same. How you execute is slightly different.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=177


KANBAN 178

To learn more about the latest and greatest on Kanban, check out this

site:

http://finance.groups.yahoo.com/group/kanbandev/messages

You are now ready for your session with Master Sensei.

Master Sensei
and the

aspiring warrior

STUDENT: Master, I am working on a data warehousing project, and

we are charged with producing financial reports for senior executives.

There is no way we can possibly produce something of value every week.

The data warehouse alone will take at least a month to set up. How

should I manage my iterations?

MASTER: The trick to delivering something of value is to focus on thin

slices of functionality that go end-to-end through the application. Instead

of building the data warehouse in its entirety, take a small subsection of

one of your reports, and build only those pieces of the infrastructure that

you need.

STUDENT: But what if even after doing that, we run into something

that is so big we just can’t fit it into an iteration?

MASTER: If it doesn’t fit, it doesn’t fit. Take as many iterations as you

require to build the infrastructure and move on. Just remember that you

want customer engagement. And telling them you are going to disappear

for three months while you set things up makes them lose interest. It’s

much better for you and them if you can find a way to deliver something

small and build on it each iteration thereafter.

STUDENT: Thank you, Master. I will think about this more.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://finance.groups.yahoo.com/group/kanbandev/messages
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=178


KANBAN 179

What’s Next?

There you have it. Analysis, development, and testing, all rolled up into

one to deliver something of value every week. Remember, there is no

one way to do this stuff, and the artifacts and the way you work will

need to change from project to project. So, don’t be afraid to experiment

and try different things.

With that behind us, we’re now ready to see how agile teams communi-

cate and coordinate all these simultaneously occurring activities during

an iteration. Let’s now take a look at the agile communication plan.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=179


Chapter 10

Creating an Agile
Communication Plan

Iteration (n)

IPMSPM
Showcase
Plan next iteration
Mini-retrospective

Daily stand-ups

* SPM: Story planning meeting
* IPM: Iteration planning meeting

Other than suggesting that you co-locate your team and regularly put

working software in front of your customer, agile doesn’t give you much

guidance in how to organize your iteration’s work. It’s up to you and

your team to figure out how you want to organize, communicate, receive

feedback, and pull things together.

In this chapter, you’ll find out what critical components go into any

agile communication plan and how to make one that works for you and

your team.

By the end of the chapter, not only will you have a plan, but you’ll have

the beginnings of some rhythm and ritual for continuously producing

something of value on your project.

Prepared exclusively for Claus Pallisgaard Beck



FOUR THINGS TO DO DURING ANY ITERATION 181

10.1 Four Things to Do During Any Iteration

Two constants on any agile project are setting expectations and getting

feedback.

Continuously setting expectations is necessary because things are al-

ways going to be changing. You will want to get in the habit of meeting

regularly with your customer and reviewing the current state of your

project.

And because the simple act of putting working software in the hands

of your customer changes the requirements, you’re going to want that

strong feedback loop to make sure you’re hitting the mark.

In that vein, there are four things you’re going to want to do to get some

rhythm and ritual going on each of your iterations:

• Make sure next iteration’s work is ready (story-planning meeting).

• Get feedback on last iteration’s stories (showcase).

• Plan the next iteration’s work (iteration planning meeting).

• Continuously look for areas of improvement (mini-retrospective).

Let’s start by looking at how we can make sure the next iteration’s work

is ready.

10.2 The Story-Planning Meeting

Iteration (n)

SPM Is the work ready ?!

Have we done our homework?
Are next iteration’s stories good to go?

This is our just-in-time analysis checkpoint meeting. During the SPM,

we’ll review test criteria for upcoming stories with the customer, review

estimates with developers, and generally make sure we’ve done our

homework on the next batch of iteration stories.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=181


THE STORY-PLANNING MEETING 182

You’re Going to Make Mistakes—Don’t Sweat It

I was once working on a print story for this construction project,
and I took the Spartan warrior route (delivering the bare-bones
implementation). As soon as I demo’d it, I could tell the cus-
tomer just didn’t like it.

They were too polite to say anything, but I could feel it, and I
knew it wasn’t my best work.

At that point, I had to suck it up and ask them if I could try
again. They said yes.

If I hadn’t been delivering fiercely for seven weeks before this,
they might have given me a different answer. But when your
customer sees you busting your hump for them every week,
they are going to be forgiving and cut you some slack for the
occasional time you do screw up.

So, don’t be afraid to try stuff. Trying and failing and taking ini-
tiative is part of the game.

Sometimes you’ll discover a story that’s bigger than you thought. That’s

OK. Just break it down so it fits within a single iteration, update the

plan, and move on. The good news is that this works both ways (we also

find some stories are smaller than we had thought).

You won’t find SPMs covered in any formal agile method. They are just

one mechanism I and others have found useful for avoiding the waste

that comes from starting an iteration with an unanalyzed story.

But that’s the beauty of agile. There’s no one way to do this stuff. If you

need something, create it or do it yourself (despite what any author or

book says).

Something else you are going want to do every iteration is get some

customer feedback.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=182


THE SHOWCASE 183

10.3 The Showcase

Iteration (n)

IPM
Showcase

Plan next iteration
Mini-retrospective

Demo this iteration’s stories
Get customer feedback

Show something
of value !

You made it! You delivered something of value. Do you know how many

projects go for weeks, months, and sometimes years without delivering

anything of value? A lot.

The showcase is your opportunity to show off to the world the great

work you and the team have been doing and get some real honest-to-

goodness feedback from your customer.

During a showcase, you and the entire team demo last iteration’s sto-

ries. That means showing real live code deployed on a test server. It’s

not pretty pictures or best intentions. It’s the stuff you could go to battle

with and deploy today if you really had to. It’s done.

Showcases are meant to be fun and are a great way to close out last iter-

ation’s work. Celebrate! Bring snacks or candy. Show off. Get feedback.

Let your customer drive the demo and watch them use the software.

Let’s now check out the one meeting agile methods like Scrum and XP

do recommend you have—the iteration planning meeting (IPM).

10.4 Plan the Next Iteration

Iteration (n)

IPM Plan next iteration
Mini-retrospective

Check the health of the project
Review the team’s velocity
Sign up for stories and commit

Set next week’s
expectations !

Showcase

The IPM is where you get together with your customer and plan the next

iteration’s work. You review your team’s velocity, you review upcoming

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=183


PLAN THE NEXT ITERATION 184

stories, and then collectively figure out how much you and the team

can commit to for next iteration’s work.

IPMs are also a great time to do a mini-project health check.

Clear skies
- Smooth sailing
- Nothing slowing us down
- Things couldn’t be better

Few clouds, chance of rain
- We’re delivering
- Experiencing some turbulence
- But nothing we can’t handle

Big storm
- Houston, we have a problem
- Major challenges ahead
- We need help!

Here you can give a quick weather forecast about how the project is

doing. If there is something you need or there is a particularly hairy

problem you’d like to discuss, this is your opportunity to raise the issue,

present some options, and make some recommendations on how you’d

like to proceed.

When it comes to talking about dates, use your burn-down chart. It’s

brutally honest, and in a very unemotional way, it will tell you and your

customer how realistic your dates are looking.

Effort
remaining

Iterations Time

Estim
ated velocity

Actual velocity

What should we do
with these?

New stories

This is the visibility part of agile. We want to be as transparent as pos-

sible with our customers and stakeholders. Bad news early is the agile

way.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=184


HOW TO HOST A MINI-RETROSPECTIVE 185

How to Give Constructive Feedback

There’s two ways to give feedback. You can serve it up straight
and cold:

• “Suzy, I noticed you did some great work on the print mod-
ule last iteration, but your unit tests were really lacking.”

Or you can add a drop of honey and sweeten it up a bit:

• “Suzy, awesome work on the print module. Apply that
same level of detail to your unit tests, and you are soon
going to be world-class.”

See the difference? By avoiding the use of the word but, you
can totally change the tone and delivery of the message.

I’m not saying you need to coat everything in sugar. But by
changing the message sometimes, you can go a long way to
changing behavior.

To get the full scope on how to communicate effectively, read
the Dale Carnegie classic How to Win Friends and Influence
People [Car90].

The final thing we want to do before leaving any iteration is ask our-

selves whether there’s anything we could be doing better.

10.5 How to Host a Mini-Retrospective

Agile principle
At regular intervals, the team reflects on how
to become more effective and then tunes and
adjusts its behavior accordingly.

Retrospectives can be big, fancy, all-day affairs that are held at the end

of a major release or near the end of a project. That’s not what I am

talking about here.

These retrospectives are quick, ten- to fifteen-minute, focused discus-

sions where you and your team regularly get together and talk about

where you are kicking butt and where you need to improve.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=185


HOW TO HOST A MINI-RETROSPECTIVE 186

The first rule of thumb for hosting a good retrospective is to make sure

everyone feels safe. If you think you have an issue with safety, pull out

the retrospective prime directive and remind people what it’s all about.

The retrospective prime directive

Regardless of what we discover, we understand
and truly believe that everyone did the best job
they could, given what they knew at the time, 
their skills and abilities, the resources available, 
and the situation at hand.

In other words it’s not a witch hunt.

Then you can warm people up by asking the first retrospective question.

1. What we are doing really well?

“Jimmy, good job on those unit tests, mate.”

“Suzy. That was so awesome how you created that style guide and refac-

tored the style sheets so we can easily maintain a constant look and feel

across our application.”

Calling out good behavior and giving props to people who deserve to be

recognized can put wind in people’s sails and encourage more of the

kind of behavior we like seeing on our projects.

The other side of the equation is talking about where we can improve.

2. Where do we need to be better?

“Team, a lot of bugs got through that last batch of stories. Let’s slow

down, tighten things up, and make sure we are doing enough unit

testing.”

“We’re seeing a lot of duplication going on in the code base. Remember

to take the time and refactor the code as you go.”

“I completely blew that print story. I am sorry. Let me have another

whack at it this iteration, and I promise you the next version will be

much better.”

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=186


HOW NOT TO HOST A DAILY STAND-UP 187

Whatever the issue, holding a retrospective, and sharing ideas with

teammates is a great way to refocus and energize the team on those

areas they need to shore up. Then you can create a theme for the

next couple iterations and highlight and track those areas you want

to improve.

For the definitive guide to holding retrospectives, check out Agile Retro-

spectives: Making Good Teams Great [DL06].

Good stuff. Let’s wrap by going over a great way to quickly align every-

one at the start of the day—the daily stand-up.

10.6 How Not to Host a Daily Stand-Up

Iteration (n)

Daily stand-ups

Coordinates activities with rest of team
Short (<10 min)
No sitting

Quick daily sync to get on same page

The daily stand-up is about sharing important information with your

team quickly. It’s the meeting to end all meetings. It’s five to ten minutes

long, no chairs are required (to remind people to keep it brief), and you

basically give an update on what you’re working on and share anything

you think the rest of the team needs to know.

Now, most agile textbooks will tell you that when doing a daily stand-

up you should stand in a circle and have everyone on the team tell

everyone the following:

• What they did yesterday

• What they’re doing today

• Whether there is anything slowing them down

Good information. It’s just not very inspiring or behavior changing.

Instead, try getting together with your team at the beginning of each

day and instead tell them the following:

• What you did to change the world yesterday

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=187


DO WHATEVER WORKS FOR YOU 188

• How you are going to crush it today

• How you are going to blast through any obstacles unfortunate

enough to be standing in your way

Answering these types of questions completely changes the dynamic

of the stand-up. Instead of just standing there and giving an update,

you are now laying it all on the line and declaring your intent to the

universe.

When you do this, one of two things is going to happen. Either you are

going to follow through and deliver or you’re not. It’s completely up to

you.

But I can tell you this: if you show up every day and publicly declare

to your peers what you are personally committed to doing that day, it

dramatically increases the chances of you getting it done.

10.7 Do Whatever Works for You

Now in case you are wondering whether these all need to be separate

meetings or whether you can roll them all up into one...it’s completely

up to you.

To keep the number of meetings down to a minimum, some teams like

to combine the showcase, next iteration planning, and retro all into

one and do it in an hour (that’s my preference, and that’s what I’ve

presented here under one IPM).

Others prefer separating the planning from the showcases and doing

the retro as a fun activity near the end of the week.

And some teams have such good contact with their customers that they

don’t need dedicated story-planning meetings (SPMs). They just talk

every day and have a design session whenever they need it.

Remember, there is no one way to do this stuff. If something isn’t adding

value, drop it. Try different things out and see what works for you.

Just make sure that at some point during your iteration you get in front

of your customer, show them some working software, set expectations,

and look for ways to improve.

Uh-oh. It’s looks like Master Sensei wants to see whether you’re picking

any of this stuff up. Better get on over to the dojo and see whether any

of this stuff makes sense. Good luck!

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=188


DO WHATEVER WORKS FOR YOU 189

Master Sensei
and the

aspiring warrior

Welcome back, Student. I have prepared for you three lessons to test

your mettle on several real-life iteration mechanic scenarios. Please

read each carefully before answering.

Scenario #1: The Incomplete Story

MASTER: One day, during an IPM, it became apparent that a story

was only half complete. Wanting to show progress, the young project

manager wanted to count half of the story’s points toward this iteration’s

team velocity and then count the other half when the story was completed

next iteration. Is this a good idea?

STUDENT: Well, if the story is truly half done, I see no harm in accu-

rately reflecting the state of the story by counting half the story’s points

toward this iteration’s velocity and carrying over the other half to the next

iteration.

MASTER: Is that so? Answer me this. Can a farmer transport his rice

on a wagon with one wheel? Can a man eat with but one chopstick? Can

a customer go into production with half a feature?

STUDENT: No, Sensei?

MASTER: To the agile warrior there is no 1/2 , 3/4 done, or 4/5 done

for a user story. The story is complete, or it is not. For that reason, the

warrior only counts fully tested and completed stories toward his itera-

tion’s velocity. Any uncompleted stories are carried over.

Scenario #2: Daily Stand-Ups Are Not Adding Value

MASTER: Once there was a team struggling to get members to attend

their daily stand-ups. Team members thought the meetings weren’t ad-

ding much value and that they could be better off working and speaking

to each other when necessary. What should the team do?

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=189


DO WHATEVER WORKS FOR YOU 190

STUDENT: The leader of the team should remind everyone of the im-

portance of keeping everyone on the same page and the important role

the daily stand-up plays in achieving that.

MASTER: Yes. The team could review the goals of the daily stand-up

and why it was created in the first place. But what if, despite that, the

team still feels the meetings are unnecessary?

STUDENT: I’m not following you, Sensei. How could bringing every-

one together quickly every day, and getting everyone up to speed on the

project, ever be considered a waste of time?

MASTER: Despite all the benefits that come from a good daily stand-

up, it is not the only way. If a team is co-located, is small, and works

closely with one another and their customer continuously throughout the

day, a daily stand-up may not always be required.

STUDENT: Are you saying some teams don’t need daily stand-ups?

MASTER: I am saying teams should keep those practices that add

value. They should modify or drop those that do not.

Scenario #3: The Iteration Where Nothing of Value Was Produced

MASTER: There was once a team that went a full iteration without

being able to deliver anything of value. The failure was entirely in their

own making. They failed to plan, they started late, and they were gener-

ally lazy. Knowing this was going to be a tough message to deliver, they

canceled the showcase with their customer. Was this wise?

STUDENT: Although part of me feels like the team should face the

music for not delivering anything of value, I suppose if they have nothing

to show, canceling the showcase would be acceptable. However, I would

rather they be honest as to why.

MASTER: Ah...you are becoming wise, student. Not delivering any-

thing of value does happen from time to time, but usually not by design

or because of lack of effort. How can the team correct this laziness in

behavior?

STUDENT: Are you suggesting they keep the showcase, Master? And

face their customers while having nothing of value to show?

MASTER: Hai! Sometimes feeling the sting of shame is the best

teacher. Facing your customers and having nothing to show can be a

humbling experience. Once experienced, it is not something teams will

ever want to do again.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=190


DO WHATEVER WORKS FOR YOU 191

STUDENT: Thank you, Master. I will contemplate this more.

Do not seek to avoid unpleasant situations on your project. They are

sometimes your best teacher. Admit your mistakes, share what you have

learned with others, and move on.

What’s Next?

With a communication plan in hand and a good understanding of how

iterative development works, you’re in a good place to see how the best

agile teams turn it up a notch when it comes to executing fiercely.

Next up, you are going to learn the secrets of the visual work space and

how to harness it to keep you and your team energized and focused.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=191


Chapter 11

Setting Up a Visual Workspace

Flight status boards are great. In one quick glance you can see what’s

coming, what’s going, and what’s been canceled altogether.

Why not do the same for your project?

By learning how to create a visual workspace, you and the team will

never be at a loss for what to do next or where you can add the greatest

value. Not only will this enable you to work with greater clarity and

focus, the increased transparency will also help you set expectations

with the powers that be.

Speaking of which, here they come now.

11.1 Uh-oh...Here Come the Heavies!

There’s been a big shake-up at corporate. Budgets have been cut. Time-

lines have been slashed. And everything needs to be done better, faster,

and cheaper.

Prepared exclusively for Claus Pallisgaard Beck



UH-OH...HERE COME THE HEAVIES! 193

As a result, you’ve been asked to do more with less. Management would

like you to deliver the same amount of functionality, with half the team,

one month ahead of schedule. Or else.

It’s all coming down hard and fast, and tomorrow they want to set up a

meeting with you to confirm you are on board with the new plan.

Gulp! What do you do? What they are asking for is completely unrea-

sonable. You know it. The team knows. It seems they are the only ones

who don’t.

What could you do to show that while you would love nothing more

than to be able to deliver the same amount of functionality with half

the resources, it ain’t gonna happen.

Bringing the Executives Up to Speed

Instead of setting up a formal meeting and pleading your case in Power-

Point, you invite the executives down to your work area to see firsthand

the state of the project.

You begin by taking them through the inception deck for your project,

which you conveniently have posted on the wall.

Why are
we here?

Elevator
pitch

Product
box

NOT list
Meet the
neighbors

Show
solution

Up at night Size it up
What’s
going 
to give

What’s it 
going to 

take

The inception deck, you explain, is a tool you and the team use to make

sure you never lose sight of the goal of the project. By making it visible,

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=193


UH-OH...HERE COME THE HEAVIES! 194

you always know who the customer is, what they’re after, and, most

important, why we decided to spend money on this project in the first

place.

Impressed, the executives lean closer and ask you where you are in the

project. To answer that, you then direct their attention to your release

wall.

The release wall

I1 I2 ToDoI3 Iteration 4

Story cards remaining

Stories 
we’ve done

Looks like we
 are almost ½ way there

The release wall is where you and the team keep track of what’s been

done and what’s remaining. The left side of the wall shows those fea-

tures that have been fully analyzed, developed, tested, and vetted by

the customer (they are ready to be shipped). And the right side shows

those stories still needing to be developed.

As far as what the team is working on this iteration, you draw manage-

ment’s attention over to this iteration’s storyboard.

The storyboard

Not started DoneIn progress

Analysis done

Current iteration

Ready for test

State of this iteration’s user stories

Under construction Ready for review Blessed and seen
by our customer

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=194


UH-OH...HERE COME THE HEAVIES! 195

The storyboard tracks the state of this iteration’s features (or what we

call user stories). Features yet to be developed live on the left, while

those that have been built and blessed by the customer live on the

right. As a story gets more developed, it moves across the board from

left to right. Only when it is fully developed, tested, and vetted by the

customer does it get moved into the Done column.

Looking at their watches, they then cut to the chase and ask when you

expect to be done.

To answer that, you bring them over to the only two charts on your

wall you haven’t shown them yet—your team velocity and the project

burn-down chart.

Iterations

Velocity
(pts)

V = 15 pts

How fast we are going

Iterations

When we expect to be done

feeds

Team velocity Project burn-down

You explain that the team velocity is the closest thing you and the team

have for measuring the team’s level of productivity. By measuring how

much the team gets done each week and using that as the basis of plan-

ning going forward, the team can accurately predict when they expect

to be done. This is shown on the project burn-down chart.

The project burn-down (see above in Section 8.5, The Burn-Down Chart,

on page 148) takes the team velocity and extrapolates the speed at

which the team is “burning” through the customer’s wish list. The

project is done when the team delivers everything on the list or the

project runs out of money (whichever comes first).

With the stage set, you now calmly point out what should already be

obvious to everyone in the room. Halving the development team would

effectively cut the team’s productivity in half.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=195


HOW TO CREATE A VISUAL WORKSPACE 196

Impressed with your command of the situation, the executives thank

you for your time and move onto their next project meeting.

A few weeks later you get an email explaining that because of the com-

pany’s heading in a new strategic direction, your project is going to be

canceled (life is like that sometimes).

The good news, however, is that they were so impressed with how you

managed your project, they want you to play a lead role in the new

initiative!

This is just one contrived example of how a visual workspace can help

you set expectations with stakeholders and make the reality of a situa-

tion self-evident. But where it really shines is in helping you and your

team execute and focus.

Let’s now go over some ideas for creating your own visual workspace.

11.2 How to Create a Visual Workspace

Creating a good visual workspace is pretty straightforward. For teams

new to agile, I usually recommend starting with the following:

• A story wall

• A release wall

• A velocity and burn-down graph

• An inception deck, if they have the room

The inception deck is good because it reminds the team why they are

there and what it’s really all about (which can be easy to lose sight of

when your head is buried in your project).

The story wall is great because any morning anyone can walk in and

know exactly what needs to be done next.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=196


HOW TO CREATE A VISUAL WORKSPACE 197

Story wall
Not started

Twitter
plug-in

Mission-

critical bug

The story wall will also show you any bottlenecks you have in the sys-

tem and where you’ll want to direct resources.

The storyboard

Not started DoneIn progress

Current iteration

Ready for test

Resources needed here !The agile developer

The release wall is a thing of beauty, because anyone can walk into

your room and see the state of your project at a glance. This is what’s

done. This is what’s remaining. No fancy math or Excel spreadsheets

required.

And as we talked about extensively in agile planning, nothing sets

expectations better than a good burn-down chart. Keep one of these

babies on your wall, and you’ll always know how realistic your dates

are looking and how you are trending.

And of course this is just the beginning. If you have other pictures,

mock-ups, or diagrams that help you and your team execute, stick ’em

up there and make it visible for all to see.

Here are some other ideas for creating your visual workspace.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=197


SHOW YOUR INTENT 198

11.3 Show Your Intent

Working agreements are about putting a stake in the ground as a team

and saying, “This is how we as a team like to work.” It’s a way of setting

expectations with everyone on the team about how your team is going

to work and what’s going to be expected of people if they join you on

this ride.

Shared values are the same, only more touchy-feely. If the team has

been burned in the past because they were forced to compromise on

quality and no longer want to be known as that team that cuts corners

and writes crappy software, they can post their shared values and make

that known.

Working agreements

* Core hours 9 a.m.-4 p.m.

* Daily stand-ups 10 a.m. sharp

* Done includes testing

* Respect the build

* Weekly demo Tues 11am

* Customer available 1-3 p.m.

* When someone asks you

   for help say “yes”

Shared values

* We don’t cut corners

* No broken windows

* It’s OK to disagree

* We can handle the truth

* Don’t assume—ask

* When in doubt—write a test

* Crave feedback

* Check your ego at the door

The other thing you want to be sure you share on your project is

language.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=198


CREATE AND SHARE A COMMON DOMAIN LANGUAGE 199

11.4 Create and Share a Common Domain Language

Our domain language
Location :

Device :

Meter :

Measurement
Point :

When the words used in your software don’t match those used by busi-

ness, you can get into all sorts of trouble.

• The wrong abstractions get built into the software (business will

think location means one thing, while developers will interpret it

to mean something else).

• The software becomes harder to change (because the words that

appear on the screen don’t match those used to store it in the

database).

• You end up with more bugs and higher maintenance costs (be-

cause the team has to work extra hard when making changes to

the software).

To avoid this dysfunction, create a common language that you and the

business share and use it relentlessly in your user stories, models,

pictures, and code.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=199


WATCH THOSE BUGS 200

For example, if there are some key words that you and your customer

use when you talk about the system, write them down, come up with

clear definitions about what these words mean, and then make sure

you match those definitions on the software (that is, screens, code, and

database columns).

Doing this will not only minimize the bugs and rework but also make

it way easier to talk to your customer because your code will always be

in lockstep with how they talk about their business.

We don’t have the time or space to do this topic justice. But there is

an excellent book on the subject by Eric Evans: Domain-Driven Design:

Tackling Complexity in the Heart of Software. [Eva03]. It’s well worth the

read.

Finally, watch your bugs.

11.5 Watch Those Bugs

# of bugs

time

Too many bugs ... attack!

To make sure you and your team aren’t overwhelmed by a surprise bug

attack just before you roll into production, track and keep your bug

count down from day one of your project.

If it helps, dedicate 10 percent of every iteration to bug squashing and

paying down technical debt. Just squash those buggers on the spot,

and don’t let that bug count get away from you.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=200


WATCH THOSE BUGS 201

Master Sensei
and the

aspiring warrior

STUDENT: Master, what if my workplace does not allow me to create

a visual workspace? What should I do?

MASTER: It is true that some office work environments resist project

teams putting their work artifacts up on the wall. When faced with this

resistance, accept that it is there and decide how to proceed.

STUDENT: Yes, Master. But should I fight for the visual workspace?

Or just accept that I can’t have one?

MASTER: That is up to you. You can compromise. You can acquiesce.

Or you can confront. There is a time and place for each. Search your

heart, seek allies, and decide whether this battle is worth the effort.

STUDENT: If this is truly an important practice, what can one do to

compromise?

MASTER: When faced with situations such as these, some warriors

have found creating fold-away storyboards useful for keeping the work-

place clean, while enabling the team to communicate openly during the

day. Others have used online tools and virtual storyboards for sharing

important information, as well as keeping the team in sync.

STUDENT: So, my visual workspace doesn’t always have to be

physical?

MASTER: No. Physical is best but sometimes not always possible.

STUDENT: What if I choose to confront? What should I do then?

MASTER: You can start by simply creating a visual workspace, use

it daily for your project, and hope that, through dialogue and education,

the benefits become self-evident.

STUDENT: And if they do not?

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=201


WATCH THOSE BUGS 202

MASTER: Then the root cause is usually one based on emotion. There

may be forces diametrically opposed to what you are trying to achieve.

Try empathizing and understanding the spirit behind those forces ar-

rayed against you. Perhaps through dialogue, you will be able to find a

solution that works for both parties. Time and patience may be your best

allies here.

What’s Next?

Your journey is almost complete. You’ve got everyone on the bus (Chap-

ter 3, How to Get Everyone on the Bus, on page 48), you’ve got the plan

(Chapter 8, Agile Planning: Dealing with Reality, on page 130), and you

know what it takes to execute.

The next part of the book, “Agile Software Engineering,” focuses on the

core agile software engineering practices you and your team are going

to need to make all this agile stuff happen.

It’s a must-read if you cut code, but it is also recommended if you ever

plan on leading an agile project. None of this agile stuff works unless

it’s backed by some really solid technical practices, and although each

of the next four chapters could be a book in themselves, the chapters

here will give you enough of a taste to understand how the practices

work and why they are important for your team’s overall agility.

We’ll start by taking a look at one of the greatest time-savers of any

software project—automated unit testing.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=202


Part V

Creating Agile Software

Prepared exclusively for Claus Pallisgaard Beck



Chapter 12

Unit Testing: Knowing It Works

For all the time spent on planning and managing expectations, agile

processes don’t work unless they’re backed by a solid set of software

engineering practices. Although some practices—such as XP’s pair pro-

gramming—have been controversial, others such as automated unit

testing have become widely accepted.

In the final four chapters of the book, we’re going to learn about what I

like to refer to as the no-brainers of agile software engineering:

• Unit testing

• Refactoring

• Test-driven development (TDD)

• Continuous integration

Prepared exclusively for Claus Pallisgaard Beck



WELCOME TO VEGAS, BABY! 205

Each one of these chapters could easily be a book in itself, but by intro-

ducing the concepts to you here, you’ll at least have a good understand-

ing of what they are and know enough of the mechanics to get you and

your team going.

All examples are in Microsoft .NET C# (though the concepts can be

applied to all languages in general). And don’t worry if you are the non-

technical type. This is good stuff for you to be aware of, and I will

highlight the important stuff as we go.

Let’s start with the one practice that underpins most of what we do

when it comes to agile software engineering: rigorous and extensive

unit testing.

12.1 Welcome to Vegas, Baby!

You lucky dog! You’ve just joined a team of software developers building

a new Black Jack simulator! Your first task is design a deck of cards.

Here’s your first cut of the code in C# for a full deck of cards:

Download tdd/src/Deck.cs

public class Deck

{

private readonly IList<Card> cards = new List<Card>();

public Deck()

{

cards.Add(Card.TWO_OF_CLUBS);

cards.Add(Card.THREE_OF_CLUBS);

// .. remaining clubs

cards.Add(Card.TWO_OF_DIAMONDS);

cards.Add(Card.THREE_OF_DIAMONDS);

// ... remaining diamonds

cards.Add(Card.TWO_OF_SPADES);

cards.Add(Card.THREE_OF_SPADES);

// ... remaining spades

cards.Add(Card.TWO_OF_HEARTS);

cards.Add(Card.THREE_OF_HEARTS);

// ... remaining diamonds

// joker

cards.Add(Card.JOKER);

}

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/src/Deck.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=205


WELCOME TO VEGAS, BABY! 206

Write a Failing Unit Test Before Fixing the Bug

When you discover a bug in your software, it’s tempting to jump
right in there and fix it. Don’t. Instead, first capture the bug in the
form of a failing unit test, and then fix it. Doing this will ensure the
following:

• Prove you understand the nature of the bug

• Give you confidence you’ve fixed it

• Ensure that the bug can never burrow its way back into
your program again

You make it through peer review, everything looks good, and just before

you’re set to roll into production, QA finds a bug. There is no joker card

in a Black Jack deck! You fix the bug, give QA a new build, and release

into production.

Then a couple weeks later you get a nasty email from the QA manager

informing you that there was a major bug in production last night. Tens

of thousands of dollars needed to be reimbursed because someone put

a joker in the Card class!

“What?” you say. “Impossible. I fixed that bug a couple weeks ago.” Dig-

ging deeper, you discover that a summer student you were mentoring

took you a little too literally when you asked her to make sure your

deck of cards class behaved just like a physical deck of cards you gave

her to test against.

It seems she inadvertently added the joker back into the deck, thinking

she had found a bug.

Ashamed and embarrassed, the summer student apologizes to you and

the rest of the team. Behind closed doors, she asks you what she can

do to make sure something like this never happens again.

What do you tell her? What could she (or you) have done to make sure

that the joker bug had zero chance of ever reentering the code base

once it had been fixed?

In this light, let’s now take a look at the humble unit test.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=206


ENTER THE UNIT TEST 207

12.2 Enter the Unit Test

Unit tests are small, method-level tests developers write every time they

make a change to the software to prove the changes they made work as

expected.

For example, say we wanted to verify our deck of cards had fifty-two

cards in it (and not fifty-three). We could write a unit test that would

look something like this:

Download tdd/test/DeckTest.cs

[TestFixture]

public class DeckTest

{

[Test]

public void Verify_deck_contains_52_cards()

{

var deck = new Deck();

Assert.AreEqual(52, deck.Count());

}

Just to be clear, the previous code isn’t the actual code we run as part

of our Black Jack simulator in production. This is test code that verifies

our real code works as expected.

Whenever we have a doubt about how our code is going to behave or

we want to verify it’s doing what we expect, we write a unit test (in this

case one that verifies our deck has fifty-two cards).

Unit tests are invaluable because once we automate and make them

easy to run, we can run them every time we make a change to our

software and know instantly whether we broke something (more on this

in Chapter 15, Continuous Integration: Making It Production-Ready, on

page 238).

Typically agile projects will have hundreds if not thousands of unit

tests. They will slice right through the entire application testing every-

thing from our application’s business logic down to whether we can

store our customer’s information in the database.

The benefits of writing lots of these against your code base are many:

• They give you instant feedback.

– When you make changes to your code and a unit test breaks,

you know about that instantly (not three weeks later after

you’ve rolled into production).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/test/DeckTest.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=207


ENTER THE UNIT TEST 208

Test Everything That Could Possibly Break

Extreme Programming (XP) has a mantra called “test every-
thing that could possibly break.” It is a reminder to develop-
ers that if there is something they think stands a reasonable
chance of breaking the system, then they should write an auto-
mated test against it.

We can never test everything, but the practice does capture
the spirit of how agile wants teams to think about testing. Test
as much as you think you need to make sure your software is
working, and use your judgment to figure out where you can
get the most testing bang for your buck.

In Chapter 14, Test-Driven Development , on page 227, we’ll see
how test-driving development can help you figure out where to
maximize your testing dollars, as well as strike the right balance
between trying to test everything vs. testing just enough.

• They dramatically lower the cost of regression testing.

– Instead of having to manually retest everything every time we

pump out a new release, we save ourselves a ton of time by

automating the easy stuff so we have more time to test the

complicated stuff.

• They greatly reduce debugging time.

– When a unit test fails, you know exactly where the problem is.

No more firing up the debugger and stepping through thou-

sands of lines of code, searching for the offending piece of

code. Unit tests cut through the fog like a laser and show you

exactly where the problem is.

• They let you deploy with confidence.

– It just feels good rolling into production knowing you have

a suite of automated tests backing you up. They’re not fool-

proof, but they free you up to test the other more interest-

ing/complicated parts of your system.

Think of unit tests as the armor you don before riding into battle.

They become a form of executable spec that lives forever in your code,

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=208


ENTER THE UNIT TEST 209

protecting you from missiles, real and imaginary dragons, and, most

importantly, ourselves.

O
ld

 b
ugs

Sim
ple st

uff 

that s
hould w

ork

Human error

Configuration

issues

Basic logic

Warning: you will also periodically run into cases where writing an

automated test is tough. For example, writing a test to verify we could

shuffle our deck of cards is hard (as the answer is random and would

change every time). Also, testing concurrency and multithreaded appli-

cations can be challenging, to say the least.

When you run into cases like these, don’t despair. They are the excep-

tion rather than the norm. In the overwhelming number of cases, you

are going to be able to instantiate an object and make assertions on the

methods you call. This is even more possible with all the unit testing

mocking frameworks available today.

In those rare cases where you can’t test something readily, it may be

an issue with your design (see Chapter 14, Test-Driven Development,

on page 227). Or maybe you’ve inherited some legacy code that is just

really hard to test.

If this is the case, so be it. Accept that you won’t be able to test every-

thing. Make sure you cover it with some really good manual and ex-

ploratory testing, and move on.

Just don’t give up! Always try to automate that chunk of code, because

having that little extra bit of armor can really save your bacon when

that emergency bug fix request comes in and you have to get a release

out fast.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=209


ENTER THE UNIT TEST 210

You can also read Michael Feathers’ Working Effectively with Legacy

Code [Fea04], which has lots of invaluable suggestions for how to take

tough to work with legacy code and make it more open to change.

Now you try

Let’s get you thinking like a tester. What unit tests do you think we

could write against our deck of cards class given the following require-

ments? How could we prevent that nasty joker bug from ever appearing

again?

If your tests look something like these, you are on the right track. We

want to test everything that could possibly break, so if you suspect that

something could go wrong, put yourself at ease and write a test.

Download tdd/test/DeckTest.cs

[TestFixture]

public class DeckTest2

{

[Test]

public void Verify_deck_contains_52_cards()

{

var deck = new Deck();

Assert.AreEqual(52, deck.Count());

}

[Test]

public void Verify_deck_contains_thirteen_cards_for_each_suit()

{

var Deck = new Deck();

Assert.AreEqual(13, Deck.NumberOfHearts());

Assert.AreEqual(13, Deck.NumberOfClubs());

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/test/DeckTest.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=210


ENTER THE UNIT TEST 211

Assert.AreEqual(13, Deck.NumberOfDiamonds());

Assert.AreEqual(13, Deck.NumberOfSpades());

}

[Test]

public void Verify_deck_contains_no_joker()

{

var Deck = new Deck();

Assert.IsFalse(Deck.Contains(Card.JOKER));

}

[Test]

public void Check_every_card_in_the_deck()

{

var Deck = new Deck();

Assert.IsTrue(Deck.Contains(Card.TWO_OF_CLUBS));

Assert.IsTrue(Deck.Contains(Card.TWO_OF_DIAMONDS));

Assert.IsTrue(Deck.Contains(Card.TWO_OF_HEARTS));

Assert.IsTrue(Deck.Contains(Card.TWO_OF_SPADES));

Assert.IsTrue(Deck.Contains(Card.THREE_OF_CLUBS));

Assert.IsTrue(Deck.Contains(Card.THREE_OF_DIAMONDS));

Assert.IsTrue(Deck.Contains(Card.THREE_OF_HEARTS));

Assert.IsTrue(Deck.Contains(Card.THREE_OF_SPADES));

// the others

}

For you nontechies, the previous code contains unit tests that do the

following:

• Check each deck has thirteen cards for each suit

• Ensure our deck does not contain any jokers (this is the bug that

slipped through earlier)

• Check every card in the deck (all fifty-two of them)

Where Can I Learn More?

We’ve only scratched the surface of unit testing, and a lot more can

be said on the subject. Fortunately, unit testing is becoming so com-

mon on software projects that most modern languages have unit testing

frameworks (freely available for download) and tutorials showing you

how to get started.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=211


ENTER THE UNIT TEST 212

A good place to start for any developer looking to understand the spirit

of the practice is Kent Beck’s classic introductory paper.1

You can also check out Pragmatic Unit Testing in C# with NUnit [HT04]

and Pragmatic Unit Testing in Java with JUnit [HT03].

Master Sensei
and the

aspiring warrior

STUDENT: Master, how does unit testing not slow teams down? I

mean, you’re writing double the amount of code, aren’t you?

MASTER: If programming were merely typing, that would be true. The

unit tests are there to confirm that as we make changes to our software,

the universe still unfolds as expected. This saves us time by not having to

manually regression test the entire system every time we make a change.

QUESTION: Yes, Master. But won’t writing unit tests make the code

brittle? How do I ensure that my unit tests won’t break every time I make

a change to my code?

ANSWER: Although it is certainly possible to write brittle tests that rely

on hard-coded data, are tightly coupled, and are poorly designed, as you

become accustomed to letting the tests drive your design (Chapter 14,

Test-Driven Development, on page 227), you will find your tests do tend

not to break and in fact improve your overall design. Most modern inte-

grated development environments (IDEs) also make handling changes to

your code and tests easy. You can rename a method throughout your

entire code base by simply pressing a few keys. This helps keep your

tests and production moving as one.

QUESTION: Is 100 percent unit test coverage something I and my team

should shoot for?

1. http://junit.sourceforge.net/doc/testinfected/testing.htm

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=212


ENTER THE UNIT TEST 213

ANSWER: No. The point of unit testing isn’t coverage—it’s giving your-

self and your team enough confidence that your software is sound and

ready for production.

QUESTION: So, then, how much unit test coverage should I and my

team have?

ANSWER: That is for you and your team to decide. Some frameworks

and languages make achieving good test coverage easy. Others make

achieving good coverage hard. If you are just starting out, do not be overly

concerned with coverage. Just write as many of the best tests that you

can.

What’s Next?

Good job. You now know of one of the core underpinnings upon which

all our other agile software engineering practices rest. Without sound

automated unit tests, it all falls apart.

Next we are going to look at how to build on our unit tests and do

something so critical that were we to somehow skip this practice, our

product would become just another overpriced, unmaintainable blob of

code resistant to all forms of change.

Let’s now look at the important practice of refactoring.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=213


Chapter 13

Refactoring:
Paying Down Your Technical Debt

Just like a house with a mortgage, software has debt that continuously

needs to be paid down too.

In this chapter, we are going to look at the practice of refactoring and

see how by regularly paying down the technical debt we can keep our

software nimble and flexible and our house a joy to work and live in.

By the end of the chapter, you’ll see how refactoring will lower your

maintenance costs, give you a common vocabulary for making improve-

ments to the code, and enable you to add new functionality at full

speed.

Let’s now enter the world of refactoring and see what it takes to turn

on a dime.

Prepared exclusively for Claus Pallisgaard Beck



TURN ON A DIME 215

13.1 Turn on a Dime

It seems the competition has just released a “kid-friendly” version of

your company’s online Black Jack product—and it’s selling like hot

cakes.

To respond to this new competitive threat, you and the team start work

immediately, and for a while everything is going all right. But then

something strange starts to happen. What initially looked like a slam

dunk is now starting to look really hard.

For one, a lot of code has been copied and pasted throughout the code

base. This is making adding new functionality hard because every time

you make a change in one place, you need to make the same change in

a dozen others.

On top of that, the code you and the team wrote in haste to hit the last

deadline has now come back to haunt you. It’s really a mess and hard

to work with. To make matters worse, the programmer who originally

wrote it is now long gone.

Here’s just one sample from the offending code:

Download Refactoring/src/BlackJack.cs

public bool DealerWins(Hand hand1)

{

var h1 = hand1; int sum1 =0;

foreach (var c in h1)

{

sum1 += Value(c.Value, h1);

}

var h2 = DealerManager.Hand; int sum2 =0;

foreach (var c in h2)

{

sum2 += Value(c.Value, h2);

}

if (sum2>=sum1)

{

return true;

}

else

return false;

return false;

}

Don’t worry if you can’t make sense of this code (I can’t either). Yet this

is the code you need to change. This is the code you need to maintain.

This is the code you (ack!) push into production.
Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/Refactoring/src/BlackJack.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=215


TECHNICAL DEBT 216

Working and making changes to this code base is going to take longer

and cost more than you originally thought.

It quickly becomes apparent that to do this right, you are going to need

at least two weeks just to clean up the existing code base before you

can even start adding the new functionality. Unfortunately, that’s two

weeks of time your boss says you don’t have.

What went wrong? How could something that was nice, simple, and

easy to work with morph into something so big, ugly, and hard to work

with?

We are now ready to take a look at a concept called technical debt.

13.2 Technical Debt

Technical
debt

Start End of projectTime

Unrefactored code

Refactored code

Change is easy

Change is hard

Change? Forget it!

$1

$10

$100

Technical debt is the continuous accumulation of shortcuts, hacks,

duplication, and other sins we regularly commit against our code base

in the name of speed and schedule.

You are always going to have some debt in your code (having none

would mean you aren’t trying innovative or different things), but you’ll

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=216


MAKE PAYMENTS THROUGH REFACTORING 217

Technical Debt Is More Than Just Code

While most of our technical debt is code centric, you can also
have it in data and build and configuration files.

I was once part of a large-scale rewrite for a back-end system
where a city name was spelled two different ways. The cost of
this seemingly small difference was huge. Instead of not caring
how the city was spelled, they had to write and carry this extra
code and complexity for as long as that system remained in
production, which for mainframe systems can be a very long
time.

know you’ve accumulated too much when what used to be fun, easy,

and simple is now painful, hard, and complex.

Technical debt can take many forms (spaghetti code, excessive com-

plexity, duplication, and general sloppiness), but what makes it really

dangerous is how it just kind of sneaks up on you. Each transgression

initially made against the code base can seem small or insignificant.

But like all forms of debt, it’s the cumulative effect that adds up over

time that hurts.

What we need is a way of systematically paying down our technical debt

as we go. We need a way of incrementally improving and maintaining

our software’s integrity and design that lets us meet the goals of today

and be in a good position to handle the yet unknown challenges coming

tomorrow.

In agile, we call this refactoring.

13.3 Make Payments Through Refactoring

Refactoring is the practice of continuously making small, incremen-

tal design improvements to your software without changing the overall

external behavior.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=217


MAKE PAYMENTS THROUGH REFACTORING 218

When we refactor our code, we aren’t adding new functionality or even

fixing bugs. Instead, we are improving the understandability of our code

by making it easier to comprehend and more amenable to change.

We call one of these changes a refactoring.

For example, whenever you rename a poorly named method or variable

in an effort to make it easier to read and understand, you’re refactoring.

decimal sal;   decimal salary; [Rename variable]

public decimal Calc()   public decimal CalculateTotalTaxes()  [Rename method] 

Refactorings

At first glance, refactorings like these may seem small and insignificant.

But when applied continuously and aggressively against a code base,

they can have a profound impact on the quality and maintainability of

the code.

For example, take look at these code snippets, and ask yourself which

takes more effort to read and understand:

if (Date.Before(SUMMER_START) || Date.After(SUMMER_END))
 charge = quantity * _winterRate + _winterServiceCharge;
else
 charge = quantity * _summerRate;

if (NotSummer(date))
 charge = WinterCharge(quantity);
else
 charge = SummerCharge(quantity);

OR ... Refactoring: [Extract method]

You don’t have to be a developer or know C# to see that the second

example is way easier to read and understand than the first. Writing

code is a lot like writing good prose. You want it to be clear, easy to

understand, and not take a lot of effort to figure out what’s going on.

Refactoring is the secret sauce that object-oriented programmers use

to do this. By choosing well-named methods and variables and hiding

unnecessary detail from the reader, they are able to communicate their

intent very clearly, making the code easy to understand and easy to

change.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=218


MAKE PAYMENTS THROUGH REFACTORING 219

Agile principle
Continuous attention to technical excellence
and good design enhances agility.

At its heart, that is what refactoring is really all about: reminding our-

selves that software is written and maintained by folks like you and

me. And if we can’t make our software easy to change and a joy to work

with, it’s not going to be a lot of fun whenever we need to make changes

or add new functionality.

Refactor Hard—Continuously

When you refactor aggressively, you don’t slow down near the end of

a project—you speed up. That’s because when you’ve kept your design

up over time, you’ve done most of the heavy lifting. New features build

on older, well-designed ones. You can then leverage your hard work and

reap the rewards from keeping a house in order.

Refactoring aggressively means not saving up all your refactorings until

the end of an iteration. This is stuff you want to be doing continuously

throughout the day.

When it’s done right, refactoring is almost invisible. The steps are so

small and the improvements so minute that it’s almost impossible to

tell the difference between when someone is refactoring the code and

adding new functionality.

too much debt accumulation

Weekly

Debt Refactor

Daily

Minutes

you want to be refactoring here

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=219


MAKE PAYMENTS THROUGH REFACTORING 220

That’s enough theory. Let’s give the ol’ brain a stretch and try this for

ourselves:

Now you try

What improvements could we make to the kid-friendly version of our

Black Jack game we saw at the beginning of the chapter?

public bool DealerWins(Hand hand1)ÊÊÊÊÊÊ 
{ÊÊÊÊÊÊÊÊÊÊ 
 var h1 = hand1; int sum1 =0;ÊÊÊÊÊÊÊÊÊÊÊ 
 foreach (var c in h1)ÊÊÊ
Ê {  
  sum1 += Value(c.Value, h1);ÊÊÊ
Ê }ÊÊÊÊ
 var h2 = DealerManager.Hand; int sum2 =0;ÊÊÊÊ
 foreach (var c in h2)ÊÊÊÊ
 {ÊÊÊÊ 
  sum2 += Value(c.Value, h2);ÊÊÊÊ
 }ÊÊÊÊ
 if (sum2>=sum1)ÊÊÊ
Ê {ÊÊÊÊ 
  return true;ÊÊÊÊ
 }ÊÊÊÊ
 elseÊÊÊÊÊÊÊÊ
  return false;ÊÊÊÊ

 return false;
}

any variables we could rename ?

any duplication
in terms of functionality ?

any unnecessary logic or code ?

A good place to start while doing any refactoring is to make sure all

our variable and method names are good. So, why don’t we start by

cleaning those up first?

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=220


MAKE PAYMENTS THROUGH REFACTORING 221

public bool DealerWins(Hand playerHand) {

            int playerHandValue = 0;

            foreach (var card in playerHand)
            {
                playerHandValue += DetermineCardValue(card, playerHand);
            }

            var dealerHand = DealerManager.Hand;
            int dealerHandValue= 0;

            foreach (var card in playerHand)
            {
                dealerHandValue += DetermineCardValue(card, dealerHand);
            }

            return dealerHandValue >= playerHandValue;

}

Refactoring: [Rename variable]

Refactoring: [Rename method]

Refactoring: Simplified the code

Well, that’s looking a bit better. It’s a little more readable. But we aren’t

done yet. There is still some more duplication in there. What if we tried

extracting some similar-looking logic into its own method?

 public bool DealerWins(Hand playerHand)
 {
            int playerHandValue = GetHandValue(playerHand);
            int dealerHandValue = GetHandValue(DealerManager.Hand);

            return dealerHandValue >= playerHandValue;
 }

        private int GetHandValue(Hand hand)
        {
            int handValue = 0;

            foreach (var card in hand)
            {
                handValue += DetermineCardValue(card, hand);
            }
            return handValue;
        }

}

Refactoring: [Extract method]

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=221


MAKE PAYMENTS THROUGH REFACTORING 222

Wow! Look at that. After extracting the GetPlayerHandValue method, our

DealerWins method collapsed down to just three lines. Now we can see

what that method was trying to do. This is much easier to read. And if

we ever want to see the details of how the player’s hand is calculated,

we can always drop down into the GetPlayerHandValue method and take

a look.

This code is pretty clear. If we wanted to take it to the next level, of

course, we could also do something like this:

 public bool DealerWins(Hand playerHand)
  {
            return GetHandValue(DealerManager.Hand) >= GetHandValue(playerHand);
  }

Refactoring: [Inline variable]

With just these three simple refactorings:

• Rename variable/method

• Inline variable

• Extract method

you can really improve the readability and maintainability of your code.

For any managers out there reading this, this is important because

now when the team needs to do that emergency bug fix or make that

mission-critical change, they are going to be able to do it better, faster,

and cheaper than before.

Instead of spending countless hours trying to figure out what the code

is doing, they can get right to work and make the change.

For this reason, you should be a big supporter and cheerleader for

ensuring the programmers on your team are aggressively refactoring

and continuously paying down any technical debt.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=222


MAKE PAYMENTS THROUGH REFACTORING 223

Refactoring Gets a Dirty Name

Once, while building an energy-trading application, our team
went off and did several large-scale refactorings in the code
base and didn’t add much in the way of new functionality for
several weeks.

Well, it didn’t take long for management to come to despise
the word refactoring (because it came to mean rework and
not adding any new functionality), and soon the edicts came
from above that thou shalt not refactor.

Don’t let this happen to you. Refactor continuously as you go.
It’s much harder to pay down the technical debt later, and the
last thing you want to do is give refactoring a dirty name.

Great question. Sometimes we do need to make bigger changes to our

software than simply renaming a few variables. A library or framework

may need to be replaced, a new tool may need to be integrated, or we

believed the marketing hype a little too much and now need to replace

a tool we were relying on for some heavy lifting.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=223


MAKE PAYMENTS THROUGH REFACTORING 224

Whatever the reason, big refactorings do come up from time to time,

and we need a way to handle them.

If the change is imposed from outside the team and is something we

just need to do, treat the refactoring like any other user story. Estimate

it, prioritize it, make the cost visible, and show the impact it’s going to

have on the project.

Migrate to new corporate
security model

10 pts

big refactoring
The trickier ones to handle are those more subjective cases where we

could get by if we kept soldiering on, but the payback of doing this one

change could really pay dividends down the road.

If your big refactoring falls into this gray area, ask yourself two ques-

tions before deciding whether to proceed:

• Are we near the end of the project?

• Can it be done incrementally?

Big end-of-project refactorings usually aren’t worth the pain because

you won’t have time to reap the rewards of your work. So, it’s usually a

good idea to pass if you are near the end of your project.

Incremental refactorings are easier to sell to your customer because it

means you and the team aren’t going to disappear on them. They will

continue to see new functionality in their software while you chip away

at the refactoring incrementally.

Just take a look at your situation. See what needs to be done. And if

it looks like it’s going to save you a lot of pain, go for it—it’s probably

worth doing.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=224


MAKE PAYMENTS THROUGH REFACTORING 225

Where Can I Learn More?

We’ve only scratched the surface on the very important topic of refac-

toring, and this small chapter does not do the subject anywhere near

the justice it deserves.

The book you really want to read is Martin Fowler’s Refactoring: Improv-

ing the Design of Existing Code [FBB+99].

Another worth reading is Michael Feathers’ Working Effectively with

Legacy Code [Fea04].

Master Sensei
and the

aspiring warrior

STUDENT: Master, is there ever a time I shouldn’t refactor my code?

MASTER: Save for the large-scale refactorings we already discussed,

no. You generally want to refactor your code every time you make a

change to the software.

STUDENT: Have I failed if I ever need an iteration dedicated to nothing

but refactoring?

MASTER: No—it is just less than ideal. Try hard to do your refactorings

in the small so you don’t need to do them in the large. You won’t always

be successful, and large changes are sometimes required. But try to make

them a last resort. It’s not something you do regularly.

What’s Next?

Good stuff. Unit testing and refactoring together form a powerful one-

two punch that most poorly designed software can’t stand up against.

But there is another practice you need to know about—one that not

only helps you with your software’s design but also helps you figure

out just how much to test.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=225


MAKE PAYMENTS THROUGH REFACTORING 226

Turn the page to discover the art of test-driven development and to see

how writing tests first aids us as we stare at our blank canvas of code

and wonder where it should all begin.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=226


Chapter 14

Test-Driven Development

You’re stuck. Stumped. You’ve been staring at one particular piece of

code all day, and you just don’t know how to break it down or even

where to begin.

You wish you could code like Eric.

There is something about his code. It just seems to work. Whenever

you use any of his code, it’s like he has read your mind. Everything you

need is right there—backed by a full suite of automated unit tests.

How does he do it? What’s he doing that you’re not?

Growing frustrated but realizing you need help, you finally muster up

the courage and head over to Eric’s desk. “How do you write such good,

clean code?”

“Easy,” he replies. “I write the tests first.”

Prepared exclusively for Claus Pallisgaard Beck



WRITE YOUR TESTS FIRST 228

14.1 Write Your Tests First

Test-driven development (TDD) is a software development technique

that uses really short development cycles to incrementally design your

software.

Here’s how it works:

1. Red: Before you write any new code for the system, you first write

a failing unit test, showing the intent of what you would like the

new code to do. Here you are thinking critically about the design.

2. Green: Then you do whatever it takes to make the test pass. If you

see the full implementation, add the new code. If you don’t, do just

enough to get the test to pass.

3. Refactor: Then you go back and clean up any code or sins you

committed while trying to get the test to pass. Here you are remov-

ing duplication and making sure everything is lean, mean, and as

clear as possible.

Te
st 

fai
ls

Test passes

Refactor

TDD circle

of life

When asked how he knows when to stop, Eric replies that he keeps

repeating the process of writing tests, making them pass, and refactor-

ing until he’s confident the code does everything the user story requires

(usually this means passing all the story’s acceptance criteria).

He also has a few rules of thumb for helping himself stay on track.

Rule #1: Don’t write any new code until you first have a failing test.

Eric readily admits he isn’t able to follow this rule 100 percent of the

time (some stuff is just really hard to test first—like user interfaces).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=228


WRITE YOUR TESTS FIRST 229

But the spirit of it, he explains, is not to write any more code than

absolutely necessary. Writing a test first forces us to think about the

value of what we are adding and helps prevent us from over-engineering

the solution.

Rule #2: Test everything that could “possibly” break.

Following this rule doesn’t mean you literally test everything—that

would take forever. The key word here is possibly. If there is a plau-

sible chance that something might break or we want to show intent in

how the program will behave under certain conditions, we write a test

for it. Eric then shows you an example of something he is currently

working on.

on back

Create customer
profile

Test criteria

* save new profiles

* check for duplicates

* basic validation

“As you know, we’ve got some real high rollers here in Vegas,” Eric

explains. “Something our data warehouse guys like to do is profile the

movers and shakers. They figure out their likes, dislikes, favorite foods,

favorite drinks, and anything else that can help us get them back to

our casino.

“Now, we already have a customer profile object in the system. What

I need to do is figure out how to store that profile information in the

database.”

The first thing Eric does is write a test. Here he imagines the code he

needs to test already exists, and he is simply writing a test to prove to

himself that it works:

Download tdd/test/CustomerProfileManagerTest.cs

[Test]

public void Create_Customer_Profile()

{

// setup

var manager = new CustomerProfileManager();

// create a new customer profile

var profile = new CustomerProfile("Scotty McLaren", "Hagis");

// confirm it does not exist in the database

Assert.IsFalse(manager.Exists(profile.Id));

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/test/CustomerProfileManagerTest.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=229


WRITE YOUR TESTS FIRST 230

// add it

int uniqueId = manager.Add(profile); // get id from database

profile.Id = uniqueId;

// confirm it's been added

Assert.IsTrue(manager.Exists(uniqueId));

// clean up

manager.Remove(uniqueId);

}

Confident his test will tell him whether he can safely add a new cus-

tomer profile, he then switches gears and now focuses on getting the

test to pass.

Here he clearly sees what needs to be done (take the customer profile

information and store it in the database), so he goes ahead and adds

the new functionality.

Download tdd/src/CustomerProfileManager.cs

public class CustomerProfileManager

{

public int Add(CustomerProfile profile)

{

// pretend this code stored the profile

// in the database, and returned a real id

return 0;

}

public bool Exists(int id)

{

// code to check if customer exists

}

public void Remove(int id)

{

// code to remove a customer from the database

}

}

}

He now runs the test and sees that it passes. Yay!

Refactoring is the final leg of his TDD journey. He now goes back and

looks over everything (test code, production code, configuration files,

and whatever else he touched to make the test pass) and refactors it all

really hard (Chapter 13, Refactoring: Paying Down Your Technical Debt,

on page 214).

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/src/CustomerProfileManager.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=230


WRITE YOUR TESTS FIRST 231

After refactoring, he goes back and asks himself whether he’s tested

everything that could possibly break. For this story, he needs to verify

we don’t allow any duplicates.

So, he repeats the same process. Write a failing test, do enough to make

it pass, and then refactor.

Sometimes he has a bit of a chicken-and-egg problem (before he can

test whether inserting works, he needs code that tells him whether the

customer already exists).

When that happens, he just puts his current test on hold, adds the new

functionality (testing first, of course), and then comes back to whatever

it was he was working on before.

You thank Eric for his TDD demo and head back to your desk with

thoughts of tests, refactoring, and code buzzing through your head.

What Just Happened Here?

Let’s just stop and reflect for a second on what just happened here and

why it’s important.

In TDD we write the tests first, and then we make them pass. This

seems backward. It’s definitely not what we were taught in school.

But think about it for a second. What better way to design your software

than to imagine it already exists!

That’s all we are doing with TDD. Programmers write the code they

need as if it already exists and then test to make sure it works. It’s a

wonderful way to ensure that you build only that which you need while

testing that it works.

Now don’t panic if your team doesn’t suddenly take to TDD like a fish to

water. It’s a more advanced coding technique that builds on unit testing

and refactoring. And to be sure, there will be times when you can’t do

TDD and you will just want to sit down and hack to figure stuff out.

But once you’ve got the basics and you experience the rhythm and

power that comes from writing a small test, making it pass, and then

refactoring, you’ll like the way your code looks and tests.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=231


USE THE TESTS TO DEAL WITH COMPLEXITY 232

14.2 Use the Tests to Deal with Complexity

Developers face a lot of complexity when writing code. Look at how

many decisions Eric made when fleshing out his “Create customer pro-

file” application programming interface (API).

CustomerProfileRepository

public int Add(CustomerProfile profile)

parent class
method name input variable name

input typereturn typemethod visibility

   x6 design
   decisions

For a single line 
of code!

Count ’em. That’s six design decisions, trade-offs, and forks in the road

the developer needs to think about—all for a single line of code! It’s no

wonder things periodically fall through the cracks.

By writing your tests first and ensuring you have a failing test before

adding the new code, TDD helps you fight the sheer amount of com-

plexity you and your team are going to face writing code every day.

TDD also gives you a way of designing with confidence. By focusing on

a single test and making it pass, you don’t have to keep a thousand

things in your head at once.

You can focus on one little problem, learn incrementally how to best

tackle it, and get the instant feedback you need to tell you whether you

are headed in the right direction.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=232


USE THE TESTS TO DEAL WITH COMPLEXITY 233

Other reasons for doing test-first include the following:

Lower total
cost of ownership

Less code

Forces you
to think!

Quality baked in
from the start

Simpler
design

Reduced
complexity

All of this makes for a much easier code base to maintain and mod-

ify. With less code comes less complexity. And with a simpler design,

making changes and modifications becomes a lot easier.

Enough talk already. Let’s drive some tests and see how you do on the

test track.

Now you try

Eric invites you over to pair with him in writing some code that com-

pares the value of two cards. He thinks the functionality should go in

the Card class and would like your help fleshing out the test.

Write the method name you would like to see on the Card class that

compares two cards and tells whether one is greater than the other.

Te
st 

fai
ls

TDD circle

of life

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=233


USE THE TESTS TO DEAL WITH COMPLEXITY 234

public void Compare_value_of_two_cards() {

}

Card twoOfClubs = Card.TWO_OF_CLUBS;
Card threeOfDiamonds = Card.THREE_OF_DIAMONDS; Write your test here

Imagine the code already exists - just type it out!

Say your design looks something like this:

Download tdd/test/CardTest.cs

[Test]

public void Compare_value_of_two_cards()

{

Card twoOfClubs = Card.TWO_OF_CLUBS;

Card threeOfDiamonds = Card.THREE_OF_DIAMONDS;

Assert.IsTrue(twoOfClubs.IsLessThan(threeOfDiamonds));

}

Handing you the keyboard, Eric asks if you can make the test pass.

You come up with something like this:

Download tdd/src/Card.cs

public bool IsLessThan(Card newCard)

{

int thisCardValue = value;

int newCardValue = newCard.value;

return thisCardValue < newCardValue;

}

Test passes

TDD circle

of life

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/test/CardTest.cs
http://media.pragprog.com/titles/jtrap/code/tdd/src/Card.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=234


USE THE TESTS TO DEAL WITH COMPLEXITY 235

After making the test pass, Eric asks you if you see anything you would

like to refactor. You do. After making a few changes to the tests and the

method, your code now looks something like this:

Download tdd/test/CardTest.cs

[Test]

public void Compare_value_of_two_card()

{

Assert.IsTrue(Card.TWO_OF_CLUBS.IsLessThan(Card.THREE_OF_DIAMONDS));

}

Download tdd/src/Card.cs

public bool IsLessThan(Card newCard)

{

return value < newCard.value;

}

Refactor

TDD circle

of life

After completing one loop of the TDD circle, Eric smiles and says, “I

think you got it!” Keen to try this out on some of your own code, you

thank Eric and head back to your desk to write some tests of your own.

Where Can I Learn More?

To really get the spirit of TDD, I recommend Kent Beck’s book Test

Driven Development: By Example [Bec02], which has some good tips

and tricks about the deeper mechanics of TDD and how to make it

work for you.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://media.pragprog.com/titles/jtrap/code/tdd/test/CardTest.cs
http://media.pragprog.com/titles/jtrap/code/tdd/src/Card.cs
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=235


USE THE TESTS TO DEAL WITH COMPLEXITY 236

Master Sensei
and the

aspiring warrior

STUDENT: Master, I am confused about TDD. How am I supposed to

write tests for code that doesn’t even exist?

MASTER: Write the test as if the code you needed was already there.

STUDENT: But how will I know what to test?

MASTER: Test for that which you need.

STUDENT: So, you are saying to just write tests for things I need, and

everything the system needs will magically appear.

MASTER: Yes.

STUDENT: Can you elaborate a little on exactly how all this magic

works?

MASTER: There is no magic. You are simply manifesting that which

you need in the form of a test. Creating code this way ensures you create

only that which you need. You are simply using the tests as a gateway

to realize your intent. This is why TDD is often referred to as a design

technique and is less about testing.

STUDENT: So, TDD is really about design and not testing?

MASTER: That would be an oversimplification. Testing is a core part

of TDD, because we use tests to prove that the code we produce works.

But we cannot complete the tests without first doing some design and

showing our intent through the code.

STUDENT: Thank you, Master. I must think on this more.

What’s Next?

Can you feel the practices building? Unit testing gives us the confidence

to know what we have built works. Refactoring ensures we keep it sim-

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=236


USE THE TESTS TO DEAL WITH COMPLEXITY 237

ple, and TDD gives us a powerful tool for dealing with complexity and

design.

All that is left now is the one practice to bring them all together and

ensure that your project is in a continual state of production readiness.

Let’s now conclude and harness the power of continuous integration!

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=237


Chapter 15

Continuous Integration:
Making It Production-Ready

Get ready for some production-ready goodness. By learning how to con-

tinuously integrate your software, you’ll squash bugs early, lower the

cost of making changes to your software, and be able to deploy with

confidence.

And it looks like you need to do exactly that right now!

15.1 Showtime

First the good news. Your director is bringing by some influential in-

vestors to check out the latest version of your flagship Black Jack prod-

uct. The bad news is they are going to be here in an hour!

That leaves you less than sixty minutes to create a stable build, push

it onto the test server, and prepare for the demo.

What do you do?

Prepared exclusively for Claus Pallisgaard Beck



SHOWTIME 239

Before you answer that, spend two minutes thinking of all the things

that can go wrong whenever we deploy our software.

Things that can go wrong deploying software

Human error/fat fingers/bugs

Miscommunication with other teams

Differences in deployment environments

Errors / mistakes in configuration files

Out-of-date documentation

These are the things we want to eliminate, or at least manage, with our

continuous integration process. We want to create a culture of produc-

tion readiness and be able to demo our product to anyone, anytime,

anywhere.

Let’s look at two ways we could do this.

Scenario 1: The Big Production

One hour! That doesn’t leave you much time. Hitting the panic button,

you immediately pull the team together and, like a machine gun, start

firing questions:

Who has the latest build?

Whose desktop is most stable?

Who can get something up and running in the shortest period of time?

Not trusting anyone to do this right but yourself, you inform everyone

that your box will become the integration box for the demo and they all

have fifteen minutes to merge their changes to your code branch.

As people start merging their code, more problems arise. Interfaces on

core classes have changed. Configuration files have been modified. Files

from the old system have been refactored out and are missing. Merging

all the changes at once quickly becomes an integration nightmare.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=239


SHOWTIME 240

Silently cursing the director for not giving you enough time, you tell

people to comment out and hack around anything preventing them

from integrating their code.

Then with five minutes to spare, you see a faint glimmer of hope—it

compiles!

But then disaster—the investors show up five minutes early. No time

to test.

Crossing your fingers, you deploy the software, fire up the application

for the demo, and...it crashes. You fix that problem quickly and fire up

the application, only to have it crash again after you make it through

the introductory splash screen.

Slightly embarrassed and seeing the demo isn’t going as expected, the

director asks the team if they could maybe see some mock-ups instead.

Scenario 2: The Nonevent

Knowing you have a full hour before the demo, you give the team the

heads-up that there is going to be a demo shortly and tell them that if

they could check in and wrap up whatever it is they are working on,

that would be greatly appreciated.

Once everyone’s work has been saved, you check out the latest version

of the code, run all the tests, and seeing that everything works, push it

to test. The process is fully automated and takes about five minutes.

The investors arrive early. The demo goes great. And your boss thanks

you for being able to present on such short notice and hands you some-

thing you’ve always wanted—the keys to the executive washroom.

OK, maybe you don’t want the keys to the washroom, but you get the

point.

Getting ready for demos and pushing code into production doesn’t have

to be a stressful, laborious, anxiety-filled big event.

You want the building, integrating, and deploying of your software to be

a nonevent. And to do that, all you need is a nice smooth continuous

integration process and a culture of production readiness.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=240


A CULTURE OF PRODUCTION READINESS 241

15.2 A Culture of Production Readiness

There is a saying in Extreme Programming that production starts on

day one of the project. From the first day you write a line of code, you

treat the project as if it were in production, and after that, you are

merely making changes to a live system.

It’s a profound difference in how you view your code. Instead of view-

ing production and deployment as some event way off in the distant

future, you imagine you and your team are in production today and

start behaving accordingly.

Agilists like this notion of production readiness because it acknowl-

edges that software spends a lot more time in production than devel-

opment, and it gets the teams used to the idea of making changes to a

production-ready system.

Maintaining a culture of production readiness isn’t easy or free, how-

ever. It takes extreme discipline, and the temptation to delay investing

in production-quality code in the name of schedule can be great.

But those who do make the investment early can turn their projects on

a dime. They deploy with ease, make changes to their systems regularly

and confidently, and respond to their customers’ needs faster than their

competitors can.

And something that helps us do that is continuous integration.

15.3 What Is Continuous Integration?

Source

code

repository

New feature

Fixed a bug!

Made it faster

Updated copy

Single 
code base

Continuous integration is the act of continuously taking changes devel-

opers make to their software and integrating them all together contin-

uously throughout the day.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=241


WHAT IS CONTINUOUS INTEGRATION? 242

To use a book writing analogy, imagine you and your coauthor are

working on a chapter together, and you need to merge your changes

with hers. Merging some simple edits for a couple sentences isn’t too

bad.

The brown fox jumps over the lazy dog.

The brown fox jumps over the lazy black dog.

Piece of cake ...

It’s when we don’t integrate our changes for extended periods of time

that we run into trouble.

The brown fox jumps over the lazy dog. But 
then the dog did something utterly amazing! 
He baked a batch of chocolate chip cookies 
and proceeded to hand deliver them to everyone 
he passed on the street. The cats of course 
saw this, got angry, and decided to counter the
dog’s good will cookie campaign with a 
campaign of their own—chocolate cheesecake!

The brown fox jumps over the lazy dog. But 
then the dog did something utterly amazing! 
He made a batch of chocolate chip muffins 
and proceeded to deliver them to everyone 
he passed on the avenue. The cats, of course
saw this, got angry and decided to counter the
dog’s good will muffin campaign with a 
campaign of their own—vanilla cheesecake!

Can you spot the 
7 differences?

Writing software is the same. The longer you go without integrating

your changes with your teammates, the harder the merge is when you

do.

Let’s now see how this works in practice.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=242


HOW DOES IT WORK? 243

Keep It Quick

I was once on a project that had a great record/playback test
automation tool. It was so great, in fact, that everyone started
using it to record all their tests, and they stopped writing the
faster, lower-level unit tests.

This was OK for a while, but as more record/playback tests
accumulated, our automated build time jumped from a rela-
tively nice quick ten minutes to just over three hours.

This killed us. People stopped running the build. They started
checking in their work less often, and broken builds became
the norm for the project.

Don’t make the mistake we made of letting our builds get too
long. Keep an eye on your build time. Anything under ten min-
utes is a good rule of thumb. Smaller projects can usually keep
it to under five.

15.4 How Does It Work?

To set up a continuous integration system, you need a few things:

• A source code repository

• A check-in process

• An automated build

• A willingness to work in small chunks

Source code repositories store and version your software. This is what

your development team “checks” their code into. It is the integration

point of your project and keeps a master copy of your code. Open source

repositories like Git or Subversion are your friends here.

Just make sure you avoid pessimistic locking (which means that only

one developer can work on a file at a single time). It will frustrate your

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=243


ESTABLISH A CHECK-IN PROCESS 244

developers, slow your team down, and prevent your team from collec-

tively owning the code base.

A good check-in process is more interesting. Let’s see how a typical

agile team might do that.

15.5 Establish a Check-in Process

A typical check-in process for developers working on an agile team

would look something like this:

source

code

repository

1

2

3

4

5

6

Get latest source code

Make changes. Ready to check in?

Run the tests (100% pass)

Check for updates

Run the tests again (100% pass)

Check in

Developer

1. Get latest source from the repository.

Before you start any new work, you need to make sure you have the

latest and greatest code from the repository. Here you check out the

latest build and start your work with a clean slate.

2. Make changes.

Then you do your work. You add the new functionality, fix the bug, or

do whatever work needs to be done.

3. Run tests.

To make sure the changes you made haven’t broken something else in

the code base, you run all your tests to make sure they all still pass.

4. Check for any more updates.

Confident your changes are working, you then get another update from

the repository, just in case someone else made some changes while you

were doing your work.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=244


CREATE AN AUTOMATED BUILD 245

5. Run tests again.

Then you run the tests one more time to make sure your changes

work with whatever other changes others have made since you started

working.

6. Check-in.

All systems go. Everything builds. All the tests run. We’ve got the latest.

It’s safe to check in.

In addition to this check-in process, there are a couple dos and don’ts

around good build conduct.

Check for updates

Run all the tests

Check in regularly

Make fixing a broken
build a top priority

Break the build

Check in on top
of broken builds

Comment out 
failing unit tests

Dos Don’ts

RESPECT

THE

BUILD

At the end of the day, it’s all about respecting the build, ensuring it’s

always up and running, and helping each other out when we break it

(which happens from time to time).

15.6 Create an Automated Build

The next step is to create an automated build. It really forms the back-

bone of your team’s continuous integration process.

A good automated build compiles the code, runs the tests, and basically

does anything that regularly needs to be done as part of the project’s

build process.

Developers run it all the time as part of the TDD circle of life, and build

agents (like CruiseControl1) use it to run the build whenever they detect

a change in the source code repository.

1. http://cruisecontrol.sourceforge.net/

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://cruisecontrol.sourceforge.net/
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=245


CREATE AN AUTOMATED BUILD 246

Listening

Repository

x Error

Developers

Oops! Forgot a file

Notify

Build agent listens for changes ...

and notifies team if there’s a problem.
Automated build

Automated build

Automated build

Automated build

Automated builds can also automate deploying the software into pro-

duction and remove a lot of the human error from that equation.

Compile
Configure
Deploy

DEV

TEST

PROD

Environments

Automated build

The key to any build is automation—the less human involvement, the

better. You also want to keep your build fast, because you and your

team are going to be running constantly, many times per day (under

ten minutes is a good rule of thumb).

Most modern languages have their own automated build frameworks

(Ant for Java, NAnt or MS-Build for .NET, and rake for Rails). If the

language you are using doesn’t, you can usually create your own with

DOS bat files or Unix scripts.

But as good as check-in processes and automated builds are, what

really makes it all work is a willingness to work in small chunks.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=246


WORK IN SMALL CHUNKS 247

15.7 Work in Small Chunks

Just like testing with TDD, integrating code is much easier when done

in the small.

too much integration pain

Weekly

New code Integration

Daily

Minutes

you want to be continuously integrating here

Too often teams go for days or weeks without integrating their work—

that’s way too long. You want to be integrating your code every ten to

fifteen minutes or so (at a minimum on the hour).

Don’t get stressed if you can’t check in that often. Just understand

that the more you do it, the easier it gets. So, merge your code early

and often to avoid the pain of big integrations.

Where Can I Learn More?

Continuous integration has become such a common practice that you

can find just about everything you’ll need on the Web.

Wikipedia has a good summary of the practice,2 and one of the first

continuous integration articles can be found on Martin Fowler’s web-

site.3

2. http://en.wikipedia.org/wiki/Continuous_integration

3. http://martinfowler.com/articles/continuousIntegration.html

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://en.wikipedia.org/wiki/Continuous_integration
http://martinfowler.com/articles/continuousIntegration.html
http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=247


WORK IN SMALL CHUNKS 248

Master Sensei
and the

aspiring warrior

STUDENT: Master, we obviously can’t have everything production-

ready during the first iteration. What do you really mean when you say

“production-ready”?

MASTER: Production readiness is an attitude. When you write pro-

duction-ready code, you test and integrate your software today. When

you see a bug, you fix it now. You don’t sweep it under the carpet and

imagine getting to it at some distant point in the future. You take the

attitude that this software has to work today. Not the distant tomorrow.

Yes, you may not have every bell and whistle you would like, and yes,

you may choose not to deploy until more features are added. But having

the option to deploy, and knowing your software works, is to accept that

your software will spend the vast majority of its life in production (not

development) and gets you used to the thought of making changes to a

live production system.

STUDENT: What if I can’t build the whole system because my project

is just one small piece of the bigger picture?

MASTER: Then build, test, and deploy what you can. At some point,

you will need to integrate your piece with everything else. Do your best

to make sure your portion is ready so you will be able to make the neces-

sary changes when you can. But don’t let the fact that you are one small

piece stop you from automating your build or continuously integrating

your software.

That’s All Folks!

So, there you have it. Our tour de force of essential agile software engi-

neering practices:

• Unit testing—to prove that what we built works

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=248


WHERE DO I GO FROM HERE? 249

• Refactoring—the art of simplicity and keeping the code clean and

a joy to read

• Test-driven development (TDD)—for designing and dealing with

complexity

• Continuous integration—regularly bringing it all together and

maintaining a state of production readiness

Without these, little on our agile projects would work, and we would

quickly revert to our caveman days of “code and fix.”

15.8 Where Do I Go from Here?

Congratulations! You are now armed and dangerous with the knowl-

edge and know-how to kick off, plan, and execute your very own agile

project.

Where you go from here is entirely up to you.

If you are starting a new project, maybe you want to kick things off

with an inception deck (Chapter 3, How to Get Everyone on the Bus, on

page 48). Get everyone on the bus and headed in the right direction by

asking the tough questions right at the start of the project.

Or, if you are already in the middle of a project (and your plan is clearly

wrong), maybe you’ll hit the reset button by hosting a story-gathering

workshop (Section 6.4, How to Host a Story-Gathering Workshop, on

page 108), picking a few really important stories, and seeing whether

you can deliver a few of those every week. Then build a new plan based

on that.

Or, if you are hurting on the engineering side, maybe you start by look-

ing at some of your engineering practices and make sure you’re not

cutting corners on the testing and are regularly paying down your tech-

nical debt.

There is no map. You are going to have to figure out what is best for

you and your project. But understand that you have the tools, and I bet

you probably already know what needs to be done.

What’s stopping you?

Get out there and start doing it!

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=249


WHERE DO I GO FROM HERE? 250

Final Words

It’s all about choice.

No one can stop you from producing high-quality software. No one can

stop you from being up front and honest with your customers about

the state of your project and what needs to be done.

Don’t get me wrong—none of this is easy. We have decades of history

and baggage working against us. But at the end of the day, understand

that how you choose to work, and the quality of the work you produce,

is up to you and no one else.

Don’t evangelize.

Don’t tell other people what to do.

Instead, lead by example, accept that others won’t always be there, and

do what needs to be done.

Oh yeah, and one more thing.

Don’t Worry About Being Agile

One question you hear a lot from teams when they first get into agile

is, “Are we there yet? Are we being agile?”

And that’s a fair question to ask. Like doing anything new for the first

time, you’re naturally going to want to know how you are doing and

whether you are doing it by the book.

And that’s totally cool. Just understand there is no book—not this one

or any other. There is no agile checklist that I or anyone else can give

you that will tell you whether you are being agile.

It’s a journey, not a destination. You never really get there.

And don’t forget. It’s not about “being” agile. It’s about building great

products and delivering world class service to your customers.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=250


WHERE DO I GO FROM HERE? 251

All I can say is if you think you’ve made it and you’ve got it all figured

out, you’ve stopped being agile.

So, don’t get hung up on the practices. Take what you can from this

book, and make it fit your unique situation and context. And whenever

you are wondering whether you are doing things the “agile way,” instead

ask yourself two questions:

• Are we delivering something of value every week?

• Are we striving to continuously improve?

If you can answer yes to both those questions, you’re being agile.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=251


Part VI

Appendixes

Prepared exclusively for Claus Pallisgaard Beck



Appendix A

Agile Principles
Here’s a summary of the Agile Manifesto1 and twelve guiding principles

of the agile software movement2 taken from the Agile Manifesto website.

A.1 The Agile Manifesto

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items

on the left more.

A.2 Twelve Agile Principles

1. Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile

processes harness change for the customer’s competitive

advantage.

1. http://agilemanifesto.org

2. http://agilemanifesto.org/principles.html

Prepared exclusively for Claus Pallisgaard Beck

http://agilemanifesto.org
http://agilemanifesto.org/principles.html


TWELVE AGILE PRINCIPLES 254

3. Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

4. Businesspeople and developers must work together daily through-

out the project.

5. Build projects around motivated individuals. Give them the envi-

ronment and support they need, and trust them to get the job

done.

6. The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

9. Continuous attention to technical excellence and good design en-

hances agility.

10. Simplicity—the art of maximizing the amount of work not done—is

essential.

11. The best architectures, requirements, and designs emerge from

self-organizing teams.

12. At regular intervals, the team reflects on how to become more

effective and then tunes and adjusts its behavior accordingly.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=254


Appendix B

Resources
There are many great newsgroups, resources, and other places for you

to continue your journey. Here are some good places to hang out and

learn more about agile software delivery and how it works:

• http://tech.groups.yahoo.com/group/extremeprogramming

• http://groups.yahoo.com/group/scrumdevelopment

• http://tech.groups.yahoo.com/group/leanagile

• http://finance.groups.yahoo.com/group/kanbandev

• http://tech.groups.yahoo.com/group/agile-testing

• http://tech.groups.yahoo.com/group/agile-usability

• http://finance.groups.yahoo.com/group/agileprojectmanagement

Prepared exclusively for Claus Pallisgaard Beck

http://tech.groups.yahoo.com/group/extremeprogramming
http://groups.yahoo.com/group/scrumdevelopment
http://tech.groups.yahoo.com/group/leanagile
http://finance.groups.yahoo.com/group/kanbandev
http://tech.groups.yahoo.com/group/agile-testing
http://tech.groups.yahoo.com/group/agile-usability
http://finance.groups.yahoo.com/group/agileprojectmanagement


Appendix C

Bibliography

[Bec00] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 2000.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[Blo01] Michael Bloomberg. Bloomberg by Bloomberg. John Wiley &

Sons, Hoboken, NJ, 2001.

[Car90] Dale Carnegie. How to Win Friends and Influence People.

Pocket, New York, 1990.

[DCH03] Mark Denne and Jane Cleland-Huang. Software by Num-

bers: Low-Risk, High-Return Development. Prentice Hall,

Englewood Cliffs, NJ, 2003.

[DL06] Esther Derby and Diana Larsen. Agile Retrospectives: Mak-

ing Good Teams Great. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in

the Heart of Software. Addison-Wesley Professional, Read-

ing, MA, first edition, 2003.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

Prepared exclusively for Claus Pallisgaard Beck



APPENDIX C. BIBLIOGRAPHY 257

[GC09] Lisa Gregory and Janet Crispin. Agile Testing: A Practical

Guide for Testers and Agile Teams. Addison-Wesley, Read-

ing, MA, 2009.

[HH07] Dan Heath and Chip Heath. Made to Stick: Why Some Ideas

Survive and Others Die. Random House, New York, 2007.

[HT03] Andrew Hunt and David Thomas. Pragmatic Unit Testing In

Java with JUnit. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2003.

[HT04] Andrew Hunt and David Thomas. Pragmatic Unit Testing In

C# with NUnit. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2004.

[Joh98] Spencer Johnson. Who Moved My Cheese? An Amazing Way

to Deal with Change in Your Work and in Your Life. Putnam

Adult, New York, 1998.

[Lik04] Jeffrey Liker. The Toyota Way. McGraw Hill, New York,

2004.

[McC06] Steve McConnell. Software Estimation: Demystifying the

Black Art. Microsoft Press, Redmond, WA, 2006.

[Moo91] Geoffrey A. Moore. Crossing the Chasm. Harper Business,

New York, 1991.

[Sch03] David Schmaltz. The Blind Men and the Elephant. Berrett-

Koehler, San Francisco, 2003.

[SD09] Rachel Sedley and Liz Davies. Agile Coaching. The Pragmatic

Programmers, LLC, Raleigh, NC, and Dallas, TX, 2009.

[Sur05] James Surowiecki. The Wisdom of Crowds. Anchor, New

York, 2005.

Report erratum

this copy is (P2.0 printing, February 2011)Prepared exclusively for Claus Pallisgaard Beck

http://books.pragprog.com/titles/jtrap/errata/add?pdf_page=257


Index
A
Accountability, 18, 28, 32–33

Adaptive planning, 20

Agile analyst, 38

Agile Coaching (Davies), 44

Agile communication plan, see

Communication plan

Agile groups, 255

Agile language, 25

Agile Manifesto, 253

Agile planning, 19–21

see also Planning

Agile plans, 133–136

Agile principles, 253

Agile programmers, 39

Agile project manager, 42

Agile Retrospectives: Making Good

Teams Great (Derby), 187

Agile teams, 26–46

accountability in, 32–33

analyst role, 38

architecture of project and, 74

assembling, 88

burn-down chart, 148

change in, 34

co-location in, 29–30

code ownership, 174

common language of, 199–200

constructive feedback, 185

cross functionality in, 33–34

customer engagement, 29–31

design by, 170

development, 37

differences in, 27–28

elevator pitch and, 60

forming, 44–46

inception deck participation, 52

iteration management, 165

losing a member, 156

neighbors, for project, 68

pair programming, 172

planning poker, 126

programmer role, 39

project manager role, 42

roles on, 26, 34–45

self organization, 31–32

specialists vs. generalists, 33, 44

start of projects, 41

tester role, 40

user experience designers role, 43

velocity in, 144

working agreements of, 198

see also Inception deck; Visual

workspace

Agile testers, 40

Agile Testing: A Practical Guide for

Testers and Agile Teams (Gregory

& Crispin), 41

Ambiguity, 45

Analysis, 165–171

Analyst, 38

Architecture, teams and, 74

B
Beck, Kent, 97, 212, 235

Big Wave Dave’s surf shop, 104

BigCo construction example, 164

Black Jack simulator example,

205–206

The Blind Men and the Elephant

(Schmaltz), 68n

Bloomberg by Bloomberg (Bloomberg),

76

Bloomberg, Michael, 76

Blunders, 66, 134, 182, 191

see also Refactoring

Brainstorming, 62, 110, 112

Budget, 83, 84, 90

Prepared exclusively for Claus Pallisgaard Beck



BUG TRACKING DRUCKER EXERCISE

Bug tracking, 176

Bugs, 200, 206, 222

Build time, 243

Burn-down chart, 148–151

vs. burn-up chart, 150

purpose of, 148

showing to stakeholders, 195

visual workspace and, 197

Burn-up chart, 150

C
Carnegie, Dale, 185

Change, 34

planning and, 130

in software delivery, 18

user stories and, 101

see also Planning

Characteristics, of agile team members,

44

Check in process, 244–245

Clients, see Customers

Co-location, 29–30, 75

Code, see Iteration management;

Refactoring

Code repositories, 243

Collective code ownership, 174

Commander’s deck, 57

Communication plan, 180–191

combining meetings, 188–191

daily stand-ups, 187–189

feedback during iteration, 181

iteration planning meeting, 183–185

mini-retrospectives, 185–187

showcases, 183

story-planning meeting, 181–182

Communication, best means of, 113

Community, 255

Completion, see Done

Complexity, in code, 232–235

Cone of uncertainty, 116f

Constraints, 106

Constructive feedback, 185

Continuous integration (CI), 238–251

check in process, 244–245

defined, 241–243

demos and, 238–240

production readiness culture, 241

resources, 247

setting it up, 243–244

Cost, of project, 90

Crispin, Lisa, 41

Cross-functionality, 33–34

Crowds, wisdom of, 126

Customers

ability to change mind, 137

commitment to project, 88

common language with, 199

confidence of, 17

demos for, 174

design and, 170

engagement of, 29–31

flexibility in scope, 138

inception deck participation, 52

involvement of, 70

mistakes and, 182

needs of, 16

NOT list creation, 64

personas of, 110

prioritizing, 143

ranking priorities, 86

role of, 36

story-gathering workshop for,

108–113

team accountability to, 33

as term, 25

test for, 82

training vs. delivery, 85

understanding purpose of, 55

user stories, 99, 104

see also Communication plan;

Iteration management

D
Daily stand-up meeting, 187–189

Delivery, see Software delivery

Delivery dates, 146–147

Delivery vs. training, 85

Demoing software, 174, 239

Deployment, 239

Development, 172–174

Development team, 37

Documentation

challenges with, 94–97

requirements and, 97, 113

for small, co-located team, 165

Dodds, Keith, 50

Domain-Driven Design: Tackling

Complexity in the Heart of

Software (Evans), 200

Done, 21–22

Drucker Exercise, 41

259

Prepared exclusively for Claus Pallisgaard Beck



ELEVATOR PITCH JUST -IN-TIME ANALYSIS

E
Elevator pitch, 52, 58–60

Elevator pitch template, 59

Empowerment, 32–33

End-to-end slicing, 100

Epics, 111

Errors, see Mistakes

Estimation, 114–115

days vs. points, 122

planning poker technique, 126–127

point-based systems, 120

process of, 116–122

purpose of, 115

reestimating, 125

relative sizing, 117

spikes, 125

triangulation technique, 122–126

uncertainty in, 116f

Evans, Eric, 200

Executives meeting, 192–196

Expectations, setting, 181

Extreme Programming Explained:

Embrace Change (Beck), 97

F
Failure, risk of, 79f

Feathers, Michael, 210, 225

Feedback, 181, 185

Flexibility, 101, 137, 154

Flow, 176

Flowcharts, 168

Fowler, Martin, 97, 225, 247

Furious Four, 83

G
Galton, Francis, 126

Generalists, 33, 44

Gibbons, Robin, 51

Gregory, Janet, 41

H
Heath, Chip, 57

Heath, Dan, 57

How to Win Friends and Influence

People (Carnegie), 185

Hunt, Andy, 212

I
IN stuff, 65

Inception deck

background of, 51

balance and give, 81–87

clarifying goals of, 58

commander’s intent and, 57

cost and, 90

described, 51

elevator pitch for, 58–60

engagement in process, 56

how it works, 51–52

introduced, 48

issues and challenges, 74–78

need for, 49

neighbors concept, 65–71

NOT list for, 64–66

overview of, 52–53

product box exercise, 61–63

purpose behind project, 55

showing to stakeholders, 193

stakeholders and, 89

summary, 91–92

team assembling, 88

timeframe, 52, 78–80

transitioning to, 151

visual workspace and, 196

visualizing the solution, 73–74

Index cards, 98

INVEST acronym, 103, 105

Iteration, 20, 25, 135

Iteration 0, 173

Iteration management, 161–179

agile iteration, 162–163

analysis and design, 165–171

BigCo construction example, 164

bugs and, 200

delivering value weekly, 162

development, 172–174

feedback, 181

flowcharts, 168

iteration 0, 173

just-in-time analysis, 166

Kanban, 175–178

refactoring and, 225

release wall, 194

showcase, canceling, 190

testing, 174–175

see also Refactoring

Iteration planning meeting, 183–185

J
Jobs, Steve, 30

Just-in-time analysis, 166

260

Prepared exclusively for Claus Pallisgaard Beck



KANBAN REFACTORING

K
Kanban, 175–178

Kelleher, Herbs, 57

L
Language, terms to know, 25, 135

Lemons vs. lemonade, 116

Liker, Jeffrey, 56

M
Made to Stick (Heath & Heath), 57

Master story list, 25, 135

McConnell, Steve, 115

Meetings, see Communication plan

Million dollar question, 66

Mini-retrospectives, 185–187

Minimal marketable feature (MMF) set,

140

Mistakes, 66, 134, 182, 191

see also Refactoring

Mott, Randy, 79

N
Neighbors, 65–71

Nice-to-haves list, 154

NOT list, 53, 64–66, 109

O
Office, see Visual workspace

Open source repositories, 243

Open source tools, 73

OUT stuff, 65

P
Pair programming, 172

Pascal, Blaise, 60

Personas, 110, 168

Pictures, for brainstorming, 110

The Pixar Touch (film), 30

Planning, 19–21, 130–159

adaptability and, 20

agile plans, 133–136

burn-down chart, 148–151

challenges in, 152–157

delivery dates, 146–147

flaws in, 155

flexibility in scope, 137–139

master story list, 139–142

prioritizing, 143

project managers and, 42

releases, 140

sizing stories, 141

static plans, 131–133

story-planning meeting, 181–182

transitioning a project to agile,

151–152

velocity and, 144–146

see also Adaptive planning;

Continuous integration;

Estimation; Inception deck;

Refactoring; Timeframe; User

stories

Planning poker, 126–127

Point-based systems, 120

Pragmatic Unit Testing in C# with NUnit

(Hunt & Thomas), 212

Pragmatic Unit Testing in Java with

JUnit (Hunt & Thomas), 212

Prioritizing, 143

Product benefits, 62

Product box, 53, 61–63

Product owner, see Customers

Production readiness, 241

Productivity, co-location and, 29

Programmers, 39

Project manager, 42

Projects

reasons for, 58

steps in, 172

success in, 49

tough questions in, 50

transitioning to agile, 151–152

waste on, 142

Q
Quality, 83, 84

Questions, 50, 66

R
Recipe cards, 98

Record/playback test, 243

Refactoring, 214–226

aggressive approach to, 219

Black Jack example, 220–222

connotations of, 223

flexibility and speed, 215–216

large scale, 223

practice of, 217–220

purpose of, 218

resources for, 225

technical debt, 216–217

261

Prepared exclusively for Claus Pallisgaard Beck



Refactoring: Improving the Design of Existing Code (FOWLER) TRADE-OFF SLIDERS

test-driven development and, 230

where to begin, 220

see also Continuous integration;

Test-driven development (TDD);

Testing; Unit testing

Refactoring: Improving the Design of

Existing Code (Fowler), 225

Relative sizing, 117

Release, 140

Release wall, 194, 197

Repositories, 243

Requirements, 97, 153

Resources, 255

Retrospectives, 185–187

Risk, 70

Bloomberg on, 76

discussion of, 75, 76

of failure, 79f

worth sweating over, 77

Roles

see also Customers

Roles, in Agile teams, 26, 34–45, 88

S
Scope, 83, 84, 137, 154, see NOT list

Scrum Master, 44

Self organization, 31–32

Showcases, 183

Simple Truths, see Three Simple

Truths

Sincerity, 69

Sizing stories, 141

Slices-the-cake, 100

Sliders, trade-off, 84

Slogans, power of, 62

Software by Numbers: Low-Risk,

High-Return Development (Denne),

140n

Software delivery

accountability in, 18

advantages of, 17

change and, 18, 34

completion of, 21–22

customer viewpoint of, 17

planning for, 19–21

truths of, 23–25

Software Estimation: Demystifying the

Black Art (McConnell), 115

Spartan warrior, 155

Specialists vs. generalists, 33, 44

Spike, 125

Stakeholders, 89, 192–196

see also Customers

Starting questions, 41

Static plans, 131–133

Story wall, 197

Story-gathering workshop, 108–113

Story-planning meeting, 181–182

Success, 49, 55

Surf shop example, 104

Surowiecki, James, 126

T
Team velocity, 20, 135, 144, 154, 156,

184, 189, 195

unit testing and, 212

Teams, see Agile teams

Technical debt, 216–217

Templates

elevator pitch, 59

user stories, 107

Terminology, 25, 135

Test Driven Development: By Example

(Beck), 235

Test, for customers, 82

Test-driven development (TDD),

227–237

complexity and, 232–235

defined, 228

example of, 233

overview of, 228–231

reasons for, 233

resources for, 235

rules of thumb for, 228

when to stop, 228

Testers, 40

Testing, 17, 39, 40

checking in code, 244

continuous integration and, 240

in iteration management, 174–175

user stories, 102

see also Refactoring; Unit testing

Thomas, Dave, 212

Three Simple Truths, 23–25

Time, 83

Timeframe, 90, 157

documentation and, 98

iteration planning meetings, 184

for projects, 78–80

The Toyota Way (Liker), 56

Tracking bugs, 176

Trade-off sliders, 84

262

Prepared exclusively for Claus Pallisgaard Beck



TRAINING VS. DELIVERY YAHOO GROUPS

Training vs. delivery, 85

Transitioning to agile, 151

Triangulation, 122–126

Trust, 66

Truths, see Three Simple Truths

twelve Agile principles, 253

U
Unit testing, 204–213

benefits of, 207

Black Jack simulator example,

205–206

bugs and, 206

debugging and, 208

described, 207–211

educational resources, 211

team velocity and, 212

what to test, 208

see also Testing

UNRESOLVED stuff, 65

User acceptance test (UAT), 174

User experience designers (UX), 43

User stories

components of, 99–108

constraints for, 106

defined, 98

documentation and, 94–97

exercise, 105

helping customers with, 104

incomplete, 189

just-in-time analysis of, 167

master list of, 139

overview of, 98–99

pair programming, 172

personas and, 169

polishing, 112

re-estimating, 125

size of, 102, 111, 119, 121

sizing them up, 141

steps of, 164

storyboard and, 195

surf shop example, 104

templates for, 107, 108

testing, 102

workshop for gathering, 108–113

see also Communication plan;

Iteration management

V
Velocity, see Team velocity

Visual workspace, 192–202

bugs and, 200

common language of, 199–200

creating, 196–197

executives meeting, 192–196

intentions, 198

overview, 201–202

W
Wake, Bill, 103

Who Moved My Cheese (Johnson), 34

The Wisdom of Crowds (Surowiecki),

126

Work environment, see Visual

workspace

Working Effectively with Legacy Code

(Feathers), 210, 225

Y
Yahoo groups, 255

263

Prepared exclusively for Claus Pallisgaard Beck



Visit PragProg.com for more!

Agile in a Flash
The best agile book isn’t a book: Agile in a Flash is

a unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just

read.

Agile in a Flash: Speed-Learning Agile Software

Development

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 978-1-93435-671-5. $15.00

http://pragprog.com/titles/olag

Driving Technical Change
Your co-workers’ resistance to new technologies

can be baffling. Learn to read users’ "patterns of

resistance"—and then dismantle their objections.

Every developer must master the art of

evangelizing. With these techniques and strategies,

you’ll help your organization adopt your

solutions—without selling your soul to

organizational politics.

Driving Technical Change: Why People On Your

Team Don’t Act On Good Ideas, and How to

Convince Them They Should

Terrence Ryan

(200 pages) ISBN: 978-1934356-60-9. $32.95

http://pragprog.com/titles/trevan

Prepared exclusively for Claus Pallisgaard Beck

http://pragprog.com/titles/olag
http://pragprog.com/titles/trevan


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
The Agile Samurai

http://pragprog.com/titles/jtrap

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jtrap.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Claus Pallisgaard Beck

http://pragprog.com/titles/jtrap
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jtrap
www.pragprog.com/catalog

	Contents
	Acknowledgments
	It's Good to See You
	How to Read This Book
	Fun Bits with Purpose
	Online Resources

	Introducing Agile
	Agile in a Nutshell
	Deliver Something of Value Every Week
	How Does Agile Planning Work?
	Done Means Done
	Three Simple Truths

	Meet Your Agile Team
	How Are Agile Projects Different?
	What Makes an Agile Team Tick
	Roles We Typically See
	Tips for Forming Your Agile Team


	Agile Project Inception
	How to Get Everyone on the Bus
	What Kills Most Projects
	Ask the Tough Questions
	Enter the Inception Deck
	How It Works
	The Inception Deck in a Nutshell

	Seeing the Big Picture
	Ask: Why Are We Here?
	Create an Elevator Pitch
	Design a Product Box
	Create a NOT List
	Meet Your Neighbors

	Making It Real
	Show Your Solution
	Ask What Keeps Us Up at Night
	Size It Up
	Be Clear on What's Going to Give
	Show What It's Going to Take


	Agile Project Planning
	Gathering User Stories
	The Problem with Documentation
	Enter the User Story
	Elements of Good User Stories
	How to Host a Story-Gathering Workshop

	Estimation: The Fine Art of Guessing
	The Problem with High-Level Estimates
	Turning Lemons into Lemonade
	How Does It Work?

	Agile Planning: Dealing with Reality
	The Problems with Static Plans
	Enter the Agile Plan
	Be Flexible About Scope
	Your First Plan
	The Burn-Down Chart
	Transitioning a Project to Agile
	Putting It into Practice


	Agile Project Execution
	Iteration Management: Making It Happen
	How to Deliver Something of Value Every Week
	The Agile Iteration
	Help Wanted
	Step 1: Analysis and Design: Making the Work Ready
	Step 2: Development: Do the Work
	Step 3: Test: Check the Work
	Kanban

	Creating an Agile Communication Plan
	Four Things to Do During Any Iteration
	The Story-Planning Meeting
	The Showcase
	Plan the Next Iteration
	How to Host a Mini-Retrospective
	How Not to Host a Daily Stand-Up
	Do Whatever Works for You

	Setting Up a Visual Workspace
	Uh-oh...Here Come the Heavies!
	How to Create a Visual Workspace
	Show Your Intent
	Create and Share a Common Domain Language
	Watch Those Bugs


	Creating Agile Software
	Unit Testing: Knowing It Works
	Welcome to Vegas, Baby!
	Enter the Unit Test

	Refactoring: Paying Down Your Technical Debt
	Turn on a Dime
	Technical Debt
	Make Payments Through Refactoring

	Test-Driven Development
	Write Your Tests First
	Use the Tests to Deal with Complexity

	Continuous Integration: Making It Production-Ready
	Showtime
	A Culture of Production Readiness
	What Is Continuous Integration?
	How Does It Work?
	Establish a Check-in Process
	Create an Automated Build
	Work in Small Chunks
	Where Do I Go from Here?


	Appendixes
	Agile Principles
	The Agile Manifesto
	Twelve Agile Principles

	Resources
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y


