CSEC Mathematics

January 2010 - Paper 2

Solutions

SECTION I

Answer ALL questions in this section.

All working must be clearly shown.

1. (a) Using a calculator, or otherwise, calculate the exact value of

$$
\begin{equation*}
\frac{2.76}{0.8}+8.7^{2} \tag{3}
\end{equation*}
$$

Using a calculator,

$$
\begin{aligned}
\frac{2.76}{0.8}+8.7^{2} & =3.45+75.69 \\
& =79.14
\end{aligned}
$$

(b) In a certain company, a salesman is paid a fixed salary of \$3 140 per month plus an annual commission of 2% on the TOTAL value of cars sold for the year. If the salesman sold cars valued at $\$ 720000$ in 2009, calculate
(i) his fixed salary for the year

Fixed salary for the year $=$ Monthly salary $\times 12$

$$
\begin{aligned}
& =\$ 3140 \times 12 \\
& =\$ 37680
\end{aligned}
$$

(ii) the amount he received in commission for the year

$$
\begin{aligned}
\text { Amount in commission } & =2 \% \text { of } \$ 720000 \\
& =\frac{2}{100} \times \$ 720000 \\
& =\$ 14400
\end{aligned}
$$

(iii) his TOTAL income for the year

$$
\begin{aligned}
\text { Total income } & =\text { Fixed salary }+ \text { Amount earned in commission } \\
& =\$ 37680+\$ 14400 \\
& =\$ 52080
\end{aligned}
$$

\therefore His total income for the year is \$52080.
(c) The ingredients for making pancakes are shown in the diagram below.

(i) Ryan wishes to make 12 pancakes using the instructions given above.

Calculate the number of cups of pancake mix he must use.

We are given that 8 pancakes are produced from using 2 cups of mix.

So, we have,

$$
\begin{aligned}
8 \text { pancakes } & =2 \text { cups of mix } \\
1 \text { pancake } & =\frac{2}{8} \text { cups of mix } \\
12 \text { pancakes } & =12 \times \frac{2}{8} \\
& =3 \text { cups of mix }
\end{aligned}
$$

\therefore He must use 3 cups of pancake mix.
(ii) Neisha used 5 cups of milk to make pancakes using the same instructions. How many pancakes did she make?

We are given that $1 \frac{1}{3}$ cups of milk produce 8 pancakes.

So, we have,
$1 \frac{1}{3}$ cups of milk $=8$ pancakes
1 cup of milk $=\frac{8}{1 \frac{1}{3}}$
$=6$ pancakes
5 cups of milk $=5 \times 6$
$=30$ pancakes
\therefore Neisha made 30 pancakes.
2. (a) Given that $a=6, b=-4$ and $c=8$, calculate the value of

$$
\frac{a^{2}+b}{c-b}
$$

We are given that $a=6, b=-4$ and $c=8$.

$$
\begin{aligned}
\frac{a^{2}+b}{c-b} & =\frac{(6)^{2}+(-4)}{(8)-(-4)} \\
& =\frac{36-4}{8+4} \\
& =\frac{32}{12} \\
& =\frac{8}{3}
\end{aligned}
$$

(b) Simplify the expression:
(i) $3(x-y)+4(x+2 y)$

$$
\begin{aligned}
& 3(x-y)+4(x+2 y) \\
= & 3 x-3 y+4 x+8 y \\
= & 7 x+5 y
\end{aligned}
$$

(ii) $\frac{4 x^{2} \times 3 x^{4}}{6 x^{3}}$

$$
\begin{aligned}
& \frac{4 x^{2} \times 3 x^{4}}{6 x^{3}} \\
= & \frac{12 x^{6}}{6 x^{3}} \\
= & 2 x^{3}
\end{aligned}
$$

(c) (i) Solve the inequality

$$
\begin{equation*}
x-3<3 x-7 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
x-3 & <3 x-7 \\
7-3 & <3 x-x \\
4 & <2 x \\
2 x & >4 \\
x & >\frac{4}{2} \\
x & >2
\end{aligned}
$$

(ii) If x is an integer, determine the SMALLEST value of x that satisfies the inequality in (c)(i) above.

$$
\begin{aligned}
& x>2 \text { and } x \in \mathbb{Z} . \\
& \mathbb{Z}=\{\ldots-3,-2,-2,0,1,2,3, \ldots\}
\end{aligned}
$$

\therefore The smallest integer that satisfies the inequality is $x=3$.
3. (a) T and E are subsets of a universal set, U, such that:

$$
\begin{aligned}
U & =\{1,2,3,4,5,6,7,8,9,10,11,12\} \\
T & =\{\text { multiples of } 3\} \\
E & =\{\text { even numbers }\}
\end{aligned}
$$

(i) Draw a Venn diagram to represent this information.

$$
U=\{1,2,3,4,5,6,7,8,9,10,11,12\}
$$

$$
\begin{aligned}
T & =\{\text { multiples of } 3\} \\
& =\{3,6,9,12\}
\end{aligned}
$$

$$
\begin{aligned}
E & =\{\text { even numbers }\} \\
& =\{2,4,6,8,10,12\}
\end{aligned}
$$

The Venn diagram is as follows:
5
(ii) List the members of the set
(a) $T \cap E$

$$
T \cap E=\{6,12\}
$$

(b) $(T \cup E)^{\prime}$

$$
(T \cup E)^{\prime}=\{1,5,7,11\}
$$

(b) Using a pencil, a ruler, and a pair of compasses only:
(i) Construct, accurately, the triangle $A B C$ shown below, where,

$$
A C=6 \mathrm{~cm}
$$

$\angle A C B=60^{\circ}$

$$
\begin{equation*}
\angle C A B=60^{\circ} \tag{3}
\end{equation*}
$$

Required to construct accurately, the triangle $A B C$, where
$A C=6 \mathrm{~cm}, \angle A C B=60^{\circ}$ and $\angle C A B=60^{\circ}$.

The diagram is shown as follows:

(ii) Complete the diagram to show the kite, $A B C D$, in which $A D=5 \mathrm{~cm}$.
(iii) Measure and state the size of $\angle D A C$.

By measurement, $D \hat{A} C=53^{\circ}$.

Total: 12 marks
4. (a) The diagram below, not drawn to scale, shows a triangle $L M N$ with $L N=12 \mathrm{~cm}, N M=x \mathrm{~cm}$, and $\angle N L M=\theta^{\circ}$. The point K on $L M$ is such that $N K$ is perpendicular to $L M, N K=6 \mathrm{~cm}$, and $K M=8 \mathrm{~cm}$.

Calculate the value of
(i) x

Consider triangle $N K M$.

By Pythagoras' Theorem,

$$
c^{2}=a^{2}+b^{2}
$$

$$
x^{2}=(6)^{2}+(8)^{2}
$$

$$
x^{2}=36+64
$$

$$
x^{2}=100
$$

$$
x=\sqrt{100}
$$

$$
x=10 \mathrm{~cm}
$$

(ii) θ

Consider triangle NLK.

$$
\begin{aligned}
\sin \theta & =\frac{o p p}{h y p} \\
\sin \theta & =\frac{6}{12} \\
\sin \theta & =\frac{1}{2} \\
\theta & =\sin ^{-1}\left(\frac{1}{2}\right) \\
\theta & =30^{\circ}
\end{aligned}
$$

(b) The diagram below shows a map of a playing field drawn on a grid of 1 cm squares.

The scale of the map is $\mathbf{1 : \mathbf { 1 } 2 5 0 .}$

(i) Measure and state, in centimetres, the distance from S to F on the map.

By measurement, $S F=7.8 \mathrm{~cm}$.
(ii) Calculate the distance, in metres, from S to F on the ACTUAL playing field.

The scale is $1: 1250$.

1 cm on the map represents 1250 cm on the field.
7.8 cm on the map $=7.8 \times 1250$
$=9750 \mathrm{~cm}$ on the field.

Now,

$$
\begin{aligned}
100 \mathrm{~cm} & =1 \mathrm{~m} \\
1 \mathrm{~cm} & =\frac{1}{100} \\
9750 \mathrm{~cm} & =\frac{1}{100} \times 9750 \\
& =97.5 \mathrm{~m}
\end{aligned}
$$

\therefore The distance from S to F on the actual playing field is 97.5 m .
(iii) Daniel ran the distance from S to F in 9.72 seconds. Calculate his average speed in
(a) m / s

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Distance covered }}{\text { Time taken }} \\
& =\frac{97.5}{9.72} \\
& =10.0 \mathrm{~m} / \mathrm{s} \quad \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

(b) km / h

$$
\begin{aligned}
\text { Distance } & =97.5 \mathrm{~m} \\
& =97.5 \div 1000 \mathrm{~km} \\
& =0.0975 \mathrm{~km}
\end{aligned}
$$

Now,

$$
\begin{aligned}
1 \text { hour } & =60 \times 60 \\
1 \text { hour } & =3600 \text { seconds } \\
3600 \text { seconds } & =1 \text { hour } \\
1 \text { second } & =\frac{1}{3600} \\
9.72 \text { seconds } & =0.0027 \text { hours }
\end{aligned}
$$

$$
\text { Time }=9.72 \text { seconds }
$$

$$
=0.0027 \text { hours }
$$

$$
\begin{aligned}
& \text { Average speed }=\frac{\text { Distance covered }}{\text { Time taken }} \\
&=\frac{0.0975}{0.0027} \\
&=36.1 \mathrm{~km} / \mathrm{h} \\
& \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

5. (a) A straight line passes through the point $T(4,1)$ and has a gradient of $\frac{3}{5}$.

Determine the equation of this line.

Substituting $m=\frac{3}{5}$ and point $T(4,1)$ into $y-y_{1}=m\left(x-x_{1}\right)$ gives:
$y-1=\frac{3}{5}(x-4)$
$y-1=\frac{3}{5} x-\frac{12}{5}$
$y=\frac{3}{5} x-\frac{12}{5}+1$
$y=\frac{3}{5} x-\frac{7}{5}$
$5 y=3 x-7$
\therefore The equation of the line is: $5 y=3 x-7$
(b) (i) Using a scale of $\mathbf{1 ~ c m}$ to represent 1 unit on both axes, draw the triangle $A B C$ with vertices $A(2,3), B(5,3)$ and $C(3,6)$.

The graph is shown below.

(ii) On the same axes used in (b)(i), draw and label the line $y=2$.

The graph is shown below.

(iii) Draw the image of triangle $A B C$ under a reflection in the line $y=2$. Label the image $A^{\prime} B^{\prime} C^{\prime}$.

The graph is shown below.

(iv) Draw a new triangle $A " B " C$ " with vertices $A "(-7,4), B "(-4,4)$ and $C^{\prime \prime}(-6,7)$.

The graph is shown below.

(v) Name and describe the single transformation that maps triangle $A B C$ onto triangle $A " B " C "$.

The transformation is a translation.

Consider points $A(2,3)$ and $A "(-7,4)$.
The point A is mapped onto A " by a horizontal shift of 9 units to the left and a vertical shift of 1 unit upwards.

The translation is represented by $T=\binom{-9}{1}$.
$\therefore \triangle A B C$ is mapped into $\triangle A " B " C$ " by a translation, $T=\binom{-9}{1}$.
6. A class of 26 students each recorded the distance travelled to school. The distance, to the nearest $k m$, is recorded below:

21	11	3	22	6	32	22	18	28
26	16	17	34	12	25	8	19	14
39	17	22	24	30	18	13	23	

(a) Copy and complete the frequency table to represent this data.

Distance in kilometres	Frequency
$1-5$	1
$6-10$	2
$11-15$	4
$16-20$	6
$21-25$	7
$26-30$	2
$31-35$	1
$36-40$	

(b) Using a scale of $\mathbf{2} \mathbf{c m}$ to represent $\mathbf{5} \mathbf{~ k m}$ on the horizontal axis and a scale of $\mathbf{1}$ $\boldsymbol{c m}$ to represent 1 student on the vertical axis, draw a histogram to represent the data.

Distance in kilometres	LCB	UCB	Frequency
$1-5$	0.5	5.5	1
$6-10$	5.5	10.5	2
$11-15$	10.5	15.5	4
$16-20$	15.5	20.5	6
$21-25$	20.5	25.5	7
$26-30$	25.5	30.5	3
$31-35$	30.5	35.5	2
$36-40$	35.5	40.5	1

Title: Graph showing a histogram representing the data given.

(c) Calculate the probability that a student chosen at random from this class recorded the distance travelled to school as 26 km or more.
$P($ student travelled $\geq 26 \mathrm{~km})=\frac{\text { Number of students travelling } \geq 26 \mathrm{~km}}{\text { Total number of students }}$
$P($ student travelled $\geq 26 \mathrm{~km})=\frac{3+2+1}{26}$
$P($ student travelled $\geq 26 \mathrm{~km})=\frac{6}{26}$
$P($ student travelled $\geq 26 \mathrm{~km})=\frac{3}{13}$
(d) The P.T.A. plans to set up a transportation service for the school. Which average, mean, more or median, is MOST appropriate for estimating the cost of the service? Give a reason for your answer.

The mean is most appropriate for estimating the cost of transportation because it takes into account each student and the actual distance that is covered.
7. The graph shown below represents a function of the form: $f(x)=a x^{2}+b x+c$

Using the graph above, determine
(i) the value of $f(x)$ when $x=0$

From graph, when $x=0, f(x)=3$.
(ii) the values of x when $f(x)=0$

From graph, when $f(x)=0, x=-3$ and $x=\frac{1}{2}$.
These are the points where the curve cuts the x-axis.
(iii) the coordinates of the maximum point

The coordinates of the maximum point are $(-1.3,6.1)$.
(iv) the equation of the axis of symmetry

The equation of the axis of symmetry is: $x=-1.3$.
(v) the values of x when $f(x)=5$

From graph, when $f(x)=5, x=-2$ and $x=-\frac{1}{2}$.
(vi) the interval within which x lies when $f(x)>5$. Write your answer in the form $a<x<b$.

The range of values of x for which $f(x)$ lies above the line $y=5$ is $\{x:-2<x<-0.5\}$.
8. Bianca makes hexagons using sticks of equal length. She then creates patterns by joining the hexagons togather. Patterns 1, 2 and 3 are shown below.

1 Hexagon

Pattern 2

2 Hexagons

Pattern 3

3 Hexagons

The table below shows the number of hexagons in EACH pattern created and the number of sticks used to make EACH pattern.

Number of hexagons in the pattern	1	2	3	4	5	20	n
Number of sticks used for the pattern	6	11	16	x	\boldsymbol{y}	z	\boldsymbol{S}

(a) Determine the values of
(i) x

For n hexagons in the pattern, the number of sticks used is $S=5 n+1$.

When $n=4$ and $S=x$,
$x=5(4)+1$
$=20+1$
$=21$
(ii) y

$$
\begin{aligned}
& \text { When } n=5 \text { and } S=y, \\
& \begin{aligned}
y & =5(5)+1 \\
& =25+1 \\
& =26
\end{aligned}
\end{aligned}
$$

(iii) Z

$$
\begin{aligned}
& \text { When } n=20 \text { and } S=z, \\
& \begin{aligned}
z & =5(20)+1 \\
& =100+1 \\
& =101
\end{aligned}
\end{aligned}
$$

(b) Write down an expression for \boldsymbol{S} in terms of \boldsymbol{n}, where \boldsymbol{S} represents the number of sticks used to make a pattern of \boldsymbol{n} hexagons.
S represents the number of sticks used to make a pattern of n hexagons.
$\therefore S=5 n+1$
(c) Bianca used a total of 76 sticks to make a pattern of \boldsymbol{h} hexagons. Determine the value of \boldsymbol{h}.

When $n=h$ and $S=76$,

$$
\begin{aligned}
76 & =5(h)+1 \\
76-1 & =5 h \\
75 & =5 h \\
\frac{75}{5} & =h \\
15 & =h
\end{aligned}
$$

Total: 10 marks

SECTION II

Answer TWO questions in this section.

ALGEBRA AND RELATIONS, FUNCTIONS AND GRAPHS

9. (a) The relationship between kinetic energy, E, mass, m, and velocity, v, for a moving particle is

$$
E=\frac{1}{2} m v^{2}
$$

(i) Express v in terms of E and m.

$$
\begin{aligned}
E & =\frac{1}{2} m v^{2} \\
2 E & =m v^{2} \\
\frac{2 E}{m} & =v^{2} \\
\sqrt{\frac{2 E}{m}} & =v
\end{aligned}
$$

$$
\therefore v=\sqrt{\frac{2 E}{m}}
$$

(ii) Determine the value of v when $E=45$ and $m=13$.

Substituting $E=45$ and $m=13$ into $v=\sqrt{\frac{2 E}{m}}$ gives:

$$
\begin{aligned}
v & =\sqrt{\frac{2(45)}{13}} \\
& =\sqrt{\frac{90}{13}} \\
& =2.63 \text { (to } 2 \text { decimal places) }
\end{aligned}
$$

(b) Given $g(x)=3 x^{2}-8 x+2$,
(i) write $g(x)$ in the form $a(x+b)^{2}+c$, where a, b and $c \in \mathbb{R}$

$$
g(x)=3 x^{2}-8 x+2 \quad \text { is in the form } a x^{2}+b x+c
$$

where $a=3, b=-8$ and $c=2$.

$$
\begin{aligned}
h & =\frac{b}{2 a} \\
& =\frac{-8}{2(3)} \\
& =\frac{-8}{6} \\
& =-\frac{4}{3}
\end{aligned}
$$

$$
k=\frac{4 a c-b^{2}}{4 a}
$$

$$
=\frac{4(3)(2)-(-8)^{2}}{4(3)}
$$

$$
=\frac{24-64}{12}
$$

$$
=\frac{-40}{12}
$$

$$
=-\frac{10}{3}
$$

So, we have, $g(x)=3\left(x-\frac{4}{3}\right)^{2}-\frac{10}{3}$.

Alternatively,

$$
\begin{aligned}
g(x) & =3 x^{2}-8 x+2 \\
& =3\left(x^{2}-\frac{8}{3} x\right)+2 \\
& =3\left(x^{2}-\frac{8}{3} x+\frac{16}{9}\right)+2-3\left(\frac{16}{9}\right) \\
& =3\left(x-\frac{4}{3}\right)^{2}+2-\frac{16}{3} \\
& =3\left(x-\frac{4}{3}\right)^{2}-\frac{10}{3}
\end{aligned}
$$

$\therefore g(x)=3\left(x-\frac{4}{3}\right)^{2}-\frac{10}{3} \quad$ which is in the form $a(x+b)^{2}+c$, where $a=3, b=-\frac{4}{3}$ and $c=-\frac{10}{3}$.
(ii) solve the equation $g(x)=0$, writing your answer(s) correct to 2 decimal places.
$g(x)=3\left(x-\frac{4}{3}\right)^{2}-\frac{10}{3}$

Let $g(x)=0$.

$$
\begin{aligned}
3\left(x-\frac{4}{3}\right)^{2}-\frac{10}{3} & =0 \\
3\left(x-\frac{4}{3}\right)^{2} & =\frac{10}{3} \\
\left(x-\frac{4}{3}\right)^{2} & =\frac{10}{9} \\
x-\frac{4}{3} & = \pm \sqrt{\frac{10}{9}} \\
x & =\frac{4}{3} \pm \sqrt{\frac{10}{9}}
\end{aligned}
$$

$$
\text { Either } \begin{aligned}
\quad x & =\frac{4}{3}-\sqrt{\frac{10}{9}} \\
x & =0.28 \quad \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

or

$$
\begin{aligned}
& x=\frac{4}{3}+\sqrt{\frac{10}{9}} \\
& x=2.39 \quad \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

$$
\therefore x=0.28 \text { or } x=2.39
$$

(iii) A sketch of the graph of $g(x)$ is shown below.

Copy the sketch and state
(a) the y-coordinate of A
(b) the x-coordinate of C
(c) the x and y-coordinates of B

The sketch is shown below:

10. (a) The manager of a pizza shop wishes to make x small pizzas and y large pizzas. His oven holds no more than 20 pizzas.
(i) Write an inequality to represent the given condition.

Condition: The manager of a pizza shop wishes to make x small pizzas and y large pizzas. His oven holds no more than 20 pizzas.

Inequality: $x+y \leq 20$
(ii) The ingredients for each small pizza cost \$15 and for each large pizza $\$ 30$. The manager plans to spend no more than $\$ 450$ on ingredients. Write an inequality to represent this condition.

Condition: The ingredients for each small pizza cost \$15 and for each large pizza $\$ 30$. The manager plans to spend no more than $\$ 450$ on ingredients.

Inequality:
$15 x+30 y \leq 450$
$(\div 15)$
$x+2 y \leq 30$
(b) (i) Using a scale of 2 cm on the \boldsymbol{x}-axis to represent 5 small pizzas and

2 cm on the \boldsymbol{y}-axis to represent 5 large pizzas, draw the graphs of the lines associated with the inequalities at (a)(i) and (a)(ii) above.

Consider $x+y \leq 20$ and $x+2 y \leq 30$.
The equations are $x=y=20$ and $x+2 y=30$ respectively.

Consider $x+y=20$.
When $x=0, y=20$.
When $y=0, x=20$.

Points to be plotted are $(0,20)$ and $(20,0)$.

Consider $x+2 y=30$.
When $x=0$,
$0+2 y=30$

$$
2 y=30
$$

$$
y=\frac{30}{2}
$$

$$
y=15
$$

When $y=0$,

$$
\begin{aligned}
x+2(0) & =30 \\
x+0 & =30 \\
x & =30
\end{aligned}
$$

Points to be plotted are $(0,15)$ and $(30,0)$.

The graph is shown below:

(ii) Shade the region which is defined by ALL of the following combined:

- the inequalities written at (a)(i) and (a)(ii)
- the inequalities $x \geq 0$ and $y \geq 0$

See graph above.
(iii) Using your graph, state the coordinates of the vertices of the shaded region.

From the graph, the coordinates of the vertices are:
$(0,0),(0,15),(10,10)$ and $(20,0)$
(c) The pizza shop makes a profit of $\$ 8$ on the sale of EACH small pizza and $\$ 20$ on the sale of EACH large pizza. All the pizzas that were made were sold.
(i) Write an expression in x and y for the TOTAL profit made in the sale of the pizzas.

Let the total profit be P.
The profit made on each small pizza is $\$ 8$.
The profit made on each large pizza is $\$ 20$.
$\therefore P=8 x+20 y$
(ii) Use the coordinates of the vertices given at (b)(iii) to determine the

> MAXIMUM profit.

The coordinates of the vertices are $(0,0),(0,15),(10,10)$ and $(20,0)$.

$$
\begin{aligned}
& \text { When } x=0 \text { and } y=15, \\
& \begin{aligned}
P & =8(0)+20(15) \\
& =0+300 \\
& =\$ 300
\end{aligned}
\end{aligned}
$$

When $x=10$ and $y=10$,

$$
\begin{aligned}
P & =8(10)+20(10) \\
& =80+200 \\
& =\$ 280
\end{aligned}
$$

When $x=20$ and $y=0$,

$$
\begin{aligned}
P & =8(20)+20(0) \\
& =160+0 \\
& =\$ 160
\end{aligned}
$$

\therefore The maximum profit occurs when the shop sells 15 large pizzas.

GEOMETRY AND TRIGONOMETRY

11. (a) The diagram below, not drawn to scale, shows three stations P, Q and R, such that the bearing of Q from R is 116° and the bearing of P from R is 242°. The vertical line at R shows the North direction.

(i) Show that angle $P R Q=126^{\circ}$.

As stated in the question, 242° was the bearing of P from R as shown below.

242° was the bearing of P from R as shown above.

$$
\begin{aligned}
\therefore P \hat{R Q} & =242^{\circ}-116^{\circ} \\
& =126^{\circ}
\end{aligned}
$$

(ii) Given that $P R=38$ metres and $Q R=102$ metres, calculate the distance $P Q$, giving your answer to the nearest metre.

Consider the diagram below:

Using the cosine rule,

$$
\begin{aligned}
(P Q)^{2} & =(P R)^{2}+(R Q)^{2}-2(P R)(R Q) \cos \hat{R} \\
(P Q)^{2} & =(38)^{2}+(102)^{2}-2(38)(102) \cos 126^{\circ} \\
(P Q)^{2} & =16404.51128 \\
P Q & =\sqrt{16404.51128} \\
P Q & =128 m \text { (to the nearest metre) }
\end{aligned}
$$

\therefore The distance $P Q$ is 128 m .
(b) K, L and M are points along a straight line on a horizontal plane, as shown below.

A vertical pole, $S K$, is positioned such that the angles of elevation of the top of the pole S from L and M are 21° and 14° respectively.

The height of the pole, $S K$, is 10 metres.
(i) Copy and complete the diagram to show the pole $S K$ and the angles of elevation of S from L to M.

The completed diagram is shown below:

(ii) Calculate, correct to ONE decimal place,
(a) the length of $K L$

$$
\begin{aligned}
\tan 21^{\circ} & =\frac{10}{K L} \\
K L & =\frac{10}{\tan 21^{\circ}} \\
K L & =26.1 \mathrm{~m} \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

\therefore The length of $K L$ is 26.1 m .
(b) the length of $L M$

$$
\begin{aligned}
& \tan 14^{\circ}=\frac{10}{K M} \\
& K M=\frac{10}{\tan 14^{\circ}} \\
& K M=40.10780934 \mathrm{~m} \\
& L M=K M-K l \\
& =40.10780934-26.1 \\
& =14.0 \mathrm{~m} \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

\therefore The length of $L M$ is 14.0 m .
12. (a) The diagram below, not drawn to scale, shows two circles. C is the centre of the smaller circle, $G H$ is a common chord and $D E F$ is a triangle.

Angle $G C H=88^{\circ}$ and angle $G H E=126^{\circ}$

Calculate, giving reasons for your answer, the measure of angle
(i) GFH

The angle subtended by a chord $G H$ at the centre of the circle, C, is
twice the angle at the circumference.

$$
\text { Angle } \begin{aligned}
G F H & =\frac{1}{2} \times \text { Angle } G C H \\
& =\frac{1}{2}\left(88^{\circ}\right) \\
& =44^{\circ}
\end{aligned}
$$

The opposite angles of a cyclic quadrilateral are supplementary.

$$
\begin{aligned}
& \text { Angle } G D E=180^{\circ}-\text { Angle } G H E \\
& =180^{\circ}-126^{\circ} \\
& =54^{\circ}
\end{aligned}
$$

\therefore Angle $G D E=54^{\circ}$
(iii) $D E F$

All angles in a triangle add up to 180°.

Angle $D E F=180^{\circ}-$ Angle $G D E-$ Angle $G F H$
$=180^{\circ}-54^{\circ}-44^{\circ}$
$=82^{\circ}$
\therefore Angle $D E F=82^{\circ}$
(b) Use $\pi=3.14$ in this part of the question.

Given that $G C=4 \mathrm{~cm}$, calculate the area of
(i) triangle GCH

Since $G C$ and $H C$ are both radii of the same circle, then $G C=H C$.
Consider the diagram below:

Now,
Area of triangle $G C H=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{2}(4)(4) \sin 88^{\circ} \\
& =7.995 \mathrm{~cm}^{2} \quad \text { (to } 3 \text { decimal places) }
\end{aligned}
$$

\therefore The area of triangle $G C H$ is $7.995 \mathrm{~cm}^{2}$.
(ii) the minor sector bounded by $\operatorname{arc} G H$ and radii $G C$ and $H C$

Consider the diagram below:

Now,
Area of minor sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{88^{\circ}}{360^{\circ}} \times 3.14 \times(4)^{2} \\
& =12.3 \mathrm{~cm}^{2} \quad \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

\therefore The area of the minor sector is $12.3 \mathrm{~cm}^{2}$.

Consider the diagram below:

Now,
Area of shaded segment $=$ Area of sector $G C H-$ Area of triangle $G C H$

$$
\begin{aligned}
& =\left[\frac{88^{\circ}}{360^{\circ}} \times 3.14 \times(4)^{2}\right]-\left[\frac{1}{2}(4)(4) \sin 88^{\circ}\right] \\
& =4.29 \mathrm{~cm}^{2} \quad \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

\therefore The area of the shaded segment is $4.29 \mathrm{~cm}^{2}$.

VECTORS AND MATRICES

13. (a) The figure below, not drawn to scale, shows the points $O(0,0), A(5,0)$ and $B(-1,4)$ which are the vertices of a triangle $O A B$.

(i) Express in the form $\binom{a}{b}$ the vectors
(a) $\overrightarrow{O B}$

The coordinates of B are $(-1,4)$.
So the vector $\overrightarrow{O B}=\binom{-1}{4}$.
(b) $\overrightarrow{O A}+\overrightarrow{O B}$

The coordinates of A are (5, 0).
So the vector $\overrightarrow{O A}=\binom{5}{0}$.

Now,

$$
\begin{aligned}
\overrightarrow{O A}+\overrightarrow{O B} & =\binom{5}{0}+\binom{-1}{4} \\
& =\binom{5+(-1)}{0+4} \\
& =\binom{4}{4}
\end{aligned}
$$

(ii) If $M(x, y)$ is the midpoint of $A B$, determine the values of x and y. [2]

Points are $A(5,0)$ and $B(-1,4)$.

Since $M(x, y)$ is the midpoint of $A B$, then,

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{5+(-1)}{2}, \frac{0+4}{2}\right) \\
& =\left(\frac{4}{2}, \frac{4}{2}\right) \\
& =(2,2) \quad \text { which is in the form }(x, y), \\
& \quad \text { where } x=2 \text { and } y=2 .
\end{aligned}
$$

\therefore The values of x and y are $x=2$ and $y=2$.
(b) In the figure below, not drawn to scale, $O E, E F$ and $M F$ are straight lines. The point H is such that $E F=3 E H$. The point G is such that $M F=5 M G . M$ is the midpoint of $O E$.

The vector $\overrightarrow{O M}=\boldsymbol{v}$ and $\overrightarrow{E H}=\boldsymbol{u}$.

(i) Write in terms of \boldsymbol{u} and/or \boldsymbol{v}, an expression for:
(a) $\overrightarrow{H F}$

We are given that,

$$
\begin{aligned}
\overrightarrow{E F} & =3 \overrightarrow{E H} \\
& =3 \boldsymbol{u}
\end{aligned}
$$

Now,
Using the triangle law,

$$
\begin{aligned}
\overrightarrow{E F} & =\overrightarrow{E H}+\overrightarrow{H F} \\
\overrightarrow{H F} & =\overrightarrow{E F}-\overrightarrow{E H} \\
& =3 \boldsymbol{u}-\boldsymbol{u} \\
& =2 \boldsymbol{u}
\end{aligned}
$$

(b) $\overrightarrow{M F}$

Since M is the midpoint of $\overrightarrow{O E}$, then

$$
\begin{aligned}
\overrightarrow{M E} & =\overrightarrow{O M} \\
& =v
\end{aligned}
$$

Now,
Using the triangle law,

$$
\begin{aligned}
\overrightarrow{M F} & =\overrightarrow{M E}+\overrightarrow{E F} \\
& =v+3 \boldsymbol{u}
\end{aligned}
$$

(c) $\overrightarrow{O H}$

Using the triangle law,

$$
\overrightarrow{O E}=\overrightarrow{O M}+\overrightarrow{M E}
$$

$$
\begin{aligned}
& =v+v \\
& =2 v
\end{aligned}
$$

Now,
Using the triangle law,

$$
\begin{aligned}
\overrightarrow{O H} & =\overrightarrow{O E}+\overrightarrow{E H} \\
& =2 \boldsymbol{v}+\boldsymbol{u}
\end{aligned}
$$

(ii) Show that $\overrightarrow{O G}=\frac{3}{5}(2 v+u)$

We are given that,

$$
\begin{aligned}
\overrightarrow{M F} & =5 \overrightarrow{M G} \\
& =\frac{1}{5} \overrightarrow{M F} \\
& =\frac{1}{5}(v+3 \boldsymbol{u})
\end{aligned}
$$

Now,
Using the triangle law,

$$
\begin{aligned}
\overrightarrow{O G} & =\overrightarrow{O M}+\overrightarrow{M G} \\
& =\boldsymbol{v}+\frac{1}{5}(\boldsymbol{v}+3 \boldsymbol{u}) \\
& =\boldsymbol{v}+\frac{1}{5} \boldsymbol{v}+\frac{3}{5} \boldsymbol{u} \\
& =\frac{6}{5} \boldsymbol{v}+\frac{3}{5} \boldsymbol{u} \\
& =\frac{3}{5}(2 \boldsymbol{v}+\boldsymbol{u})
\end{aligned}
$$

$$
\therefore \overrightarrow{O G}=\frac{3}{5}(2 v+u)
$$

(iii) Hence, prove that O, G and H lie on a straight line.
$\overrightarrow{O H}=2 \boldsymbol{v}+\boldsymbol{u}$ and $\overrightarrow{O G}=\frac{3}{5}(2 \boldsymbol{v}+\boldsymbol{u})$

So, $\overrightarrow{O G}=\frac{3}{5} \overrightarrow{O H}$

Since $\overrightarrow{O H}$ is a scalar multiple of $\overrightarrow{O G}$, then $\overrightarrow{O G}$ and $\overrightarrow{O H}$ are parallel.
Since O is a common point on both lines, then G lies on $\overrightarrow{O H}$ (as shown on the diagram).
$\therefore O, G$ and H all lie on a straight line.
Q.E.D.

Total: 15 marks
14. (a) L and N are two matrices where

$$
L=\left(\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right) \text { and } N=\left(\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right)
$$

Evaluate $L-N^{2}$.

$$
\begin{aligned}
N^{2} & =\left(\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
(-1 \times-1)+(3 \times 0) & (-1 \times 3)+(3 \times 2) \\
(0 \times-1)+(2 \times 0) & (0 \times 3)+(2 \times 2)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0 & -3+6 \\
0+0 & 0+4
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
L-N^{2} & =\left(\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right)-\left(\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

(b) The matrix, M, is given as $M=\left(\begin{array}{cc}x & 12 \\ 3 & x\end{array}\right)$. Calculate the values of x for which M is singular.
$M=\left(\begin{array}{cc}x & 12 \\ 3 & x\end{array}\right)$

$$
\begin{aligned}
\operatorname{det}(M) & =a d-b c \\
& =(x)(x)-(12)(3) \\
& =x^{2}-36
\end{aligned}
$$

If M is singular, then the $\operatorname{det}(M)=0$.
So, we have,

$$
\begin{array}{r}
x^{2}-36=0 \\
(x+6)(x-6)=0
\end{array}
$$

$$
\text { Either } \begin{aligned}
x+6 & =0 & \text { or } & x-6 & =0 \\
x & =-6 & & x & =6
\end{aligned}
$$

\therefore The values of x for which M is singular are $x=-6$ and $x=6$.
(c) A geometric transformation, R, maps the point $(2,1)$ onto $(-1,2)$.

Given that $R=\left(\begin{array}{ll}0 & p \\ q & 0\end{array}\right)$, calculate the values of p and q.

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & p \\
q & 0
\end{array}\right)\binom{2}{1} & =\binom{-1}{2} \\
\binom{(0 \times 2)+(p \times 1)}{(q \times 2)+(0 \times 1)} & =\binom{-1}{2} \\
\binom{0+p}{2 q+0} & =\binom{-1}{2} \\
\binom{p}{2 q} & =\binom{-1}{2}
\end{aligned}
$$

Comparing corresponding entries gives:

$$
\begin{array}{rlrl}
p=-1 \quad \text { and } & 2 q & =2 \\
& & =\frac{2}{2} \\
q & =1
\end{array}
$$

$\therefore p=-1$ and $q=1$
(d) A translation, $T=\binom{r}{s}$ maps the point (5,3) onto (1, 1). Determine the values of r and s.

$$
\begin{aligned}
\binom{r}{s}+\binom{5}{3} & =\binom{1}{1} \\
\binom{r+5}{s+3} & =\binom{1}{1}
\end{aligned}
$$

Comparing corresponding entries gives:
$r+5=1$
and
$s+3=1$
$r=1-5$
$s=1-3$
$r=-4$
$s=-2$
$\therefore r=-4$ and $s=-2$
(e) Determine the coordinates of the image of $(8,5)$ under the combined transformation, R followed by T.
$R=\left(\begin{array}{ll}0 & p \\ q & 0\end{array}\right)$
Since $p=-1$ and $q=1$, then $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Firstly, we transform under R.

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{8}{5} & =\binom{(0 \times 8)+(-1 \times 5)}{(1 \times 8)+(0 \times 5)} \\
& =\binom{0+(-5)}{8+0} \\
& =\binom{-5}{8}
\end{aligned}
$$

$T=\binom{r}{S}$
Since $r=-4$ and $s=-2$, then $T=\binom{-4}{-2}$.

Then, we transform under T.

$$
\begin{aligned}
\binom{-5}{8}+\binom{-4}{-2} & =\binom{-5+(-4)}{8+(-2)} \\
& =\binom{-5-4}{8-2} \\
& =\binom{-9}{6}
\end{aligned}
$$

\therefore The image of $(8,5)$ under the combined transformation, R followed by T is $(-9,6)$.

