

1.

a. HPO_3^{2-}

 $v. K_2 S$

Academic Resource Centre

1/3, Near SAP Theatre, Tirupur - 641603

REDOX REACTION

Class 11 - Chemistry

Section A

b. PO_4^{3-} Section B

2. Calculate the oxidation number of sulphur, chromium and nitrogen in H_2SO_5 , $Cr_2O_7^{2-}$ and NO_3^- . Suggest the structure of these compounds. Count for the fallacy.

Section C

3. Calculate the oxidation number of the underlined element in i. VO_2^+ ii. UO_2^{2+} iii. UO_2^{2+} iii. UO_2^{2+} iii. UO_2^{2+} iii. UO_2^{2+} iii. UO_2^{2-} iii.

4. Find the oxidation state of sulphur in the following compounds: H₂S, H₂SO₄, S₂O₄²⁻, S₂O₈²⁻ and HSO₃⁻. [5]

5. Balance the following redox reactions by ion – electron method : [5]

a. MnO_4^- (aq) + I⁻ (aq) \rightarrow MnO_2 (s) + I₂(s) (in basic medium)

b. ${\rm MnO_4^-}$ (aq) + ${\rm SO_2}$ (g) ightarrow Mn²⁺ (aq) + ${\rm HSO_4^-}$ (aq) (in acidic solution)

c. $\rm H_2O_2$ (aq) + $\rm Fe^{2+}$ (aq) \rightarrow $\rm Fe^{3+}$ (aq) + $\rm H_2O$ (l) (in acidic solution)

Calculate the oxidation number of phosphorus in the following species:

d. ${\rm Cr_2O_7^{-2}}$ + ${\rm SO_2(g)} \rightarrow {\rm Cr^{3+}}$ (aq) + ${\rm SO_4^{2-}}$ (aq) (in acidic solution)

6. Balance the ionic equation: $Cr_2O_7^{2-} + Fe^{2+} + H^+ \rightarrow Cr^{3+} + Fe^{3+} + H_2O$. [5]

[2]