

**CSEC Add Maths** 

Paper 2

June 2023

Solutions



#### **SECTION I**

## ALGEBRA, SEQUENCES AND SERIES

ALL working must be clearly shown.

1. (a) Solve the equation  $3^{2x+1} - 5(3^x) - 2 = 0$ , giving your answer to 3 decimal places.  $3^{2x+1} - 5(3^x) - 2 = 0$ [5]

$$3^{2x} \cdot 3^1 - 5(3^x) - 2 = 0$$

 $3 \cdot (3^x)^2 - 5(3^x) - 2 = 0$ 

Let  $y = 3^x$ .

$$3y^2 - 5y - 2 = 0$$

(3y+1)(y-2) = 0

Either 3y + 1 = 0 or y - 2 = 0 3y = -1 y = 2  $y = -\frac{1}{3}$   $3^x = \frac{2}{3}$   $3^x = -\frac{1}{3}$   $\log 3^x = \log 2$ (No Solution)  $x \log 3 = \log 2$   $x = \frac{\log 2}{\log 3}$ x = 0.631 (to 3 d.p.)

$$x = 0.631$$

(to 3 decimal places)



(b) (i) Given that 3x + 2 is a factor of  $3x^3 + bx^2 - 3x - 2$ , find the value

Consider,

$$3x + 2 = 0$$
$$3x = -2$$
$$x = -\frac{2}{3}$$

Let  $f(x) = 3x^3 + bx^2 - 3x - 2$ .

Since (3x + 2) is a factor of f(x), then by the Factor Theorem,  $f\left(-\frac{2}{3}\right) = 0$ .

So, we have,

$$f\left(-\frac{2}{3}\right) = 3\left(-\frac{2}{3}\right)^{3} + b\left(-\frac{2}{3}\right)^{2} - 3\left(-\frac{2}{3}\right) - 2$$
$$0 = 3\left(-\frac{8}{27}\right) + b\left(\frac{4}{9}\right) + 2 - 2$$
$$0 = -\frac{8}{9} + \frac{4}{9}b$$
$$(\times 9)$$
$$0 = -8 + 4b$$
$$4b = 8$$
$$b = \frac{8}{4}$$
$$b = 2$$

 $\therefore$  The value of b = 2.



(ii) Hence, factorize completely  $3x^3 + bx^2 - 3x - 2$ .

Since 
$$b = 2$$
, then,  $f(x) = 3x^3 + 2x^2 - 3x - 2$ .

We are given that (3x + 2) is a factor of f(x).

By long division,

$$x^{2} + 0x - 1$$

$$3x + 2 | \overline{3x^{3} + 2x^{2} - 3x - 2}$$

$$3x^{3} + 2x^{2}$$

$$\overline{0x^{2} - 3x}$$

$$0x^{2} + 0x$$

$$-\overline{3x - 2}$$

$$-3x - 2$$

$$0$$
Hence,
$$f(x) = 3x^{3} + 2x^{2} - 3x - 2$$

$$= (3x + 2)(x^{2} - 1)$$

$$= (3x + 2)(x + 1)(x - 1)$$

(c) Determine the value(s) of p for which the function px<sup>2</sup> + 3x + 2p has two real distinct roots, giving your answer in its simplest form. [4]

The given function is  $px^2 + 3x + 2p$  which is in the form  $ax^2 + bx + c$ , where a = p, b = 3 and c = 2p.



The function has two real distinct roots when the determinant is greater

than zero.

So, we have,

$$b^{2} - 4ac > 0$$

$$(3)^{2} - 4(p)(2p) > 0$$

$$9 - 8p^{2} > 0$$

$$-8p^{2} > -9$$

$$p^{2} < \frac{-9}{-8}$$

$$p^{2} < \frac{9}{8}$$

$$p < \sqrt{\frac{9}{8}}$$

$$p < \sqrt{\frac{9}{8}}$$

$$p < \frac{\sqrt{9}}{\sqrt{8}}$$

$$p < \frac{3}{\sqrt{4 \times \sqrt{2}}}$$

$$p < \frac{3}{\sqrt{4 \times \sqrt{2}}}$$

$$p < \frac{3}{\sqrt{4 \times \sqrt{2}}}$$

: The values of p for which the function  $px^2 + 3x + 2p$  has two real distinct roots are  $p < \frac{3}{2\sqrt{2}}$ .

Total: 15 marks



- 2. Given that  $f(x) = 3x^2 9x + 1$ ,
  - (a) (i) express f(x) in the form  $a(x + b)^2 + c$ , where a, b and c are real numbers

$$f(x) = 3x^{2} - 9x + 1$$
  
= 3(x<sup>2</sup> - 3x) + 1  
= 3(x<sup>2</sup> - 3x + <sup>9</sup>/<sub>4</sub>) + 1 - 3(<sup>9</sup>/<sub>4</sub>)  
= 3(x - <sup>3</sup>/<sub>2</sub>)<sup>2</sup> + 1 - <sup>27</sup>/<sub>4</sub>  
= 3(x - <sup>3</sup>/<sub>2</sub>)<sup>2</sup> - <sup>23</sup>/<sub>4</sub> which is in the form a(x + b)<sup>2</sup> + c,  
where a = 3, b = -<sup>3</sup>/<sub>2</sub> and c = -<sup>23</sup>/<sub>4</sub>

(ii) state the coordinates of the minimum point of f(x).

[2]

 $f(x) = 3\left(x - \frac{3}{2}\right)^2 - \frac{23}{4}$ 

which is in the form  $a(x + h)^2 + k$ ,

where 
$$a = 3, h = -\frac{3}{2}$$
 and  $k = -\frac{23}{4}$ .

The minimum point is of the form (-h, k) which is  $\left(\frac{3}{2}, -\frac{23}{4}\right)$ .

: The coordinates of the minimum point is  $\left(\frac{3}{2}, -\frac{23}{4}\right)$ .

[3]



(b) The equation  $3x^2 - 6x - 2 = 0$  has roots  $\alpha$  and  $\beta$ . Find the value

of 
$$\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$$
. [4]

 $3x^2 - 6x - 2 = 0$  which is in the form  $ax^2 + bx + c = 0$ ,

where 
$$a = 3, b = -6$$
 and  $c = -2$ .

Consider,

$$\alpha + \beta = -\frac{b}{a}$$
$$= \frac{-(-6)}{3}$$
$$= \frac{6}{3}$$
$$= 2$$

And,

 $\alpha\beta = \frac{c}{a}$ 

= -

Now,  

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta}$$

$$= \frac{2}{\left(-\frac{2}{3}\right)}$$

$$= 2 \div -\frac{2}{3}$$

$$= 2 \times -\frac{3}{2}$$

$$= -3$$



[6]

(c) John's grandparents started a university fund for him at a bank, with \$4000.

The bank offered two options for interest.

Option 1 – \$240 per annum

Option 2 – 5% of the current balance per annum

Determine the sum of money in the university fund at the beginning of the

ninth year for **both** options.

**Consider Option 1.** 

At beginning of the first year, A = 4000

At beginning of the second year, A = 4000 + 240

At beginning of the second year, A = 4000 + 240 + 240

Notice that it follows an arithmetic progression where a = 4000 and d = 240. For the beginning of the *n*th year,

 $T_n = a + (n - 1)d$  $T_n = 4000 + (n - 1)(240)$ 

Now, to calculate the sum of money at the beginning of the ninth year,

$$T_9 = 4000 + (9 - 1)(240)$$
$$= 4000 + (8)(240)$$
$$= 4000 + 1920$$
$$= 5920$$

Now,

Consider Option 2.



At beginning of the first year, A = 4000

At beginning of the second year, A = 4000(1.05)

At beginning of the second year,  $A = 4000(1.05)^2$ 

Notice that it follows a geometric progression where a = 4000 and r = 1.05.

For the beginning of the *n*th year,

$$T_n = ar^{n-1}$$

 $T_n = 4000(1.05)^{n-1}$ 

Now, to calculate the sum of money at the beginning of the ninth year,

$$T_9 = 4000(1.05)^{9-1}$$

- $= 4000(1.05)^8$
- = 5909.82

∴ The sum of money at the beginning of the ninth year for Option 1 is \$5920.

 $\therefore$  The sum of money at the beginning of the ninth year for Option 2 is \$5909.82.

Total: 15 marks



[2]

#### SECTION II

## COORDINATE GEOMETRY, VECTORS AND TRIGONOMETRY

ALL working must be clearly shown.

- 3. (a) The equation of a circle is  $x^2 + y^2 8x 18y + 93 = 0$ .
  - (i) Determine the coordinates of the centre of the circle.

 $x^2 + y^2 - 8x - 18y + 93 = 0$ 

which is in the form  $x^2 + y^2 + 2fx + 2gy + c = 0$ 

where 2f = -8 and 2g = -18.

So, we have, 2f = -8 and 2g = -18  $f = \frac{-8}{2}$   $g = \frac{-18}{2}$  f = -4 g = -9 -f = -(-4) -g = -(-9)-f = 4 -g = 9

Now, the centre of the circle is of the form (-f, -g).

 $\therefore$  The centre of the circle is (4, 9).

Alternatively,

We can consider the standard form of the equation of the circle.



 $x^2 + y^2 - 8x - 18y + 93 = 0$ 

 $x^2 - 8x + y^2 - 18y = -93$ 

 $x^2 - 8x + 16 + y^2 - 18y + 81 = -93 + 16 + 81$ 

 $(x-4)^2 + (y-9)^2 = 4$ 

which is in the form  $(x - a)^2 + (y - b)^2 = r^2$ ,

where C(4, 9) and r = 2.

(ii) Find the length of the radius.

[1]

 $x^2 + y^2 - 8x - 18y + 93 = 0$ 

which is in the form  $x^2 + y^2 + 2fx + 2gy + c = 0$ ,

where f = -4, g = -9 and c = 93.

Now,

$$r = \sqrt{f^2 + g^2 - c}$$
  
=  $\sqrt{(-4)^2 + (-9)^2 - 93}$   
=  $\sqrt{16 + 81 - 93}$   
=  $\sqrt{4}$ 

= 2 units

: The length of the radius, r = 2 units.



(iii) Find the equation of the normal to the circle at the point (2, 8). [3]

Consider the sketch below.



: The equation of the normal is:  $y = \frac{1}{2}x + 7$ 



[3]

(b) The position vectors of two points, *A* and *B*, relative to an origin *O*, are such

that 
$$\overrightarrow{OA} = 3\hat{\imath} - \hat{\jmath}$$
 and  $\overrightarrow{OB} = 5\hat{\imath} - 4\hat{\jmath}$ . Determine

the unit vector **AB** (i)

$$\overrightarrow{OA} = 3\hat{\imath} - \hat{\jmath} \qquad \overrightarrow{OB} = 5\hat{\imath} - 4\hat{\jmath}$$
$$= \begin{pmatrix} 3 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$$

Using the triangle law,

$$= \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$$
Using the triangle law,  

$$\overline{AB} = \overline{OB} - \overline{OA}$$

$$= \begin{pmatrix} 5 \\ -4 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 5 - 3 \\ -4 - (-1) \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$= 2i - 3j$$

$$|\overline{AB}| = \sqrt{(2)^2 + (-3)^2}$$

$$= \sqrt{4 + 9}$$

$$= \sqrt{13}$$
Unit vector 
$$= \frac{\overline{AB}}{|\overline{AB}|}$$

$$= \frac{2i - 3j}{\sqrt{13}}$$

$$= \frac{2i - 3j}{\sqrt{13}}$$



(ii) the acute angle  $A\hat{O}B$ , in degrees, to **1 decimal place**.

Consider the sketch below:





Now,

$$\cos \theta = \frac{\overline{OA} \cdot \overline{OB}}{|\overline{OA}||\overline{OB}|}$$
  

$$\cos \theta = \frac{19}{\sqrt{10}\sqrt{41}}$$
  

$$\theta = \cos^{-1} \left(\frac{19}{\sqrt{10}\sqrt{41}}\right)$$
  

$$\theta = 20.2^{\circ} \quad \text{(to 2 significant figures)}$$

 $\therefore$  The acute angle  $A\hat{O}B = 20.2^{\circ}$ .

(c) Solve the equation  $2\sin^2 \theta = 3\cos\theta$  where  $0^\circ < \theta < 180^\circ$ .

[4]

$$2\sin^2 \theta = 3\cos \theta$$
$$2(1 - \cos^2 \theta) = 3\cos \theta$$
$$2 - 2\cos^2 \theta = 3\cos \theta$$
$$2\cos^2 \theta + 3\cos \theta - 2 = 0$$
Let  $y = \cos \theta$ .
$$2y^2 + 3y - 2 = 0$$
$$(2y - 1)(y + 2) = 0$$

| y + 2 = 0         | or | 2y - 1 = 0                 | Either |
|-------------------|----|----------------------------|--------|
| y = -2            |    | 2y = 1                     |        |
| $\cos\theta = -2$ |    | $y = \frac{1}{2}$          |        |
|                   |    | $\cos\theta = \frac{1}{2}$ |        |



Consider,

$$\cos \theta = \frac{1}{2}$$
$$\theta = \cos^{-1}\left(\frac{1}{2}\right)$$
$$\theta = 60^{\circ}$$

Consider,

 $\cos\theta = -2$ 

(No solution since  $-1 \le \cos \theta \le 1$ )

 $\therefore \theta = 60^{\circ}$  where  $0^{\circ} < \theta < 180^{\circ}$ .

(d) Prove the identity  $\frac{1}{1-\sin x} - \frac{1}{1+\sin x} = \frac{2\tan x}{\cos x}$ . [4]

Taking L.H.S:

$$\frac{1}{1-\sin x} - \frac{1}{1+\sin x} = \frac{1+\sin x - (1-\sin x)}{(1-\sin x)(1+\sin x)}$$
$$= \frac{1+\sin x - 1+\sin x}{1-\sin^2 x}$$
$$= \frac{2\sin x}{\cos^2 x}$$
$$= \frac{2\sin x}{\cos x} \cdot \frac{1}{\cos x}$$
$$= \frac{2\tan x}{\cos x}$$
$$= R.H.S.$$

 $\therefore \frac{1}{1-\sin x} - \frac{1}{1+\sin x} = \frac{2\tan x}{\cos x}$  Q.E.D.

Total: 20 marks



## **SECTION III**

## INTRODUCTORY CALCULUS

## ALL working must be clearly shown.

- 4. (a) A function given by  $y = ax^2 + bx + c$  has a gradient of  $9 \frac{1}{2}x$  at a stationary value of 5.
  - (i) Determine the values of *a*, *b* and *c* in the function.

[5]

 $\frac{dy}{dx} = 2ax + b \qquad \rightarrow \text{Equation 1}$ 

We are given that

 $y = ax^2 + bx + c$ 

 $\frac{dy}{dx} = 9 - \frac{1}{2}x$  $\frac{dy}{dx} = -\frac{1}{2}x + 9 \qquad \rightarrow \text{Equation } 2$ 

Comparing Equation 1 and Equation 2 gives:

$$2a = -\frac{1}{2} , \qquad b = 9$$
$$a = -\frac{1}{2} \times \frac{1}{2}$$
$$a = -\frac{1}{4}$$

At stationary values,  $\frac{dy}{dx} = 0$ .



[2]

When 
$$\frac{dy}{dx} = 0$$
,  
 $9 - \frac{1}{2}x = 0$   
 $-\frac{1}{2}x = -9$   
 $x = -9 \times -2$   
 $x = 18$ 

The stationary value occurs at y = 5. The stationary point is (18, 5).

Substituting  $a = -\frac{1}{4}$ , b = 9 and (18, 5) into  $y = ax^2 + bx + c$  gives:  $5 = -\frac{1}{4}(18)^2 + (9)(18) + c$  5 = -81 + 162 + c 5 = 81 + c c = 5 - 81c = -76

: The values of *a*, *b* and *c* are  $a = -\frac{1}{4}$ , b = 9 and c = -76.

(ii) Determine the nature of the stationary point.

$$\frac{dy}{dx} = 9 - \frac{1}{2}x$$
$$\frac{d^2y}{dx^2} = -\frac{1}{2} \ (<0)$$

Since  $\frac{d^2y}{dx^2} < 0$ , then the stationary point is a maximum point.



(b) A drone tracks the movement of an object in motion on the ground. The following movements are recorded.

- It moves at a constant velocity of 4 m/s for 5 seconds.
- Its velocity increases uniformly for 3 seconds to 10 *m/s*.
- It moves at that velocity for 7 seconds.
- It slows uniformly until it comes to rest after 4 seconds.
- (i) Sketch the graph of the movement of the object.

[3]





(ii) Calculate the distance travelled by the object in the second part of the journey. [3]

## Distance travelled = Area under the graph

$$= \frac{1}{2}(a+b)h$$
$$= \frac{1}{2}(4+10)(3)$$
$$= 21 m$$

- : The distance travelled by the object in the second part of the journey is 21 m.
- (iii) Determine the object's acceleration in the final part of the journey.

[2]

Points are (15, 10) and (19, 0).



: The acceleration in the final part of the journey is  $-2.5 m s^{-2}$ .

Total: 15 marks



[3]

- 5. (a) Consider a toy moving along a miniaturized racing course with an acceleration of  $a(t) = 9t^2 + 2t - 1$ , where t is the time in seconds. Assume that the speed of the toy truck is measured in *cm*/second.
  - (i) Outline how an equation for the speed of the truck would be found, using the given equation for the acceleration. [1]

$$a(t) = 9t^{2} + 2t - 1$$
$$v = \int a(t) dt$$
$$v = \int (9t^{2} + 2t - 1) dt$$
$$v = \frac{9t^{3}}{3} + \frac{2t^{2}}{2} - t + c$$
$$v = 3t^{3} + t^{2} - t + c$$

When 
$$t = 0, v = 0$$
.  
 $0 = 3(0)^3 + (0)^2 - (0) + c$   
 $0 = 0 + c$   
 $c = 0$ 

: An equation for the speed of the truck is:  $v = 3t^3 + t^2 - t$ 

(ii)

Find the speed of the truck at t = 10 seconds.

 $v = 3t^3 + t^2 - t$ 

When t = 10,



$$v = 3(10)^{3} + (10)^{2} - (10)$$
$$= 3(1000) + 100 - 10$$
$$= 3090 \ cms^{-1}$$

: The speed of the truck is 3090  $cms^{-1}$ .

(iii) Find the distance covered by the truck between 5 and 10 seconds.Express your answer to the nearest whole number. [4]

The distance covered by the truck is:

 $s = \int_{a}^{b} v(t) dt$ =  $\int_{5}^{10} (3t^{3} + t^{2} - t) dt$ =  $\left[\frac{3t^{4}}{4} - \frac{t^{3}}{3} - \frac{t^{2}}{2}\right]_{5}^{10}$ =  $\left[\frac{3(10)^{4}}{4} + \frac{(10)^{3}}{3} - \frac{(10)^{2}}{2}\right] - \left[\frac{3(5)^{4}}{4} + \frac{(5)^{3}}{3} - \frac{(5)^{2}}{2}\right]$ =  $\frac{23350}{3} - \frac{5975}{12}$ = 7285 cm (to the nearest whole number)

 $\therefore$  The distance covered by the truck between 5 and 10 seconds is 7285 cm.



[3]



(c) If  $\frac{dy}{dx} = 6x - 10$  and y = 12 when x = 0, find the equation for y in terms of x.

$$\frac{dy}{dx} = 6x - 10$$
$$y = \int \frac{dy}{dx} dx$$
$$y = \int (6x - 10) dx$$
$$y = \frac{6x^2}{2} - 10x + c$$
$$y = 3x^2 - 10x + c$$



Substituting y = 12 and x = 0 gives,  $12 = 3(0)^2 - 10(0) + c$  12 = 0 + cc = 12

 $\therefore$  The equation is  $y = 3x^2 - 10x + 12$ .

Total: 15 marks



### SECTION IV

## **PROBABILITY AND STATISTICS**

## ALL working must be clearly shown.

6. The following stem and leaf diagram represents the scores, out of 80, of students

in an Additional Mathematics exam.

| 3 | 0 | 3 | 7 |   |   |
|---|---|---|---|---|---|
| 4 | 2 | 4 | 6 | 7 | 9 |
| 5 | 1 | 3 | 3 | 6 |   |
| 6 | 0 | 7 | 7 |   |   |
| 7 | 1 | 9 |   |   |   |

(a) Write the raw data set that was used to construct the diagram above. [2]







The modal scores are 53 and 67.



(iv) Given that for the data set  $\sum x^2 = 48999$  and  $\sum x = 885$ , find the standard deviation of the data set using the formula [4]

$$S = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$

$$S = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$

Substituting  $\sum x^2 = 48999$ ,  $\sum x = 8$  and n = 17 gives:

$$S = \sqrt{\frac{48999 - \frac{(885)^2}{17}}{17 - 1}}$$
$$= \sqrt{\frac{48999 - \frac{783225}{17}}{16}}$$

= 13.5 (to 3 significant figures)

# $\div$ The standard deviation of the data set is 13.5.

(c) If a student needed to score at least half the total marks possible to pass the exam, determine the probability of a student failing the exam. Give your answer to 2 decimal places.

The total marks is 80.

Now, 
$$\frac{1}{2}(80) = 40$$

In order to pass the exam, the student needs more than or equal to 40 marks. If the student failed the exam, they received a mark less than 40. The are three scores less than 40: 30, 33 and 37.



Probability = 
$$\frac{Number of possible outcomes}{Total number of outcomes}$$
  
=  $\frac{3}{17}$   
= 0.176 (to 3 significant figures)

∴ The probability of a student failing the exam is 0.176.

(d) Given that a randomly selected student has passed the exam, what is the probability that the student scored over 60? Give your answer to 2 decimal places.

Let *A* be the event that the student scored over 60. Let *B* be the event that the student passed the exam.



 $\therefore$  Given that a randomly selected student has passed the exam, the probability that the student scored over 60 is 0.36.



[2]

(e) Based on the given stem and leaf diagram, describe the distribution of the data

set.

The data set is positively skewed.



(f) Your friend suggested that a bar graph or histogram could be used to represent the data. Advise your friend on which graph is the better option giving ONE reason to support your answer. [2]

The scores are of students in an Additional Mathematics exam is discrete data. Therefore, the better option is a bar graph since a bar graph is used for discrete data.

Total: 20 marks

## END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.