Solutions to CSEC Maths P2 June 2010

Question 1(a)(i)
Required to calculate: $\frac{1 \frac{1}{2}-\frac{2}{5}}{4 \frac{2}{5} \times \frac{3}{4}}$

Numerator $=1 \frac{1}{2}-\frac{2}{5}$

$$
\begin{aligned}
& =\frac{3}{2}-\frac{2}{5} \\
& =\frac{15-4}{10} \\
& =\frac{11}{10}
\end{aligned}
$$

Denominator $=4 \frac{2}{5} \times \frac{3}{4}$

$$
\begin{aligned}
& =\frac{22}{5} \times \frac{3}{4} \\
& =\frac{66}{20} \\
& =\frac{33}{10}
\end{aligned}
$$

\therefore Numerator \div Denominator $=\frac{11}{10} \div \frac{33}{10}$

$$
\begin{aligned}
& =\frac{11}{10} \times \frac{10}{33} \\
& =\frac{11}{33} \\
& =\frac{1}{3}
\end{aligned}
$$

Question 1(a)(ii)
Required to calculate: $2.5^{2}-\frac{2.89}{17}$

Using a calculator,

$2.5^{2}-\frac{2.89}{17}$	$=6.25-0.17$
	$=6.08$
	$=6.1 \quad$ (to 2 significant figures)

Question 1(b)(i)

Required to calculate the cost of 1 T-shirt.

150 T-shirts $=\$ 1920$

$$
\begin{aligned}
1 \mathrm{~T}-\text { shirt } & =\frac{\$ 1920}{150} \\
& =\$ 12.80
\end{aligned}
$$

Question 1(b)(ii)
Required to calculate the amount for 150 T -shirts at $\$ 19.99$ each.

$$
\begin{aligned}
1 \text { T-shirt } & =\$ 19.99 \\
150 \text { T-shirts } & =\$ 19.99 \times 150 \\
& =\$ 2998.50
\end{aligned}
$$

Question 1(b)(iii)

Required to calculate the profit.

$$
\begin{aligned}
\text { Profit } & =\text { Selling Price }- \text { Cost Price } \\
& =\$ 2998.50-\$ 1920 \\
& =\$ 1078.50
\end{aligned}
$$

Question 1(b)(iv)
Required to calculate the percentage profit.

$$
\begin{aligned}
\text { Percentage profit } & =\frac{\text { Profit }}{\text { Cost Price }} \times 100 \% \\
& =\frac{1078.50}{1920} \times 100 \% \\
& =56.2 \% \\
& =56 \% \quad \text { (to the nearest whole number) }
\end{aligned}
$$

Question 2(a)(i)

Required to find the value of $a+b+c$.

$$
\begin{aligned}
a+b+c & =(-1)+2+(-3) \\
& =-1+2-3 \\
& =2-4 \\
& =-2
\end{aligned}
$$

Question 2(a)(ii)
Required to find the value of $b^{2}-c^{2}$.

$$
\begin{aligned}
b^{2}-c^{2} & =(2)^{2}-(-3)^{2} \\
& =4-9 \\
& =-5
\end{aligned}
$$

Question 2(b)(i)
Required to express the statement given as an algebraic expression.

Phrase: "Seven times the sum of x and y. ."
Algebraic expression: $7(x+y)$

Question 2(b)(ii)
Required to express the statement given as an algebraic expression.

Phrase: "The product of TWO consecutive numbers when the smaller is y."

If the smaller number is y, then the next larger, consecutive number is $y+1$.

Algebraic expression: $y(y+1)$

Question 2(c)

Required to solve the given pair of simultaneous equations.
$2 x+y=7 \quad \rightarrow$ Equation 1
$x-2 y=1 \quad \rightarrow$ Equation 2

Multiplying Equation 2 by 2 gives:
$2 x-4 y=2 \rightarrow$ Equation 3

Equation 1 - Equation 3 gives:
$5 y=5$
$y=\frac{5}{5}$
$y=1$

Substituting $y=1$ into Equation 2 gives:
$x-2(1)=1$
$x-2=1$
$x=1+2$
$x=3$
$\therefore x=3$ and $y=1$

Question 2(d)(i)

Required to factorise completely $4 y^{2}-z^{2}$.
$4 y^{2}-z^{2}=(2 y+z)(2 y-z) \quad \rightarrow$ difference of two squares

Question 2(d)(ii)
Required to factorise completely $2 a x-2 a y-b x+b y$.

$$
\begin{aligned}
& 2 a x-2 a y-b x+b y \\
= & 2 a(x-y)-b(x-y) \\
= & (2 a-b)(x-y)
\end{aligned}
$$

Question 2(d)(iii)

Required to factorise completely $3 x^{2}+10 x-8$.

$$
\begin{aligned}
& 3 x^{2}+10 x-8 \\
= & 3 x^{2}+12 x-2 x-8 \\
= & 3 x(x+4)-2(x+4) \\
= & (3 x-2)(x+4)
\end{aligned}
$$

Question 3(a)(i)

Required to copy and complete the Venn diagram to represent the given information.

28 visited Antigua
30 visited Barbados
$3 x$ visited both Antigua and Barbados
x visited neither Antigua nor Barbados

Question 3(a)(ii)

Required to find an expression for the total number of tourists.

$$
\begin{aligned}
\text { Total number of tourists } & =(28-3 x)+3 x+(30-3 x)+x \\
& =28-3 x+3 x+30-3 x+x \\
& =58-2 x
\end{aligned}
$$

Question 3(a)(iii)

Required to calculate the value of x.

The survey was conducted among 40 tourists.
$58-2 x=40$

$$
\begin{aligned}
2 x & =58-40 \\
2 x & =18 \\
x & =\frac{18}{2} \\
x & =9
\end{aligned}
$$

Question 3(b)(i)
Required to calculate the length of $E F$.

F is the midpoint of $E C$.
$\therefore E F=\frac{6}{2}$

$$
=3 \mathrm{~cm}
$$

Question 3(b)(ii)

Required to calculate the length of $D F$.

By Pythagoras' Theorem,

$$
\begin{aligned}
(E F)^{2}+(D F)^{2} & =(D E)^{2} \\
(3)^{2}+(D F)^{2} & =(5)^{2} \\
9+(D F)^{2} & =25 \\
(D F)^{2} & =25-9 \\
(D F)^{2} & =16 \\
D F & =\sqrt{16} \\
D F & =4 \mathrm{~cm}
\end{aligned}
$$

\therefore The length of $D F$ is 4 cm .

Question 3(b)(iii)
Required to calculate the area of the face $A B C D E$.

WhatsApp +1868 4724221 to register for premium online class @ The Student Hub

$$
\text { Area of } \begin{aligned}
\triangle D E C & =\frac{b \times h}{2} \\
& =\frac{6 \times 4}{2} \\
& =\frac{24}{2} \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of rectangle $A B C E=l \times b$

$$
\begin{aligned}
& =6 \times 5 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of the entire face $A B C D E=12+30$

$$
=42 \mathrm{~cm}^{2}
$$

Question 4(a)(i)

Required to find the value of k.

Substituting $y=50$ and $x=10$ into $y=k x^{2}$ gives:
$50=k(10)^{2}$
$50=100 k$
$k=\frac{50}{100}$
$k=\frac{1}{2}$

Question 4(a)(ii)
Required to calculate the value of y when $x=30$.
$y=\frac{1}{2} x^{2}$
When $x=30$,
$y=\frac{1}{2}(30)^{2}$
$=\frac{1}{2}(900)$
$=450$

Question 4(b)(i)

Required to construct triangle EFG.
$E G=6 \mathrm{~cm}, \angle F E G=60^{\circ}$ and $\angle E G F=90^{\circ}$.

Question 4(b)(ii)(a)

Required to find the length of $E F$.

By measurement, $E F=12.0 \mathrm{~cm}$.

Question 4(b)(ii)(b)
Required to find the size of $\angle E F G$.

By measurement, $E \widehat{F} G=30^{\circ}$.

Question 5(a)(i)(a)
Required to find the calculate the value of $f(4)$.

$$
\begin{aligned}
f(x) & =2 x-5 \\
f(4) & =2(4)-5 \\
& =8-5 \\
& =3
\end{aligned}
$$

Question 5(a)(i)(b)
Required to find the calculate the value of $g f(4)$.
$g f(4)=g[f(4)]$

$$
\begin{aligned}
& =g(3) \\
& =(3)^{2}+3 \\
& =9+3 \\
& =12
\end{aligned}
$$

$\therefore g f(4)=12$

Question 5(a)(ii)
Required to find $f^{-1}(x)$.
$f(x)=2 x-5$

Let $y=f(x)$.
$y=2 x-5$

Interchanging variables x and y gives:
$x=2 y-5$

Making y the subject of the formula gives:
$x+5=2 y$
$\frac{x+5}{2}=y$
$\therefore f^{-1}(x)=\frac{x+5}{2}$

Question 5(b)(i)
Required to use the graph to determine the scale used on the x-axis.

On the x-axis, the scale used is $2 \mathrm{~cm}=1$ unit or $1 \mathrm{~cm}=0.5$ unit.

Question 5(b)(ii)

Required to find the value of y for which $x=-1.5$.

When $x=-1.5, y=-3.8$. (by read-off)

Question 5(b)(iii)

Required to find the values of x for which $y=0$.

When $y=0, x=-3$ and $x=1$. (by read-off)

Question 5(b)(iv)

Required to determine the range of values of y, giving your answer in the form $a \leq y \leq b$, where a and b are real numbers.

The range of values of y is: $-4 \leq y \leq 5$ which is of the form $a \leq y \leq b$.

Question 6(a)(i)

Required to determine the value of x.

Since alternate angles, $T \widehat{U} V$ and $P \widehat{V} W$, are equal, then
$x=54^{\circ}$

Question 6(a)(ii)

Required to determine the value of y.

Co-interior angles are supplementary.
$y+115^{\circ}=180^{\circ}$

$$
\begin{aligned}
& y=180^{\circ}-115^{\circ} \\
& y=65^{\circ}
\end{aligned}
$$

Question 6(b)(i)
Required to describe the rotation fully by stating the centre, the angle and the direction.

Triangle $L M N$ maps onto its image, triangle $L^{\prime} M^{\prime} N^{\prime}$, after undergoing am anticlockwise rotation of 90° about the origin.

Question 6(b)(ii)
Required to state two geometric relationships between triangle $L M N$ and its image, triangle $L^{\prime} M^{\prime} N^{\prime}$.

The two geometric relationships are:

1. $\triangle L M N$ maps onto $\Delta L^{\prime} M^{\prime} N^{\prime}$ by a rotation which is a congruent transformation.
2. $\Delta L M N \equiv \Delta L^{\prime} M^{\prime} N^{\prime}$, that is, all corresponding sides and all corresponding angles of the object are the same as that of the image.

Question 6(b)(iii)
Required to determine the coordinates of the image of the point L under the transformation.

Triangle $L M N$ is translated by the vector $\binom{1}{-2}$.
The coordinates of L is $(1,3)$.

Now,

$$
\begin{aligned}
\binom{1}{3}+\binom{1}{-2} & =\binom{1+1}{3+(-2)} \\
& =\binom{2}{1}
\end{aligned}
$$

\therefore The coordinates of the image of L is $(2,1)$.

Question 7(a)

Required to copy and complete the frequency table for the data given.

Distance (m)	Frequency
$20-29$	3
$30-39$	5
$40-49$	8
$50-59$	6
$60-69$	2

Question 7(b)

Required to state the lower boundary for the class interval $20-29$.

The lower class boundary is 19.5 .

Question 7(c)

Required to draw a histogram to illustrate the data.

Distance (m)	LCB	UCB	Frequency
$20-29$	19.5	29.5	3
$30-39$	29.5	39.5	5
$40-49$	39.5	49.5	8
$50-59$	49.5	59.5	6
$60-69$	59.5	69.5	2
			$\sum f=24$

WhatsApp +1868 4724221 to register for premium online class @ The Student Hub

Title: Histogram showing the information given.

Question 7(d)(i)
Required to determine the number of students who threw a ball a distance recorded as 50 metres or more.

The number of students who threw the ball 50 m or more $=6+2$
$=8$

Question 7(d)(ii)
Required to determine the probability that a student, chosen at random, threw the ball a distance recorded as 50 metres or more.

$$
\begin{aligned}
P(\text { student threw the ball } \geq 50 \mathrm{~m}) & =\frac{\text { number of students threw the ball } \geq 50 \mathrm{~m}}{\text { total number of students }} \\
& =\frac{8}{24} \\
& =\frac{1}{3}
\end{aligned}
$$

Question 8(a)

Required to draw the fourth diagram in the sequence.

The fourth diagram in the sequence is shown below:

Question 8(b)

Required to complete the table given.

Consider the nth figure.
Area of the figure $=n^{2}$
Perimeter of the figure $=n \times 6-2$

$$
=6 n-2
$$

(i) When $n=4$,

Area of the figure $=(4)^{2}$

$$
=16
$$

Now,

$$
\begin{aligned}
\text { Perimeter of the figure } & =4 \times 6-2 \\
& =24-2 \\
& =22
\end{aligned}
$$

(ii) When $n=5$,

Area of the figure $=(5)^{2}$

$$
=25
$$

Now,
Perimeter of the figure $=5 \times 6-2$

$$
\begin{aligned}
& =30-2 \\
& =28
\end{aligned}
$$

(iii) When $n=15$,

Area of the figure $=(15)^{2}$
$=225$

Now,
Perimeter of the figure $=15 \times 6-2$

$$
\begin{aligned}
& =90-2 \\
& =88
\end{aligned}
$$

The completed table is shown below.

Question 9(a)(i)(a)

Required to use the graph to determine the maximum speed.

The maximum speed is $12 \mathrm{~ms}^{-1}$. (by read off)

Question 9(a)(i)(b)
Required to use the graph to determine the number of seconds for which the speed was constant.

We refer to the part of the graph that is a horizontal line.
The speed was constant for $(10-6)=4$ seconds.

Question 9(a)(i)(c)
Required to use the graph to determine the total distance covered by the athlete during the race.

The total distance covered by the athlete is found by calculating the area under the graph.

Distance covered $=\frac{1}{2}(a+b) h$

$$
\begin{aligned}
& =\frac{1}{2}(4+13) 12 \\
& =\frac{1}{2}(17) 12 \\
& =102 \mathrm{~m}
\end{aligned}
$$

Question 9(a)(ii)(a)

Required to use the graph to determine which time-period of the race the speed of the athlete was increasing.

The athlete's speed was increasing from $t=0$ to $t=6$, that is, a period of 6 seconds. This is illustrated by the part of the graph with the positive gradient.

Question 9(a)(ii)(b)
Required to use the graph to determine which time-period of the race the speed of the athlete was decreasing.

The athlete's speed was decreasing from $t=10$ to $t=13$, that is, a period of 3 seconds. This is illustrated by the part of the graph with the negative gradient.

Question 9(a)(ii)(c)

Required to use the graph to determine which time-period of the race the acceleration of the athlete was zero.

If the acceleration is equal to zero, then this implies that velocity is horizontal. The acceleration of the athlete was zero from $t=6$ to $t=10$, that is, a period of 4 seconds.

This is illustrated by the part of the graph that is horizontal.

Question 9(b)(i)

Required to write an inequality to represent the third condition.

Third condition: the total number of pumpkins and melons must not exceed 12 .

Inequality: $x+y \leq 12$

Question 9(b)(ii)
Required to draw the graphs of the three lines associated with the three inequalities.

The three inequalities are:
$y \geq 3$
$y \leq x$
$x+y \leq 12$

The equations of the lines are:
$y=3$
$y=x$
$x+y=12$

Consider $x+y=12$.
When $x=0, y=12$.
When $y=0, x=12$.

Points to be plotted are $(0,12)$ and $(12,0)$.

WhatsApp +1868 4724221 to register for premium online class @ The Student Hub

The graph is shown below:

Question 9(b)(iii)

Required to shade the region that satisfies all three inequalities.

The three inequalities are:
$y \geq 3$
$y \leq x$
$x+y \leq 12$

Question 9(b)(iv)
Required to determine the minimum values of x and y which satisfy the conditions.

The vertices of the shaded region are $(3,3),(6,6)$ and $(9,3)$.
The minimum x and y that satisfies the inequalities are $x=3$ and $y=3$.

Question 10(a)(i)

Required to calculate $\angle P T R$.

The angle made by the tangent $P Q$ to a circle and a chord, $P R$, at the point of contact, R, is equal to the angle in the alternate segment.
$\therefore P \widehat{T R}=46^{\circ}$

Question 10(a)(ii)
Required to calculate $\angle T P R$.

The sum of the angles in a triangle add up to 180°.

$$
\begin{aligned}
T \hat{P} R & =180^{\circ}-\left(46^{\circ}+46^{\circ}+32^{\circ}\right) \\
& =180^{\circ}-144^{\circ} \\
& =56^{\circ}
\end{aligned}
$$

Question 10(a)(iii)

Required to calculate $\angle T S R$.

The opposite angles in a cyclic quadrilateral $P R S T$ are supplementary.

$$
\begin{aligned}
T \hat{S} R & =180^{\circ}-56^{\circ} \\
& =124^{\circ}
\end{aligned}
$$

Question 10(b)(i)

Required to calculate the height, $F T$, of the flagpole.

The triangle $T F G$ is a right-angled triangle.
Now,
$\tan T \hat{G} F=\frac{o p p}{a d j}$
$\tan 55^{\circ}=\frac{F T}{6}$
$F T=6 \tan 55^{\circ}$
$F T=8.57 m \quad$ (to 3 significant figures)

Question 10(b)(ii)
Required to calculate the length of $E G$.

Consider the $\triangle E F G$.

Using the cosine rule,

$$
\begin{aligned}
(E G)^{2} & =(E F)^{2}+(F G)^{2}-2(E F)(F G) \cos E \widehat{F} G \\
(E G)^{2} & =(8)^{2}+(6)^{2}-2(8)(6) \cos 120^{\circ} \\
(E G)^{2} & =64+36-96\left(-\frac{1}{2}\right) \\
(E G)^{2} & =148 \\
E G & =\sqrt{148} \\
E G & =12.2 \mathrm{~m} \quad \quad \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

Question 10(b)(iii)
Required to calculate the angle of elevation of T from E.

Triangle EFT is a right-angled triangle.

Let θ be the angle of elevation of T from E.

Now,

$$
\begin{aligned}
\tan \theta & =\frac{o p p}{a d j} \\
\tan \theta & =\frac{8.57}{8} \\
\theta & =\tan ^{-1}\left(\frac{8.57}{8}\right) \\
\theta & =47.0^{\circ} \quad \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

Question 11(a)(i)

Required to find $A B$.

We are given that $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right)$.

$$
\begin{aligned}
A B & =\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)\left(\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
(1 \times 5)+(2 \times-2) & (1 \times-2)+(2 \times 1) \\
(2 \times 5)+(5 \times-2) & (2 \times-2)+(5 \times 1)
\end{array}\right) \\
& =\left(\begin{array}{cc}
5+(-4) & -2+2 \\
10+(-10) & -4+5
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Question 11(a)(ii)

Required to determine B^{-1}, the inverse of B.

$$
\begin{aligned}
\operatorname{det}(B) & =a d-b c \\
& =(5)(1)-(-2)(-2) \\
& =5-4 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{adj}(B) & =\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -(-2) \\
-(-2) & 5
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
B^{-1} & =\frac{1}{\operatorname{det}(B)} \times \operatorname{adj}(B) \\
& =\frac{1}{1}\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)
\end{aligned}
$$

Question 11(a)(iii)
Required to write $\binom{x}{y}$ as the product of two matrices.

$$
\begin{aligned}
\left(\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right)\binom{x}{y} & =\binom{2}{3} \\
\binom{x}{y} & =\left(\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right)^{-1}\binom{2}{3} \\
\binom{x}{y} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)\binom{2}{3}
\end{aligned}
$$

Question 11(a)(iv)

Required to calculate the values of x and y.

$$
\begin{aligned}
\binom{x}{y} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)\binom{2}{3} \\
& =\binom{(1 \times 2)+(2 \times 3)}{(2 \times 2)+(5 \times 3)} \\
& =\binom{2+6}{4+15} \\
& =\binom{8}{19}
\end{aligned}
$$

$\therefore x=8$ and $y=19$.

Question 11(b)(i)

Required to copy and complete the diagram, showing the points M and N.

Question 11(b)(ii)(a)
Required to write an expression for $\overrightarrow{J K}$.

$$
\begin{aligned}
\overrightarrow{J K} & =3 \overrightarrow{J M} \\
& =3 \boldsymbol{u}
\end{aligned}
$$

Question 11(b)(ii)(b)
Required to write an expression for $\overrightarrow{M N}$.

$$
\begin{aligned}
\overrightarrow{M N} & =\overrightarrow{M J}+\overrightarrow{J N} \\
& =-\overrightarrow{J M}+\overrightarrow{J N} \\
& =-\boldsymbol{u}+\boldsymbol{v} \\
& =\boldsymbol{v}-\boldsymbol{u}
\end{aligned}
$$

Question 11(b)(ii)(b)

Required to write an expression for $\overrightarrow{K L}$.

$$
\begin{aligned}
\overrightarrow{K L} & =\overrightarrow{K J}+\overrightarrow{J L} \\
& =-3 \boldsymbol{u}+3 \boldsymbol{v} \\
& =3 \boldsymbol{v}-3 \boldsymbol{u} \\
& =3(\boldsymbol{v}-\boldsymbol{u})
\end{aligned}
$$

Question 11(b)(iii)
Required to deduce two relationships between $K L$ and $M N$.
$\overrightarrow{K L}=3 \times \overrightarrow{M N}$, that is a scalar multiple.
Hence, $\overrightarrow{K L}$ is parallel to $\overrightarrow{M N}$.
So, $|\overrightarrow{K L}|=3|\overrightarrow{M N}|$, that is, the length of $\overrightarrow{K L}$ is 3 times the length of $\overrightarrow{M N}$.

