50-Day IOQM Preparation Schedule

Start Date: July 18, 2025 End Date: September 5, 2025

This schedule is designed to provide a structured approach to your IOQM preparation. It covers the four main pillars: Number Theory, Algebra, Geometry, and Combinatorics, with ample time for practice, revision, and mock tests. Remember to adjust it based on your strengths and weaknesses.

Video link: https://www.youtube.com/@axiomatom

Phase 1: Foundation Building (Days 1-15) - Number Theory & Basic Algebra

Goal: Strengthen fundamental concepts and problem-solving techniques in Number Theory and Algebra.

• Day 1 (July 18): Divisibility & Prime Numbers

- Concepts: Divisibility rules, prime and composite numbers, unique factorization theorem.
- o Practice: Problems involving divisors, number of divisors, sum of divisors.

Day 2 (July 19): GCD & LCM

- o Concepts: Euclidean Algorithm, properties of GCD and LCM.
- o Practice: Problems involving GCD/LCM, applications in number theory.

Day 3 (July 20): Modular Arithmetic - Introduction

- o Concepts: Congruence, basic properties of modular arithmetic.
- o Practice: Simple congruence equations.

Day 4 (July 21): Modular Arithmetic - Advanced

- Concepts: Fermat's Little Theorem, Euler's Totient Theorem, Chinese Remainder Theorem (basic).
- Practice: Problems applying these theorems.

Day 5 (July 22): Diophantine Equations (Linear)

- Concepts: Solving ax + by = c equations.
- Practice: Finding integer solutions.

Day 6 (July 23): Number Theory Review & Problem Solving

o Review all Number Theory topics covered.

 Solve mixed problems from previous IOQM/RMO papers related to Number Theory.

Day 7 (July 24): Polynomials - Basics

- Concepts: Polynomial operations, roots, factor theorem, remainder theorem.
- o Practice: Simple polynomial problems.

Day 8 (July 25): Polynomials - Vieta's Formulas

- Concepts: Relation between roots and coefficients.
- Practice: Problems involving sums/products of roots.

Day 9 (July 26): Inequalities - AM-GM Inequality

- Concepts: Arithmetic Mean Geometric Mean inequality.
- o Practice: Problems applying AM-GM.

Day 10 (July 27): Inequalities - Cauchy-Schwarz & Rearrangement

- Concepts: Cauchy-Schwarz inequality, rearrangement inequality (basic understanding).
- Practice: Problems applying these inequalities.

Day 11 (July 28): Quadratic Equations & Expressions

- Concepts: Discriminant, nature of roots, properties of quadratic functions.
- Practice: Problems involving quadratic equations and expressions.

Day 12 (July 29): Sequences & Series - AP, GP, HP

- Concepts: Arithmetic Progression, Geometric Progression, Harmonic Progression.
- Practice: Sums, general terms, properties.

• Day 13 (July 30): Functional Equations (Introduction)

- o Concepts: Basic techniques for solving simple functional equations.
- o Practice: Simple functional equation problems.

Day 14 (July 31): Algebra Review & Problem Solving

Review all Algebra topics covered.

 Solve mixed problems from previous IOQM/RMO papers related to Algebra.

Day 15 (August 1): Mixed Bag Problem Solving (Phase 1)

Solve a collection of problems combining Number Theory and Algebra.
 Focus on identifying the correct approach.

Phase 2: Deep Dive (Days 16-30) - Geometry & Combinatorics

Goal: Master geometric properties and combinatorial counting techniques.

Day 16 (August 2): Triangles - Basic Properties

- Concepts: Angles, sides, area, special triangles (equilateral, isosceles, right-angled).
- o Practice: Basic triangle problems.

Day 17 (August 3): Triangles - Congruence & Similarity

- o Concepts: Criteria for congruence and similarity, applications.
- o Practice: Problems involving similar triangles and their properties.

Day 18 (August 4): Circles - Chords, Arcs, Angles

- o Concepts: Properties of chords, arcs, central angles, inscribed angles.
- Practice: Problems related to angles in circles.

Day 19 (August 5): Circles - Tangents & Secants

- Concepts: Properties of tangents, secants, power of a point theorem.
- Practice: Problems involving tangents and secants.

Day 20 (August 6): Quadrilaterals & Polygons

- Concepts: Properties of parallelograms, rectangles, squares, rhombuses, trapezoids, general polygons.
- Practice: Area and angle problems for quadrilaterals.

Day 21 (August 7): Co-ordinate Geometry (Basic)

- Concepts: Distance formula, section formula, area of triangle, straight lines.
- Practice: Basic problems in coordinate geometry.
- Day 22 (August 8): Geometry Review & Problem Solving

- Review all Geometry topics covered.
- Solve mixed problems from previous IOQM/RMO papers related to Geometry.

• Day 23 (August 9): Permutations & Combinations - Basics

- Concepts: Fundamental principle of counting, permutations (arrangements), combinations (selections).
- o Practice: Simple counting problems.

• Day 24 (August 10): Permutations & Combinations - Advanced

- Concepts: Circular permutations, permutations with repetition, combinations with repetition.
- o Practice: More complex counting problems.

Day 25 (August 11): Principle of Inclusion-Exclusion (PIE)

- Concepts: Understanding and applying PIE for counting.
- Practice: Problems using PIE.

Day 26 (August 12): Pigeonhole Principle (PHP)

- Concepts: Basic and generalized PHP.
- Practice: Problems applying PHP.

Day 27 (August 13): Probability (Basic Combinatorial Probability)

- Concepts: Definition of probability, events, sample space, conditional probability (basic).
- Practice: Problems involving combinatorial probability.

Day 28 (August 14): Combinatorics Review & Problem Solving

- o Review all Combinatorics topics covered.
- Solve mixed problems from previous IOQM/RMO papers related to Combinatorics.

Day 29 (August 15): Mixed Bag Problem Solving (Phase 2)

- Solve a collection of problems combining Geometry and Combinatorics.
- Day 30 (August 16): Mid-Preparation Mock Test
 - o Take a full-length IOQM mock test.

Analyze your performance, identify weak areas.

Phase 3: Advanced Topics & Problem Solving (Days 31-40)

Goal: Tackle more challenging problems, explore advanced concepts, and integrate knowledge across topics.

• Day 31 (August 17): Advanced Number Theory Problems

- Focus on problems requiring deeper understanding of modular arithmetic, number theoretic functions, or properties of integers.
- o Practice: IOQM/RMO level problems.

Day 32 (August 18): Advanced Algebra Problems

- Focus on problems involving advanced inequalities, polynomial equations, or functional equations.
- Practice: IOQM/RMO level problems.

Day 33 (August 19): Advanced Geometry Problems (Part 1)

- Concepts: Ceva's Theorem, Menelaus' Theorem, Simson Line (basic understanding and application).
- o Practice: Problems applying these theorems.

Day 34 (August 20): Advanced Geometry Problems (Part 2)

- Concepts: Radical axis, inversion (basic idea), properties of cyclic quadrilaterals.
- Practice: Problems involving these concepts.

Day 35 (August 21): Advanced Combinatorics Problems

- Focus on problems requiring creative counting, advanced PIE applications, or generating functions (basic).
- Practice: IOQM/RMO level problems.

Day 36 (August 22): Problem Solving Session - Mixed Topics

 Solve a diverse set of problems, focusing on problem-solving strategies and thinking outside the box.

Day 37 (August 23): Proof Techniques & Logic

Concepts: Direct proof, proof by contradiction, proof by induction.

 Practice: Understand how to construct proofs for mathematical statements.

Day 38 (August 24): Olympiad Problem Solving Strategies

- Discussion/Practice: How to approach unseen problems, common pitfalls, using auxiliary lines in geometry, casework in combinatorics.
- Day 39 (August 25): Review of Weak Areas
 - Based on your mock test and practice, dedicate this day to revisiting topics where you struggle the most.
- Day 40 (August 26): Another Mock Test
 - o Take another full-length IOOM mock test.
 - o Analyze results and compare with the previous mock test.

Phase 4: Revision & Mock Tests (Days 41-50)

Goal: Consolidate knowledge, refine time management, and build confidence for the exam.

- Day 41 (August 27): Full Syllabus Revision Number Theory & Algebra
 - o Quick review of all formulas, theorems, and key concepts.
 - Solve a few representative problems from each topic.
- Day 42 (August 28): Full Syllabus Revision Geometry & Combinatorics
 - Quick review of all formulas, theorems, and key concepts.
 - Solve a few representative problems from each topic.
- Day 43 (August 29): Mock Test 3
 - Take a full-length IOQM mock test under exam conditions.
 - Focus on time management and accuracy.
- Day 44 (August 30): Mock Test Analysis & Error Correction
 - Thoroughly analyze your mistakes from Mock Test 3.
 - o Understand why you made errors and how to avoid them.
- Day 45 (August 31): Targeted Practice Challenging Problems
 - Work on a selection of the most challenging problems you've encountered or identified as difficult.

Day 46 (September 1): Quick Revision of Key Formulas & Theorems

 Create flashcards or a cheat sheet of important formulas, identities, and theorems.

Day 47 (September 2): Mock Test 4

- o Take your final full-length IOQM mock test.
- Simulate exam conditions as closely as possible.

Day 48 (September 3): Final Mock Test Analysis & Strategy Refinement

- Review Mock Test 4.
- Refine your exam strategy: order of attempting questions, time allocation per question.

Day 49 (September 4): Light Revision & Mental Preparation

- Avoid learning new topics. Lightly revise key concepts.
- o Focus on staying calm and confident. Get good rest.

Day 50 (September 5): Rest Day / Light Activity

 Do not study intensely. Relax, clear your mind, and prepare for the exam day.

General Tips for IOQM Preparation:

- 1. **Understand Concepts Deeply:** Don't just memorize formulas. Understand the derivations and the underlying logic.
- 2. **Practice, Practice:** Solve a wide variety of problems. The more you practice, the better you become at recognizing patterns and applying concepts.
- 3. **Solve Previous Year Papers:** This is crucial. It gives you an idea of the exam pattern, difficulty level, and types of questions asked.
- 4. **Maintain a Problem Log:** Keep a notebook of challenging problems you solved, especially those where you learned a new technique.
- 5. **Review Regularly:** Consistent revision helps solidify your understanding and recall.
- 6. **Analyze Mistakes:** Every mistake is an opportunity to learn. Understand why you made an error and how to avoid it next time.
- 7. **Time Management:** Practice solving problems under timed conditions, especially during mock tests.

- 8. **Stay Healthy:** Ensure you get enough sleep, eat well, and take short breaks to avoid burnout.
- 9. **Seek Help:** If you're stuck on a concept or problem, don't hesitate to ask teachers, mentors, or peers for help.
- 10. **Stay Positive:** Believe in yourself and your abilities. Consistency and a positive attitude are key to success.

Good luck with your IOQM preparation!

www.arcsedu.in

Ph. 9003414978

120-Day Physics Olympiad Preparation Schedule

Start Date: July 18, 2025

End Date: November 14, 2025

This 120-day schedule is meticulously crafted to guide aspiring Physics Olympiad participants through a comprehensive and systematic preparation journey. It balances theoretical understanding with extensive problem-solving, focusing on the core areas of Physics typically covered in Olympiads. The plan emphasizes building a strong foundation, delving into advanced topics, and refining problem-solving strategies through regular practice and mock tests.

Phase 1: Mechanics & Properties of Matter (Days 1-40) - Foundation & Intermediate

Goal: Build a strong conceptual and problem-solving base in Mechanics and understand the fundamental properties of matter.

Week 1: Kinematics & Dynamics

- Day 1 (July 18): Kinematics in 1D: Displacement, velocity, acceleration, equations of motion.
- o Day 2 (July 19): Kinematics in 2D: Projectile motion, relative motion.
- Day 3 (July 20): Newton's Laws of Motion: Inertia, force, momentum, action-reaction.
- Day 4 (July 21): Friction & Circular Motion: Static and kinetic friction, centripetal force.
- Day 5 (July 22): Work, Energy, Power: Work-energy theorem, conservative/non-conservative forces, potential and kinetic energy, conservation of mechanical energy.
- Day 6 (July 23): Impulse & Momentum: Conservation of momentum, collisions (elastic/inelastic).
- Day 7 (July 24): Mechanics Problem Solving (Basic): Mixed problems on Kinematics and Dynamics.

Week 2: Rotational Motion & Gravitation

- Day 8 (July 25): Rotational Kinematics: Angular displacement, velocity, acceleration, equations.
- Day 9 (July 26): Torque & Angular Momentum: Moment of inertia, conservation of angular momentum.
- Day 10 (July 27): Rolling Motion: Pure rolling, rolling with slipping.

- Day 11 (July 28): Gravitation: Newton's Law of Gravitation, gravitational field, potential energy.
- Day 12 (July 29): Orbital Mechanics: Kepler's Laws, satellite motion, escape velocity.
- Day 13 (July 30): Simple Harmonic Motion (SHM): Basic concepts, equations, energy in SHM.
- Day 14 (July 31): Mechanics Problem Solving (Intermediate): Mixed problems on Rotational Motion, Gravitation, and SHM.

• Week 3: Properties of Matter - Solids & Fluids

- Day 15 (August 1): Elasticity: Stress, strain, Young's modulus, bulk modulus, shear modulus.
- Day 16 (August 2): Fluid Statics: Pressure, Pascal's Law, Archimedes'
 Principle, buoyancy.
- Day 17 (August 3): Fluid Dynamics: Bernoulli's Principle, continuity equation, viscosity, Poiseuille's formula (conceptual).
- o Day 18 (August 4): Surface Tension: Surface energy, capillary action.
- Day 19 (August 5): Thermal Expansion & Calorimetry: Linear, area, volume expansion, specific heat, latent heat.
- Day 20 (August 6): Heat Transfer: Conduction, convection, radiation (Stefan-Boltzmann Law, Wien's Law).
- Day 21 (August 7): Properties of Matter Problem Solving: Mixed problems.

Week 4: Thermodynamics

- Day 22 (August 8): Zeroth & First Law of Thermodynamics: Internal energy, work, heat, specific heats of gases.
- Day 23 (August 9): Thermodynamic Processes: Isothermal, adiabatic, isobaric, isochoric processes.
- Day 24 (August 10): Second Law of Thermodynamics: Entropy (conceptual), heat engines, refrigerators, Carnot cycle.
- Day 25 (August 11): Kinetic Theory of Gases: Ideal gas equation, molecular speeds, degrees of freedom.
- Day 26 (August 12): Sound Waves: Wave characteristics, speed of sound,
 Doppler effect.

- Day 27 (August 13): Superposition of Waves: Interference, beats, standing waves, organ pipes, strings.
- Day 28 (August 14): Thermodynamics & Waves Problem Solving.
- Day 29 (August 15): Comprehensive Mechanics & Properties of Matter Review.
- Day 30 (August 16): Mock Test 1 (Mechanics & Properties of Matter).

Phase 2: Electromagnetism & Optics (Days 31-80) - Core & Advanced

Goal: Develop a strong understanding of Electromagnetism and Optics, including complex circuit analysis and wave phenomena.

Week 5: Electrostatics

- Day 31 (August 17): Coulomb's Law & Electric Field: Point charges, continuous charge distributions (conceptual for simple cases).
- Day 32 (August 18): Electric Potential & Potential Energy: Equipotential surfaces.
- Day 33 (August 19): Gauss's Law: Applications for symmetric charge distributions.
- Day 34 (August 20): Capacitance: Parallel plate capacitor, combinations of capacitors, dielectrics.
- Day 35 (August 21): Electrostatics Problem Solving.

Week 6: Current Electricity

- Day 36 (August 22): Electric Current & Resistance: Ohm's Law, resistivity, temperature dependence.
- o Day 37 (August 23): Series & Parallel Combinations: Kirchhoff's Laws.
- Day 38 (August 24): Electrical Power & Energy: Heating effect of current.
- Day 39 (August 25): Measuring Instruments: Galvanometer, ammeter, voltmeter, potentiometer, Wheatstone bridge.
- o Day 40 (August 26): Current Electricity Problem Solving.

Week 7: Magnetism

- Day 41 (August 27): Magnetic Field & Force: Force on a moving charge, force on a current-carrying conductor.
- Day 42 (August 28): Biot-Savart Law & Ampere's Law: Magnetic field due to various current configurations (straight wire, loop, solenoid).

- o Day 43 (August 29): Torque on a Current Loop: Magnetic dipole moment.
- Day 44 (August 30): Earth's Magnetism & Magnetic Properties of Materials (Conceptual).
- o Day 45 (August 31): Magnetism Problem Solving.

Week 8: Electromagnetic Induction & AC

- o Day 46 (September 1): Faraday's Law & Lenz's Law: Motional EMF.
- Day 47 (September 2): Self-Inductance & Mutual Inductance: LC oscillations (conceptual).
- Day 48 (September 3): Alternating Current (AC): RMS values, AC circuits with R, L, C.
- o Day 49 (September 4): Resonance & Power in AC Circuits: Transformers.
- Day 50 (September 5): Electromagnetic Waves (Conceptual):
 Properties, spectrum.
- Day 51 (September 6): EMI & AC Problem Solving.

Week 9: Ray Optics

- Day 52 (September 7): Reflection: Plane mirrors, spherical mirrors, mirror formula, magnification.
- Day 53 (September 8): Refraction: Snell's Law, total internal reflection, critical angle.
- Day 54 (September 9): Lenses: Thin lens formula, lens maker's formula, combinations of lenses.
- Day 55 (September 10): Optical Instruments: Human eye, microscope, telescope.
- Day 56 (September 11): Ray Optics Problem Solving.

Week 10: Wave Optics

- Day 57 (September 12): Huygens' Principle: Reflection and refraction using wave theory.
- Day 58 (September 13): Interference: Young's Double Slit Experiment, conditions for sustained interference.
- Day 59 (September 14): Diffraction: Single slit diffraction (qualitative), diffraction grating (conceptual).

- Day 60 (September 15): Polarization: Malus's Law, Brewster's Law (conceptual).
- Day 61 (September 16): Wave Optics Problem Solving.
- Day 62 (September 17): Electromagnetism & Optics Review.
- Day 63 (September 18): Mock Test 2 (Electromagnetism & Optics).
- Day 64 (September 19): Mock Test 2 Analysis & Weak Area Identification.
- Day 65 (September 20): Targeted Practice on Weak Areas from Mock 2.

Phase 3: Modern Physics & Advanced Topics (Days 81-105) - Olympiad Level

Goal: Cover advanced topics, develop a deeper conceptual understanding, and refine problem-solving skills for complex, multi-concept problems.

- Week 11: Modern Physics Dual Nature & Atoms
 - Day 66 (September 21): Dual Nature of Radiation & Matter: Photoelectric effect, de Broglie wavelength.
 - Day 67 (September 22): Atomic Structure: Bohr's model, hydrogen spectrum, X-rays.
 - Day 68 (September 23): Nuclei: Composition, size, mass defect, binding energy.
 - Day 69 (September 24): Radioactivity: Alpha, beta, gamma decay, halflife, nuclear reactions.
 - Day 70 (September 25): Modern Physics Problem Solving.
- Week 12: Semiconductor Electronics & Communication Systems
 - Day 71 (September 26): Semiconductors: Intrinsic & extrinsic, p-n junction, forward/reverse bias.
 - Day 72 (September 27): Diodes & Rectifiers: Zener diode (conceptual).
 - Day 73 (September 28): Transistors (Conceptual): Basic working, applications (switch/amplifier).
 - Day 74 (September 29): Communication Systems (Conceptual):
 Modulation, demodulation, bandwidth.
 - Day 75 (September 30): Electronics & Communication Problem Solving.
- Week 13: Experimental Physics & Data Analysis

- Day 76 (October 1): Error Analysis: Types of errors, propagation of errors, significant figures.
- Day 77 (October 2): Graphing & Data Interpretation: Linearization of data, slope, intercept.
- Day 78 (October 3): Common Experimental Setups: Vernier caliper, screw gauge, spectrometer, potentiometer, meter bridge (revisit principles).
- Day 79 (October 4): Designing Experiments (Conceptual):
 Understanding variables, controls, procedure.
- Day 80 (October 5): Experimental Physics Problem Solving.
- Week 14: Special Topics & Advanced Problem Solving
 - Day 81 (October 6): Fluid Mechanics (Advanced): Viscous drag, Stokes'
 Law, Reynolds number (conceptual).
 - Day 82 (October 7): Elasticity (Advanced): Torsion, bending of beams (conceptual).
 - Day 83 (October 8): Advanced Optics (Conceptual): Dispersion, optical fibers.
 - Day 84 (October 9): Review of Most Challenging Concepts.
 - Day 85 (October 10): Advanced Mixed Problem Solving (Olympiad Level).
- Day 86 (October 11): Mock Test 3 (Full Syllabus).
- Day 87 (October 12): Mock Test 3 Analysis & Detailed Error Review.
- Day 88 (October 13): Targeted Practice on Persistent Weaknesses.
- Day 89 (October 14): Revisit Key Derivations & Proofs.
- Day 90 (October 15): Review of Olympiad Problem-Solving Strategies.

Phase 4: Grand Revision & Final Mock Tests (Days 106-120) - Exam Readiness

Goal: Consolidate all knowledge, refine time management, and build peak confidence for the actual examination.

- Week 15: Intensive Revision Part 1
 - Day 91 (October 16): Mechanics & Properties of Matter Quick Revision:
 Formulas, key concepts, common tricky points.

- Day 92 (October 17): Mechanics & Properties of Matter Problem Solving Sprint: Solve 10-15 high-quality problems quickly.
- Day 93 (October 18): Electromagnetism Quick Revision: Formulas, circuit analysis techniques, magnetic field rules.
- Day 94 (October 19): Electromagnetism Problem Solving Sprint: Solve
 10-15 high-quality problems quickly.
- Day 95 (October 20): Optics Quick Revision: Ray diagrams, lens/mirror formulas, wave phenomena conditions.
- Day 96 (October 21): Optics Problem Solving Sprint: Solve 10-15 highquality problems quickly.
- Day 97 (October 22): Modern Physics & Electronics Quick Revision: Key principles, conceptual understanding.
- Week 16: Intensive Revision Part 2 & Final Mocks
 - Day 98 (October 23): Modern Physics & Electronics Problem Solving
 Sprint: Solve 10-15 high-quality problems quickly.
 - Day 99 (October 24): Full Syllabus Formula & Concept Recall: Rapid fire revision of all formulas and definitions.
 - Day 100 (October 25): Mock Test 4 (Full Syllabus High Difficulty).
 - Day 101 (October 26): Mock Test 4 Detailed Analysis & Strategic Adjustments: Focus on time management, question selection, and avoiding silly mistakes.
 - Day 102 (October 27): Targeted Practice on Remaining Critical Weaknesses.
 - Day 103 (October 28): Review of Previous Olympiad Papers (Last 2-3 years): Identify common themes and question styles.
 - Day 104 (October 29): Light Revision & Mental Preparation: Avoid new topics. Focus on confidence and relaxation.
 - Day 105 (October 30): Rest Day: Absolutely no new study. Get good sleep, eat well, and prepare for the exam day.
 - Day 106 (October 31): Exam Day! (Hypothetical)

General Tips for Physics Olympiad Preparation:

1. **Conceptual Clarity is Paramount:** Physics Olympiads test your understanding of principles, not just formula application. Focus on why things happen.

- 2. **Problem Solving is the Core:** The majority of your time should be spent solving problems. Start with easier ones and gradually move to Olympiad-level challenges.
- 3. **Understand Derivations:** Knowing how formulas are derived helps in understanding their limitations and applying them correctly in complex scenarios.
- 4. **Visualize Physics:** Draw diagrams for every problem. This helps in breaking down complex situations and identifying relevant forces, fields, or rays.
- 5. **Master Mathematics:** A strong foundation in algebra, trigonometry, and calculus (basic differentiation/integration) is essential as Physics problems often involve mathematical manipulation.
- 6. **Analyze Solutions Deeply:** Don't just check if your answer is correct. Understand the thought process behind the official solution, especially for problems you struggled with.
- 7. **Maintain a Formula & Concept Log:** Keep a concise notebook of all important formulas, theorems, and tricky concepts.
- 8. **Simulate Exam Conditions:** During mock tests, practice under strict time limits and without distractions.
- 9. **Review Regularly:** Physics concepts build upon each other. Regular revision prevents forgetting earlier topics.
- 10. **Stay Curious & Persistent:** Physics can be challenging, but a curious mind and persistence in overcoming difficulties are key to success.
- 11. **Seek Mentorship:** If possible, find a mentor or join a study group to discuss problems and clarify doubts.

Good luck with your Physics Olympiad preparation!

120-Day Junior Science Olympiad Preparation Schedule

Start Date: July 18, 2025 End Date: November 14, 2025

This 120-day schedule is meticulously designed to guide aspiring Junior Science Olympiad (JSO) participants through a comprehensive and systematic preparation journey. It balances theoretical understanding with extensive problem-solving, covering Physics, Chemistry, Biology, and Mathematics, which are the core subjects for the JSO. The plan emphasizes building a strong foundation, delving into advanced topics, and refining exam strategies through regular mock tests and revision.

Phase 1: Foundation Building (Days 1-30) - Core Concepts & Basics

Goal: Establish a solid understanding of fundamental concepts across all four subjects. Focus on clarity and basic problem-solving.

- Week 1: Physics Fundamentals
 - Day 1 (July 18): Mechanics Motion & Forces: Distance, displacement, speed, velocity, acceleration, Newton's Laws of Motion, friction.
 - Day 2 (July 19): Mechanics Motion & Forces: Distance, displacement, speed, velocity, acceleration, Newton's Laws of Motion, friction.
 - Day 3 (July 20): Mechanics Work, Energy & Power: Work-energy theorem, potential and kinetic energy, conservation of energy, power.
 - Day 4 (July 21): Mechanics Work, Energy & Power: Work-energy theorem, potential and kinetic energy, conservation of energy, power.
 - Day 5 (July 22): Mechanics Gravitation & Simple Machines: Universal Law of Gravitation, acceleration due to gravity, levers, pulleys, inclined planes.
 - Day 6 (July 23): Mechanics Gravitation & Simple Machines: Universal Law of Gravitation, acceleration due to gravity, levers, pulleys, inclined planes.
 - Day 7 (July 24): Physics Review & Basic Problems.
- Week 2: Chemistry Fundamentals
 - Day 8 (July 25): Matter & Its States: Classification of matter, physical and chemical changes, states of matter, interconversion.
 - Day 9 (July 26): Matter & Its States: Classification of matter, physical and chemical changes, states of matter, interconversion.

- Day 10 (July 27): Atomic Structure: Dalton's, Thomson's, Rutherford's, Bohr's models, subatomic particles, isotopes, isobars.
- Day 11 (July 28): Atomic Structure: Dalton's, Thomson's, Rutherford's, Bohr's models, subatomic particles, isotopes, isobars.
- Day 12 (July 29): Chemical Bonding & Reactions: Types of bonds (ionic, covalent), balancing chemical equations, types of reactions.
- Day 13 (July 30): Chemical Bonding & Reactions: Types of bonds (ionic, covalent), balancing chemical equations, types of reactions.
- Day 14 (July 31): Chemistry Review & Basic Problems.

Week 3: Biology Fundamentals

- Day 15 (August 1): Cell The Unit of Life: Plant and animal cells, cell organelles, prokaryotic vs. eukaryotic cells.
- Day 16 (August 2): Cell The Unit of Life: Plant and animal cells, cell organelles, prokaryotic vs. eukaryotic cells.
- Day 17 (August 3): Tissues: Plant tissues (meristematic, permanent), animal tissues (epithelial, connective, muscular, nervous).
- Day 18 (August 4): Tissues: Plant tissues (meristematic, permanent), animal tissues (epithelial, connective, muscular, nervous).
- Day 19 (August 5): Diversity in Living Organisms: Classification (Whittaker's 5 Kingdom), basic characteristics of kingdoms.
- Day 20 (August 6): Diversity in Living Organisms: Classification (Whittaker's 5 Kingdom), basic characteristics of kingdoms.
- Day 21 (August 7): Biology Review & Basic Problems.

Week 4: Mathematics Fundamentals

- Day 22 (August 8): Number Systems & Algebra Basics: Real numbers, rational/irrational, polynomials, factorization, linear equations.
- Day 23 (August 9): Number Systems & Algebra Basics: Real numbers, rational/irrational, polynomials, factorization, linear equations.
- Day 24 (August 10): Geometry Basics: Lines, angles, triangles (properties, congruence, similarity), quadrilaterals.
- Day 25 (August 11): Geometry Basics: Lines, angles, triangles (properties, congruence, similarity), quadrilaterals.

- Day 26 (August 12): Mensuration & Data Handling: Area/perimeter of 2D shapes, volume/surface area of 3D shapes, mean, median, mode, probability (basic).
- Day 27 (August 13): Mensuration & Data Handling: Area/perimeter of 2D shapes, volume/surface area of 3D shapes, mean, median, mode, probability (basic).
- Day 28 (August 14): Math Review & Basic Problems.
- Day 29 (August 15): Integrated Problem Solving (Phase 1): Solve mixed problems covering all subjects from basic levels. Focus on understanding question types.
- Day 30 (August 16): Integrated Problem Solving (Phase 1): Solve mixed problems covering all subjects from basic levels. Focus on understanding question types.

Phase 2: Deep Dive & Problem Solving (Days 31-75) - Intermediate Concepts & Applications

Goal: Strengthen problem-solving skills, delve deeper into subject-specific topics, and understand interdisciplinary connections.

- Week 5-6: Physics Heat, Light & Sound
 - Day 31 (August 17): Heat: Temperature, heat transfer (conduction, convection, radiation), specific heat capacity, latent heat.
 - Day 32 (August 18): Heat: Temperature, heat transfer (conduction, convection, radiation), specific heat capacity, latent heat.
 - Day 33 (August 19): Light: Reflection, refraction, lenses, mirrors, human eye.
 - Day 34 (August 20): Light: Reflection, refraction, lenses, mirrors, human eye.
 - Day 35 (August 21): Sound: Production, propagation, characteristics, echo, ultrasound.
 - Day 36 (August 22): Sound: Production, propagation, characteristics, echo, ultrasound.
 - Day 37 (August 23): Electricity & Magnetism (Basics): Current, voltage, resistance, Ohm's Law, circuits, magnetic effects of current.
 - Day 38 (August 24): Electricity & Magnetism (Basics): Current, voltage, resistance, Ohm's Law, circuits, magnetic effects of current.

- Day 39 (August 25): Physics Problem Solving: Focus on numerical problems and conceptual questions.
- Day 40 (August 26): Physics Problem Solving: Focus on numerical problems and conceptual questions.
- Day 41 (August 27): Physics Problem Solving: Focus on numerical problems and conceptual questions.
- Day 42 (August 28): Physics Problem Solving: Focus on numerical problems and conceptual questions.
- Week 7-8: Chemistry Chemical Reactions & Periodic Table
 - Day 43 (August 29): Acids, Bases & Salts: Properties, pH scale, neutralization.
 - Day 44 (August 30): Acids, Bases & Salts: Properties, pH scale, neutralization.
 - Day 45 (August 31): Metals & Non-metals: Physical and chemical properties, reactivity series, extraction (basic).
 - Day 46 (September 1): Metals & Non-metals: Physical and chemical properties, reactivity series, extraction (basic).
 - Day 47 (September 2): Carbon & Its Compounds: Allotropes of carbon, hydrocarbons (basic nomenclature), functional groups (basic).
 - Day 48 (September 3): Carbon & Its Compounds: Allotropes of carbon, hydrocarbons (basic nomenclature), functional groups (basic).
 - Day 49 (September 4): Periodic Classification of Elements: Mendeleev's and Modern Periodic Table, trends in properties.
 - Day 50 (September 5): Periodic Classification of Elements: Mendeleev's and Modern Periodic Table, trends in properties.
 - Day 51 (September 6): Chemistry Problem Solving: Balancing complex equations, conceptual questions, reasoning.
 - Day 52 (September 7): Chemistry Problem Solving: Balancing complex equations, conceptual questions, reasoning.
 - Day 53 (September 8): Chemistry Problem Solving: Balancing complex equations, conceptual questions, reasoning.
 - Day 54 (September 9): Chemistry Problem Solving: Balancing complex equations, conceptual questions, reasoning.

- Week 9-10: Biology Life Processes & Control
 - Day 55 (September 10): Life Processes Nutrition: Autotrophic and heterotrophic nutrition, digestion in humans.
 - Day 56 (September 11): Life Processes Nutrition: Autotrophic and heterotrophic nutrition, digestion in humans.
 - Day 57 (September 12): Life Processes Respiration: Aerobic and anaerobic, respiration in plants and animals.
 - Day 58 (September 13): Life Processes Respiration: Aerobic and anaerobic, respiration in plants and animals.
 - Day 59 (September 14): Life Processes Transportation: Circulation in humans (blood, heart), transport in plants (xylem, phloem).
 - Day 60 (September 15): Life Processes Transportation: Circulation in humans (blood, heart), transport in plants (xylem, phloem).
 - Day 61 (September 16): Life Processes Excretion: Excretory system in humans, excretion in plants.
 - Day 62 (September 17): Life Processes Excretion: Excretory system in humans, excretion in plants.
 - Day 63 (September 18): Control & Coordination: Nervous system, endocrine system in humans, plant hormones.
 - Day 64 (September 19): Control & Coordination: Nervous system, endocrine system in humans, plant hormones.
 - Day 65 (September 20): Biology Problem Solving: Diagram-based questions, reasoning, application-based.
 - Day 66 (September 21): Biology Problem Solving: Diagram-based questions, reasoning, application-based.
 - Day 67 (September 22): Biology Problem Solving: Diagram-based questions, reasoning, application-based.
 - Day 68 (September 23): Biology Problem Solving: Diagram-based questions, reasoning, application-based.
- Week 11-12: Mathematics Advanced Algebra & Geometry
 - Day 69 (September 24): Linear Equations in Two Variables: Graphical and algebraic solutions.

- Day 70 (September 25): Linear Equations in Two Variables: Graphical and algebraic solutions.
- Day 71 (September 26): Quadratic Equations: Solving methods, nature of roots, applications.
- Day 72 (September 27): Quadratic Equations: Solving methods, nature of roots, applications.
- Day 73 (September 28): Surface Areas & Volumes: Cylinders, cones, spheres, combinations of solids.
- Day 74 (September 29): Surface Areas & Volumes: Cylinders, cones, spheres, combinations of solids.
- Day 75 (September 30): Mid-Preparation Mock Test 1: Full-length JSO mock test. Analyze performance and identify weak areas.

Phase 3: Advanced Concepts & Olympiad Skills (Days 76-105) - Interdisciplinary & Higher Order Thinking

Goal: Tackle more challenging problems, explore advanced topics, and develop critical thinking and analytical skills.

- Week 13-14: Physics Advanced Topics & Problem Solving
 - Day 76 (October 1): Fluid Mechanics (Basic): Pressure, buoyancy, Archimedes' Principle.
 - Day 77 (October 2): Fluid Mechanics (Basic): Pressure, buoyancy, Archimedes' Principle.
 - Day 78 (October 3): Thermodynamics (Basic): Laws of thermodynamics, heat engines (conceptual).
 - Day 79 (October 4): Thermodynamics (Basic): Laws of thermodynamics, heat engines (conceptual).
 - Day 80 (October 5): Modern Physics (Introduction): Atomic models, radioactivity (basic concepts).
 - Day 81 (October 6): Modern Physics (Introduction): Atomic models, radioactivity (basic concepts).
 - Day 82 (October 7): Advanced Physics Problem Solving: Numerical problems, conceptual questions requiring deeper understanding.
 - Day 83 (October 8): Advanced Physics Problem Solving: Numerical problems, conceptual questions requiring deeper understanding.

- Day 84 (October 9): Advanced Physics Problem Solving: Numerical problems, conceptual questions requiring deeper understanding.
- Week 15-16: Chemistry Stoichiometry & Environmental Chemistry
 - Day 85 (October 10): Mole Concept & Stoichiometry: Molar mass, Avogadro's number, limiting reagent (basic).
 - Day 86 (October 11): Mole Concept & Stoichiometry: Molar mass, Avogadro's number, limiting reagent (basic).
 - Day 87 (October 12): Solutions: Concentration terms (mass %, volume %, molarity - basic).
 - Day 88 (October 13): Solutions: Concentration terms (mass %, volume %, molarity - basic).
 - Day 89 (October 14): Environmental Chemistry: Air pollution, water pollution, ozone depletion, greenhouse effect.
 - Day 90 (October 15): Environmental Chemistry: Air pollution, water pollution, ozone depletion, greenhouse effect.
 - Day 91 (October 16): Advanced Chemistry Problem Solving: Balancing redox reactions, conceptual questions, application-based.
 - Day 92 (October 17): Advanced Chemistry Problem Solving: Balancing redox reactions, conceptual questions, application-based.
 - Day 93 (October 18): Advanced Chemistry Problem Solving: Balancing redox reactions, conceptual questions, application-based.
- Week 17-18: Biology Reproduction, Heredity & Ecosystems
 - Day 94 (October 19): Reproduction: Asexual and sexual reproduction in plants and animals, human reproductive system.
 - Day 95 (October 20): Reproduction: Asexual and sexual reproduction in plants and animals, human reproductive system.
 - Day 96 (October 21): Heredity & Evolution: Mendel's laws, basic genetics, sex determination, evidence for evolution.
 - Day 97 (October 22): Heredity & Evolution: Mendel's laws, basic genetics, sex determination, evidence for evolution.
 - Day 98 (October 23): Our Environment & Ecosystems: Food chains, food webs, energy flow, environmental issues.

- Day 99 (October 24): Our Environment & Ecosystems: Food chains, food webs, energy flow, environmental issues.
- Day 100 (October 25): Advanced Biology Problem Solving: Case studies, experimental setups, reasoning.
- Day 101 (October 26): Advanced Biology Problem Solving: Case studies, experimental setups, reasoning.
- Day 102 (October 27): Advanced Biology Problem Solving: Case studies, experimental setups, reasoning.
- Day 103 (October 28): Interdisciplinary Problem Solving & Mock Test 2: Solve problems that integrate concepts from multiple subjects. Focus on JSO-level questions.
- Day 104 (October 29): Interdisciplinary Problem Solving & Mock Test 2: Solve problems that integrate concepts from multiple subjects. Focus on JSO-level questions.
- Day 105 (October 30): Full-length JSO Mock Test 2. Thorough analysis of performance.

Phase 4: Revision & Mock Tests (Days 106-120) - Consolidation & Exam Readiness

Goal: Consolidate all learned concepts, refine time management, and build confidence for the actual examination.

- Week 19: Intensive Revision
 - Day 106 (October 31): Physics Revision: Quick review of all formulas, concepts, and common problem types.
 - Day 107 (November 1): Physics Revision: Quick review of all formulas, concepts, and common problem types.
 - Day 108 (November 2): Chemistry Revision: Quick review of reactions, periodic trends, and conceptual points.
 - Day 109 (November 3): Chemistry Revision: Quick review of reactions, periodic trends, and conceptual points.
 - Day 110 (November 4): Biology Revision: Quick review of diagrams, processes, and classification.
 - Day 111 (November 5): Biology Revision: Quick review of diagrams, processes, and classification.

- Day 112 (November 6): Mathematics Revision: Quick review of formulas, theorems, and problem-solving techniques.
- Week 20: Mock Tests & Final Polish
 - Day 113 (November 7): Full-length JSO Mock Test 3: Simulate exam conditions strictly.
 - Day 114 (November 8): Mock Test Analysis & Error Correction: Deep dive into mistakes, understand conceptual gaps or silly errors.
 - Day 115 (November 9): Targeted Practice: Focus on specific weak areas identified from mock tests.
 - Day 116 (November 10): Quick Review of High-Yield Topics: Revisit topics that frequently appear in JSO or are conceptually challenging for you.
 - Day 117 (November 11): Full-length JSO Mock Test 4: Final comprehensive test to gauge readiness.
 - Day 118 (November 12): Final Mock Test Analysis & Strategy
 Refinement: Adjust time management and question selection strategy.
 - Day 119 (November 13): Light Revision & Mental Preparation: Avoid intense study. Relax, review notes, ensure you're calm and confident.
 - Day 120 (November 14): Rest Day: Absolutely no new study. Get good sleep, eat well, and prepare for the exam day.

General Tips for JSO Preparation:

- 1. **NCERT is Your Base:** Ensure a thorough understanding of NCERT textbooks for classes 9 and 10 for all subjects. Many JSO questions are based on these concepts, albeit at a higher difficulty.
- 2. **Beyond NCERT:** Supplement your study with higher-level books (e.g., those for NTSE, JEE/NEET foundation, or specific Olympiad books) for advanced concepts and problems.
- 3. **Problem Solving is Key:** The JSO is not just about knowledge but application. Solve a vast number of problems from various sources, including previous year's JSO, NSEJS, and RMO papers.
- 4. **Conceptual Clarity:** Don't just memorize. Understand the 'why' and 'how' behind every concept.
- 5. **Interdisciplinary Thinking:** JSO often features questions that combine concepts from different subjects. Practice identifying these connections.

- 6. **Diagrams and Experiments:** Pay attention to diagrams in Biology and Physics. Understand experimental setups and their principles, even if you're not performing them physically.
- 7. **Maintain a Notebook:** Keep a dedicated notebook for important formulas, tricky concepts, and problems you found challenging.
- 8. Regular Revision: Consistent short revisions are more effective than cramming.
- 9. **Time Management:** Practice solving problems under timed conditions. During mock tests, simulate the actual exam environment.
- 10. **Stay Healthy & Balanced:** Ensure you get adequate sleep, eat nutritious food, and take short breaks. A fresh mind performs best.
- 11. Seek Guidance: Don't hesitate to clarify doubts with teachers, mentors, or peers.
- 12. **Stay Motivated:** The journey is long, but consistent effort will yield results. Celebrate small victories and learn from setbacks.

Good luck with your Junior Science Olympiad preparation!

120-Day Chemistry Olympiad Preparation Schedule

Start Date: July 18, 2025

End Date: November 14, 2025

This 120-day schedule is meticulously crafted to guide aspiring Chemistry Olympiad participants through a comprehensive and systematic preparation journey. It balances theoretical understanding with extensive problem-solving, focusing on the core areas of Physical, Inorganic, and Organic Chemistry typically covered in Olympiads. The plan emphasizes building a strong foundation, delving into advanced topics, and refining problem-solving strategies through regular practice and mock tests.

Phase 1: Foundation Building (Days 1-30) - Core Concepts & Basics

Goal: Establish a solid understanding of fundamental concepts across all major branches of Chemistry. Focus on clarity and basic problem-solving.

Week 1: General Chemistry & Stoichiometry

- Day 1 (July 18): Basic Concepts of Chemistry: Matter, mixtures, elements, compounds, laws of chemical combination.
- Day 2 (July 19): Basic Concepts of Chemistry: Atomic mass, molecular mass, equivalent mass.
- Day 3 (July 20): Atomic Structure: Subatomic particles, Bohr's model, quantum numbers (basic introduction).
- Day 4 (July 21): Atomic Structure: Electronic configuration, Aufbau, Pauli, Hund's rules.
- Day 5 (July 22): Mole Concept & Stoichiometry: Molar mass, Avogadro's number, empirical/molecular formula.
- Day 6 (July 23): Stoichiometry: Balancing chemical equations, limiting reagent, percentage yield.
- Day 7 (July 24): Review & Basic Problems: Mixed problems on general chemistry and stoichiometry.

Week 2: Chemical Bonding & States of Matter

- Day 8 (July 25): Chemical Bonding (Ionic & Covalent): Lewis structures, octet rule, formal charge.
- Day 9 (July 26): Chemical Bonding (VSEPR & Hybridization): Molecular shapes, bond angles, sp, sp2, sp3 hybridization.

- Day 10 (July 27): States of Matter (Gases): Gas laws (Boyle's, Charles's, Gay-Lussac's, Avogadro's), Ideal Gas Equation.
- Day 11 (July 28): States of Matter (Gases & Liquids): Dalton's Law of Partial Pressures, Graham's Law of Diffusion, liquid properties (surface tension, viscosity - conceptual).
- Day 12 (July 29): Solutions: Types of solutions, concentration terms (molarity, molality, mole fraction, mass %).
- o **Day 13 (July 30): Solutions:** Solubility, factors affecting solubility.
- Day 14 (July 31): Review & Basic Problems: Mixed problems on bonding, states of matter, and solutions.

• Week 3: Thermodynamics & Chemical Equilibrium

- Day 15 (August 1): Thermodynamics (Basic): System, surroundings, types of processes, extensive/intensive properties.
- Day 16 (August 2): First Law of Thermodynamics: Internal energy, heat, work, enthalpy, Hess's Law.
- Day 17 (August 3): Chemical Equilibrium: Law of mass action, equilibrium constant (Kc,Kp), relationship between Kc and Kp.
- Day 18 (August 4): Chemical Equilibrium: Le Chatelier's Principle and its applications.
- Day 19 (August 5): Ionic Equilibrium (Basic): Acids, bases (Arrhenius, Bronsted-Lowry, Lewis - conceptual).
- Day 20 (August 6): Ionic Equilibrium (Basic): pH scale, common ion effect (conceptual).
- Day 21 (August 7): Review & Basic Problems: Mixed problems on thermodynamics and equilibrium.

• Week 4: Periodic Table & Redox Reactions

- Day 22 (August 8): Periodic Classification of Elements: Mendeleev's and Modern Periodic Table.
- Day 23 (August 9): Periodic Trends: Atomic radius, ionization enthalpy, electron gain enthalpy, electronegativity.
- Day 24 (August 10): Redox Reactions: Oxidation numbers, oxidizing and reducing agents.

- Day 25 (August 11): Balancing Redox Reactions: Ion-electron method, oxidation number method.
- Day 26 (August 12): Hydrogen & s-block elements: Position of hydrogen, properties of alkali and alkaline earth metals (basic).
- Day 27 (August 13): s-block elements: Important compounds (e.g., NaOH, NaHCO3, CaO - preparation and uses).
- Day 28 (August 14): Review & Basic Problems: Mixed problems on periodic table and redox.
- Day 29 (August 15): Integrated Problem Solving (Phase 1): Solve mixed problems covering all subjects from basic levels. Focus on understanding question types.
- Day 30 (August 16): Integrated Problem Solving (Phase 1): Solve mixed problems covering all subjects from basic levels. Focus on understanding question types.

Phase 2: Deep Dive & Problem Solving (Days 31-80) - Intermediate Concepts & Applications

Goal: Strengthen problem-solving skills, delve deeper into subject-specific topics, and understand interdisciplinary connections.

- Week 5-6: Chemical Kinetics & Electrochemistry
 - Day 31 (August 17): Chemical Kinetics: Rate of reaction, factors affecting rate, rate law, order and molecularity.
 - Day 32 (August 18): Chemical Kinetics: Integrated rate equations (zero and first order), half-life.
 - Day 33 (August 19): Electrochemistry: Electrolytic and galvanic cells, electrodes, standard electrode potential.
 - Day 34 (August 20): Electrochemistry: Nernst equation, Gibbs energy and cell potential.
 - Day 35 (August 21): Electrochemistry: Conductivity, molar conductivity, Kohlrausch's Law, Faraday's laws of electrolysis.
 - Day 36 (August 22): Surface Chemistry (Conceptual): Adsorption, catalysts, colloids, emulsions.
 - Day 37 (August 23): Problem Solving (Kinetics & Electrochemistry).
 - o Day 38 (August 24): Problem Solving (Kinetics & Electrochemistry).

- o Day 39 (August 25): Problem Solving (Kinetics & Electrochemistry).
- o Day 40 (August 26): Problem Solving (Kinetics & Electrochemistry).
- Week 7-8: p-block Elements & Metallurgy
 - Day 41 (August 27): p-block (Group 13, 14): Boron and Carbon family properties, important compounds (e.g., diborane, silicones, carbides).
 - Day 42 (August 28): p-block (Group 15, 16): Nitrogen and Oxygen family properties, important compounds (e.g., ammonia, nitric acid, ozone, sulfuric acid).
 - Day 43 (August 29): p-block (Group 17, 18): Halogens and Noble gases properties, interhalogen compounds, xenon compounds.
 - Day 44 (August 30): General Principles of Metallurgy: Ores, concentration methods (gravity separation, froth flotation, leaching).
 - Day 45 (August 31): Metallurgy: Extraction methods (roasting, calcination, smelting, refining electrolytic, zone refining).
 - Day 46 (September 1): Problem Solving (p-block & Metallurgy).
 - Day 47 (September 2): Problem Solving (p-block & Metallurgy).
 - Day 48 (September 3): Problem Solving (p-block & Metallurgy).
 - Day 49 (September 4): Problem Solving (p-block & Metallurgy).
- Week 9-10: d & f-block Elements & Coordination Compounds
 - Day 50 (September 5): d-block Elements: General characteristics, electronic configuration, oxidation states, properties of transition elements.
 - Day 51 (September 6): d-block Elements: Important compounds (K2Cr2 O7, KMnO4 - preparation, properties, reactions).
 - Day 52 (September 7): f-block Elements: Lanthanoids and Actinoids electronic configuration, oxidation states, general characteristics (conceptual).
 - Day 53 (September 8): Coordination Compounds: Werner's theory, ligands, coordination number, oxidation state of central metal ion.
 - Day 54 (September 9): Coordination Compounds: IUPAC nomenclature, isomerism (structural and stereoisomerism - basic).

- Day 55 (September 10): Coordination Compounds: Valence Bond Theory
 (VBT) basic concepts of bonding and magnetic properties.
- Day 56 (September 11): Qualitative Analysis (Basic): Identification of common anions and cations (conceptual understanding of reactions).
- Day 57 (September 12): Problem Solving (d & f-block, Coordination, Qualitative).
- Day 58 (September 13): Problem Solving (d & f-block, Coordination, Qualitative).
- Day 59 (September 14): Problem Solving (d & f-block, Coordination, Qualitative).
- Day 60 (September 15): Problem Solving (d & f-block, Coordination, Qualitative).
- Week 11-12: Organic Chemistry Basics & Hydrocarbons
 - Day 61 (September 16): Basic Principles of Organic Chemistry: IUPAC nomenclature, classification of organic compounds.
 - Day 62 (September 17): Isomerism: Structural isomerism (chain, position, functional, metamerism) and stereoisomerism (geometrical, optical - basic).
 - Day 63 (September 18): General Organic Chemistry (GOC): Inductive effect, resonance effect, hyperconjugation, electromeric effect.
 - Day 64 (September 19): GOC: Acidity and basicity of organic compounds.
 - Day 65 (September 20): Hydrocarbons (Alkanes): Preparation, properties, reactions (free radical halogenation).
 - Day 66 (September 21): Hydrocarbons (Alkenes): Preparation, properties, reactions (addition reactions - Markovnikov's, anti-Markovnikov's).
 - Day 67 (September 22): Hydrocarbons (Alkynes): Preparation, properties, reactions (acidic nature of terminal alkynes).
 - Day 68 (September 23): Aromatic Compounds: Benzene structure, resonance, aromaticity (Huckel's rule).
 - Day 69 (September 24): Aromatic Compounds: Electrophilic aromatic substitution reactions (halogenation, nitration, sulfonation, Friedel-Crafts).

- Day 70 (September 25): Organic Problem Solving (Mechanisms basic, synthesis - simple).
- Day 71 (September 26): Organic Problem Solving (Mechanisms basic, synthesis - simple).
- Day 72 (September 27): Organic Problem Solving (Mechanisms basic, synthesis - simple).
- Day 73 (September 28): Mid-Preparation Mock Test 1.
- Day 74 (September 29): Mock Test 1 Analysis & Error Correction.
- Day 75 (September 30): Targeted Practice on Weak Areas from Mock 1.

Phase 3: Advanced Topics & Olympiad Skills (Days 81-105) - Interdisciplinary & Higher Order Thinking

Goal: Tackle more challenging problems, explore advanced topics, and develop critical thinking and analytical skills.

- Week 13-14: Organic Chemistry Functional Groups & Biomolecules
 - Day 76 (October 1): Haloalkanes & Haloarenes: Preparation, properties, reactions (SN1,SN2,E1,E2 - conceptual understanding).
 - Day 77 (October 2): Haloalkanes & Haloarenes: Mechanisms and stereochemistry (conceptual).
 - Day 78 (October 3): Alcohols, Phenols, Ethers: Preparation, properties, reactions (oxidation, dehydration, electrophilic substitution for phenols).
 - Day 79 (October 4): Aldehydes & Ketones: Preparation, properties, nucleophilic addition reactions.
 - Day 80 (October 5): Aldehydes & Ketones: Important named reactions (Aldol condensation, Cannizzaro reaction - conceptual).
 - Day 81 (October 6): Carboxylic Acids & Derivatives: Preparation, properties, reactions (esterification, decarboxylation).
 - Day 82 (October 7): Amines: Classification, preparation, properties, reactions (diazotization - conceptual).
 - Day 83 (October 8): Biomolecules (Carbohydrates): Classification, monosaccharides, disaccharides, polysaccharides (structure, functions).
 - Day 84 (October 9): Biomolecules (Proteins & Nucleic Acids): Amino acids, peptide bond, protein structure (primary, secondary), DNA/RNA (basic structure).

- Day 85 (October 10): Advanced Organic Problem Solving: Multi-step synthesis, reaction prediction, mechanism elucidation.
- Day 86 (October 11): Advanced Organic Problem Solving.
- o Day 87 (October 12): Advanced Organic Problem Solving.
- Day 88 (October 13): Advanced Organic Problem Solving.
- Week 15-16: Environmental Chemistry & Practical Chemistry
 - Day 89 (October 14): Environmental Chemistry: Air pollution (smog, acid rain, ozone depletion), water pollution, soil pollution.
 - Day 90 (October 15): Environmental Chemistry: Green chemistry principles, waste management.
 - Day 91 (October 16): Practical Organic Chemistry: Qualitative analysis of functional groups (tests for alcohols, aldehydes, ketones, acids, amines).
 - Day 92 (October 17): Practical Inorganic Chemistry: Salt analysis (identification of common anions and cations through wet tests).
 - Day 93 (October 18): Practical Inorganic Chemistry: Volumetric analysis (titrations - acid-base, redox - conceptual understanding of procedure).
 - Day 94 (October 19): Analytical Techniques (Conceptual): Chromatography (TLC, paper), spectroscopy (IR, UV-Vis, NMR - basic principles and interpretation).
 - Day 95 (October 20): Mixed Advanced Problem Solving (Olympiad Level).
 - Day 96 (October 21): Mixed Advanced Problem Solving (Olympiad Level).
 - Day 97 (October 22): Mixed Advanced Problem Solving (Olympiad Level).
 - Day 98 (October 23): Mixed Advanced Problem Solving (Olympiad Level).
 - Day 99 (October 24): Mixed Advanced Problem Solving (Olympiad Level).
 - Day 100 (October 25): Mixed Advanced Problem Solving (Olympiad Level).
- Day 101 (October 26): Mock Test 2 (Full Syllabus).

- Day 102 (October 27): Mock Test 2 Analysis & Detailed Error Review.
- Day 103 (October 28): Targeted Practice on Persistent Weaknesses.
- Day 104 (October 29): Revisit Key Mechanisms & Exceptions.
- Day 105 (October 30): Review of Olympiad Problem-Solving Strategies.

Phase 4: Grand Revision & Final Mock Tests (Days 106-120) - Consolidation & Exam Readiness

Goal: Consolidate all learned concepts, refine time management, and build peak confidence for the actual examination.

- Week 17: Intensive Revision Part 1
 - Day 106 (October 31): Full Syllabus Quick Revision (Physical Chemistry): Formulas, key concepts, common tricky points.
 - Day 107 (November 1): Full Syllabus Quick Revision (Physical Chemistry): Solve a few representative problems.
 - Day 108 (November 2): Full Syllabus Quick Revision (Inorganic Chemistry): Reactions, periodic trends, conceptual points.
 - Day 109 (November 3): Full Syllabus Quick Revision (Inorganic Chemistry): Solve a few representative problems.
 - Day 110 (November 4): Full Syllabus Quick Revision (Organic Chemistry): Important reactions, mechanisms, functional group properties.
 - Day 111 (November 5): Full Syllabus Quick Revision (Organic Chemistry): Solve a few representative problems.
- Week 18: Mock Tests & Final Polish
 - Day 112 (November 6): Mock Test 3 (Full Syllabus High Difficulty).
 - Day 113 (November 7): Mock Test 3 Detailed Analysis & Strategic Adjustments: Focus on time management, question selection, and avoiding silly mistakes.
 - Day 114 (November 8): Targeted Practice on Remaining Critical Weaknesses.
 - Day 115 (November 9): Review of Previous Olympiad Papers (Last 2-3 years): Identify common themes and question styles.
 - Day 116 (November 10): Mock Test 4 (Full Syllabus Final Simulation).

- Day 117 (November 11): Final Mock Test Analysis & Strategy Refinement.
- Day 118 (November 12): Rapid Fire Formula & Concept Recall: Quick review of all important formulas, reactions, and definitions.
- Day 119 (November 13): Light Revision & Mental Preparation: Avoid new topics. Focus on confidence and relaxation. Get good rest.
- Day 120 (November 14): Rest Day: Absolutely no new study. Relax, clear your mind, and prepare for the exam day.

General Tips for Chemistry Olympiad Preparation:

- 1. **NCERT is Essential:** Thoroughly understand NCERT textbooks for classes 11 and 12. They form the base.
- 2. **Beyond NCERT:** Supplement with advanced textbooks (e.g., Physical Chemistry by P.W. Atkins, Inorganic Chemistry by J.D. Lee, Organic Chemistry by Solomons/Morrison & Boyd) for deeper understanding and advanced concepts.
- 3. **Problem Solving is Key:** Chemistry Olympiads are highly problem-oriented. Practice a wide variety of numerical, conceptual, and reaction-based problems.
- 4. **Reaction Mechanisms:** For Organic Chemistry, understand the mechanisms of reactions rather than just memorizing them. This helps in predicting products and multi-step synthesis.
- 5. **Periodic Trends & Exceptions:** Master periodic trends and pay special attention to exceptions.
- 6. **Qualitative Analysis:** Understand the principles behind qualitative tests for ions and functional groups.
- 7. **Maintain a Notebook:** Keep a dedicated notebook for important formulas, reaction mechanisms, tricky concepts, and problems you found challenging.
- 8. **Regular Revision:** Consistent short revisions are more effective than cramming.
- 9. **Time Management:** Practice solving problems under timed conditions. During mock tests, simulate the actual exam environment.
- 10. **Stay Curious & Persistent:** Chemistry can be challenging, but a curious mind and persistence in overcoming difficulties are key to success.
- 11. **Seek Mentorship:** If possible, find a mentor or join a study group to discuss problems and clarify doubts.

Good luck with your Chemistry Olympiad preparation!

