Solutions to CSEC Maths P2 June 2013

Question 1(a)(i)

Numerator = $1\frac{4}{5} - \frac{1}{3}$ = $\frac{9}{5} - \frac{1}{3}$ = $\frac{27-5}{15}$ = $\frac{22}{15}$

Denominator = $2\frac{2}{5}$ = $\frac{12}{5}$

 $\therefore \text{ Numerator} \div \text{Denominator} = \frac{22}{15} \div \frac{12}{5}$ $= \frac{22}{15} \times \frac{5}{12}$ $= \frac{110}{180}$ $= \frac{11}{18}$

Question 1(a)(ii)

 $\sqrt{1.5625} + (0.32)^2 = 1.25 + 0.1024$

= 1.3524 (in exact form)

Question 1(b)

If 350 *ml* is sold for \$4.20,

Then 1 *ml* will cost the buyer $\frac{$4.20}{350} = $0.012 \text{ per } ml$

If 450 *ml* is sold for \$5.13,

Then 1 *ml* will cost the buyer $\frac{\$5.13}{450} = \0.0114 per *ml*

Hence, the better buy is the 450 *ml* carton costing \$5.13/

Question 1(c)(i)

Interest for the first year = 8% of \$9600

$$=\frac{8}{100} \times $9600$$

= \$768

Question 1(c)(ii)

At the end of the first year,

Amount owed = The sum borrowed + The interest acquired

= \$9600 + \$768 = \$10 368

At the beginning of the second year,

Amount owed = Total amount owed at the end of the first year - Amount repaid

= \$10 368 - \$4 368 = \$6000

Question 1(c)(iii)

Required to calculate the interest on the remaining balance for the second year.

Amount of interest on the remaining balance = 8% of \$6000

$$=\frac{8}{100} \times $6\ 000$$

= \$480

Question 2(a)(i)

 $2x^3 - 8x$

 $= 2x(x^2 - 4)$

= 2x(x-2)(x+2) (difference of two squares)

Question 2(a)(ii)

$$3x^{2} - 5x - 2$$

= $3x^{2} - 6x + x - 2$
= $3x(x - 2) + 1(x - 2)$
= $(3x + 1)(x - 2)$

Question 2(b)(i)

$$F = \frac{9}{5}C + 32$$
$$F - 32 = \frac{9}{5}C$$
$$\frac{9}{5}C = F - 32$$
$$9C = 5(F - 32)$$
$$C = \frac{5(F - 32)}{9}$$

Question 2(b)(ii)

When F = 113,

 $C = \frac{5(113 - 32)}{9} = \frac{5(81)}{9} = 45$

Question 2(c)(i)(a)

The number of tickets sold = 500

The number of tickets sold at \$6 each = x

: The remaining tickets sold at \$10 each = 500 - x

Question 2(c)(i)(b)

The total cost of *x* tickets at \$6 each = 6x

The cost of (500 - x) tickets at \$10 each = 10(500 - x)

Thus, the total amount of money collected = 6x + 10(500 - x)

= 6x + 5000 - 10x

= 5000 - 4x

Question 2(c)(ii)

5000 - 4x = 41084x = 5000 - 41084x = 892 $x = \frac{892}{4}$ x = 223

 \therefore 223 tickets were sold for \$6 each.

Question 3(a)(i)

Question 3(a)(ii)

Total number of students = 2 + 4x + x + (20 - x)

$$= 2 + 4x + x + 20 - x$$
$$= 4x + 22$$

Question 3(a)(iii)

The total number of students in the class is 30.

So,

$$4x + 22 = 30$$
$$4x = 30 - 22$$
$$4x = 8$$
$$x = \frac{8}{4}$$
$$x = 2$$

Therefore, the number of students who uses cameras only = 4x

Question 3(b)(i)

Consider the triangle *ABC*.

Using Pythagoras' Theorem,

$$AB^{2} + BC^{2} = AC^{2}$$
$$\therefore BC^{2} = AC^{2} - AB^{2}$$
$$= (10)^{2} - (8)^{2}$$
$$= 100 - 64$$
$$= 36$$
$$BC = \sqrt{36}$$
$$= 6 m$$

Question 3(b)(ii)

The two triangles, *ADE* and *ABC*, have the same size of angles and are equiangular.

However, none of their sides are equal.

So, the two triangles are equiangular but not congruent.

Therefore, the two triangles *ADE* and *ABC* are similar since they possess the same ship but differ in size.

Question 3(b)(iii)

Note that if two triangles are similar, then the ratio of their corresponding sides are equal.

AD = 8 - 3.2

= 4.8 m

Hence,

$$\frac{AD}{AB} = \frac{DE}{BC}$$
$$\frac{4.8}{8} = \frac{DE}{6}$$
$$DE = \frac{6 \times 4.8}{8}$$

= 3.6 m

Question 4(a)(i)

By measurement with a ruler, DE = 5 cm.

Question 4(a)(ii)

By measurement with a protractor, $E\hat{C}D = 37^{\circ}$.

Question 4(a)(iii)

By measurement with a ruler, ED = EC = 5 cm and CD = 8 cm.

Therefore,

The perimeter of triangle CDE = 5 + 5 + 8

 $= 18 \, cm$

Question 4(a)(iv)

By measurement with a ruler, EG = 3 cm.

Since *G* is the midpoint of *CD* and $\triangle CDE$ is isosceles, then *EG* is perpendicular to *CD*.

Therefore,

Area of
$$\triangle CDE = \frac{b \times h}{2}$$

$$= \frac{8 \times 3}{2}$$
$$= \frac{24}{2}$$
$$= 12 \ cm^2$$

Question 4(b)(i)

Gradient of $AB = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{2 - 4}{3 - (-1)}$ $= \frac{-2}{4}$ $= -\frac{1}{2}$

Question 4(b)(ii)

Let the midpoint of *AB* be *M*.

Using the midpoint formula, we get

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{-1 + 3}{2}, \frac{4 + 2}{2}\right)$$
$$= \left(\frac{2}{2}, \frac{6}{2}\right)$$
$$= (1, 3)$$

Question 4(b)(iii)

The gradient of the perpendicular bisector $=\frac{-1}{-\frac{1}{2}}$

$$= -1 \div -\frac{1}{2}$$
$$= -1 \times -2$$
$$= 2$$

Thus, m = 2.

Substituting m = 2 and the midpoint (1, 3) into y = mx + c, we get

$$3 = (2)(1) + c$$

 $3 = 2 + c$
 $c = 3 - 2$

$$c = 1$$

: Equation of the perpendicular bisector *AB* is y = 2x + 1.

Question 5(a)(i)

 $A \propto R^2$

 $\therefore A = kR^2$ where k is the constant of proportion

Question 5(a)(ii)

Substituting A = 36 and R = 3 gives,

$$36 = k(3)^2$$
$$36 = 9k$$
$$k = \frac{36}{9}$$

4

$$k = 4$$

Question 5(a)(iii)

 $A = 4R^2$ When R = 5, $A = 4(5)^2$ $= 4 \times 25$ = 100

When A = 196, $196 = 4R^2$ $R^2 = \frac{196}{4}$ $R^2 = 49$ $R = \sqrt{49}$ R = 7

The completed table is shown below.

A	36	100	196
R	3	5	7

Question 5(b)(i)

g(2) = 4(2) + 5= 8 + 5

$$fg(2) = f(13)$$
$$= \frac{2(13)+1}{3}$$
$$= \frac{26+1}{3}$$
$$= \frac{27}{3}$$
$$= 9$$

Question 5(b)(ii)

$$f(x) = \frac{2x+1}{3}$$

Let
$$y = f(x)$$
.
 $y = \frac{2x+1}{3}$

Interchange the variables *x* and *y*.

$$x = \frac{2y+1}{3}$$

WhatsApp +1868 472 4221 to register for premium online class @ The Student Hub

Make *y* the subject.

$$3x = 2y + 1$$
$$2y = 3x - 1$$
$$y = \frac{3x - 1}{2}$$

$$\therefore f^{-1}(x) = \frac{3x-1}{2}$$

Now,

$$f^{-1}(3) = \frac{3(3)-1}{2}$$
$$= \frac{9-1}{2}$$
$$= \frac{8}{2}$$
$$= 4$$

WhatsApp +1868 472 4221 to register for premium online class @ The Student Hub

Question 6(a)(i)

$$54 \, kmh^{-1} = 54 \times \frac{1000}{3600}$$
$$= 15 \, ms^{-1}$$

Question 6(a)(ii)

 $Distance = Speed \times Time$

$$= 15 \times 20$$
$$= 300 m$$

Question 6(b)(i)

Note that the image and the object are congruent. Also, the image is laterally inverted. Therefore, the transformation is a reflection in the line x = 7.

Question 6(b)(ii)

Required to draw $\Delta L^{"}M^{"}N^{"}$.

Question 6(b)(iii)

Translate $\Delta L^{"}M^{"}N^{"}$ by the vector $-\begin{pmatrix} 0\\ -3 \end{pmatrix} = \begin{pmatrix} 0\\ 3 \end{pmatrix}$ which will result in ΔLMN .

Then reflect the image ΔLMN in the line x = 7 which will result in the image $\Delta L'M'N'$.

Question 7(a)

Amount Spent (x) L.C.L–U.C.L	Lower Class Boundary & Upper Class Boundary	Number of Students Frequency (ƒ)	Cumulative Frequency	Points to be Plotted
				(0.5,0)
1-10	$0.5 \le x < 10.5$	3.	3	(10.5,3)
11-20	$10.5 \le x < 20.5$	7	7 + 3 = 5	(20.5,10)
21-30	$20.5 \le x < 30.5$	9	10 + 9 = 19	(30.5,19)
31-40	$30.5 \le x < 40.5$	11	19 + 11 = 30	(40.5,30)
41-50	$40.5 \le x < 50.5$	8	30 + 8 = 38	(50.5,38)
51-60	$50.5 \le x < 60.5$	2	38 + 2 = 40	(60.5,40)

The completed table is shown below.

Question 7(b)

The cumulative frequency graph for the data is shown below.

Question 7(c)(i)

Now, $\frac{1}{2}$ of 40 = 20.

Therefore, the median amount of money spent = 31.50 (by read-off).

Question 7(c)(ii)

 $P(\text{student spends less than $23}) = \frac{\text{Number of students who spends less than $23}}{\text{Total number of students}}$ $= \frac{12}{12}$

$$=\frac{3}{10}$$

Question 8(a)

The fourth diagram in the sequence is shown below:

Question 8(b)

Name of Diagram No. of Wires No. of Balls (N)(W)**(B**) 1 12 6 2 20 12 3 28 16 (i) 4 36 20 (ii) 20 164 84

Required to complete the missing values in the table.

For the *N*th diagram,

W = 8N + 4 and B = 4N + 4

When N = 4,

W = 8(4) + 4	and	B=4(4)+4
= 32 + 4		= 16 + 4
= 36		= 20

When N = 20,

W = 8(20) + 4	and	B=4(20)+4
= 160 + 4		= 80 + 4
= 164		= 84

Question 8(c)(i)

The rule to find *W* is : W = 8N + 4

Question 8(c)(ii)

The rule to find *B* is : B = 4N + 4

Question 9(a)(i)

Number of oranges = x

Number of mangoes = y

Total number of fruits = x + y

Since the total number of oranges and mangoes must not exceed 6, then the inequality to represent this information is:

 $x + y \le 6$

Question 9(a)(ii)

Since Trish must buy at least 2 mangoes, then the inequality to represent this

information is:

 $y \ge 2$

Question 9(a)(iii)

Inequality: $y \le 2x$

In words, the number of mangoes is less than or equal to two times the number of

oranges.

Question 9(a)(iv)

Required to draw the lines associated with the following two inequalities:

 $x + y \le 6$

 $y \ge 2$

Question 9(a)(v)

Required to shade the region that satisfies all the inequalities.

WhatsApp +1868 472 4221 to register for premium online class @ The Student Hub

Question 9(b)(i)

$$3x^{2} - 12x + 8 = 3(x^{2} - 4x) + 8$$

= 3(x² - 4x + 4) + 8 - 3(4)
= 3(x - 2)^{2} + 8 - 12
= 3(x - 2)^{2} - 4 which is of the form $a(x + h)^{2} + k$
where $a = 3, h = -2$ and $k = -4$

Question 9(b)(ii)

When x = 0,

$$y = 3(0)^{2} - 12(0) + 8$$
$$= 0 - 0 + 8$$
$$= 8$$

The minimum point is (2, -4).

Question 10(a)(i)

The angle made by a tangent to a circle and any chord, at the point of contact, is 90°.

So,
$$O\hat{B}E = 90^{\circ}$$
.

OB is the radius and *EBC* is the tangent. The point of contact is *B*.

$$\therefore E\hat{B}F = 90^{\circ} - 35^{\circ}$$

= 55°

Question 10(a)(ii)

Since *OB* and *OA* are both radii of the same circle, then OB = OA.

The base angles of an isosceles triangle are equal.

 $\therefore \Delta OAB$ is an isosceles triangle with $O\hat{B}A = O\hat{A}B = 40^{\circ}$.

The sum of angles in a triangle add up to 180°.

$$\therefore B\hat{O}A = 180^{\circ} - (40^{\circ} + 40^{\circ})$$
$$= 180^{\circ} - 80^{\circ}$$
$$= 100^{\circ}$$

Question 10(a)(iii)

The angle subtended by a chord at the center of a circle is twice the angle that the chord subtends at the circumference, standing on the same arc.

So,

$$A\hat{F}B = \frac{1}{2}(100^{\circ})$$
$$= 50^{\circ}$$

Question 10(a)(iv)

The sum of angles in a triangle add up to 180° .

$$\therefore O\hat{A}F = 180^{\circ} - (50^{\circ} + 35^{\circ} + 40^{\circ} + 40^{\circ})$$
$$= 180^{\circ} - 165^{\circ}$$
$$= 15^{\circ}$$

Question 10(b)(i)

The diagrams are as follows.

For triangle *RFT*:

For triangle *TFS*:

For triangle SFR:

Question 10(b)(ii)

Consider triangle *RFT*:

$$\tan 27^\circ = \frac{25}{RF}$$
$$\therefore RF = \frac{25}{\tan 27^\circ}$$
$$= 49.1 m$$

Question 10(b)(iii)

Consider the triangle SFR.

Using Pythagoras' Theorem,

$$SR^{2} = FR^{2} + FS^{2}$$

= (49.06)² + (43.3)²
= 4281.77
 $SR = \sqrt{4281.77}$
= 65.4 m (to 1 decimal place)

Question 10(b)(iv)

Consider triangle *TFS*:

$$\tan x = \frac{25}{43.3}$$
$$x = \tan^{-1}\left(\frac{25}{43.3}\right)$$
$$x = 30.0^{\circ} \qquad \text{(to 1 decimal place)}$$

Question 11(a)(i)(a)

Using the vector triangle law, we get

$$AB = AO + OB$$
$$= -(2a) + 2b$$
$$= -2a + 2b$$

Question 11(a)(i)(b)

 $OP = PA = \boldsymbol{a}$

$$AQ = \frac{1}{2}AB$$
$$= \frac{1}{2}(-2\boldsymbol{a} + 2\boldsymbol{b})$$

$$PQ = PA + AQ$$
$$= a + \frac{1}{2}(-2a + 2b)$$
$$= a - a + b$$
$$= b$$

Question 11(a)(ii)

OB = 2PQ

Since *PQ* can be represented as a scalar multiple of *AB*, then *OB* and *PQ* are parallel.

Therefore, |OB| = 2|PQ|.

That is, *OB* is twice the length of *PQ*.

Question 11(b)(i)

det M = ad - bc= (2)(3) - (1)(4) = 6 - 4 = 2

$$adj(M) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$= \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix}$$

$$\therefore M^{-1} = \frac{1}{\det M} \times adj(M)$$
$$= \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{-4}{2} & \frac{2}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix}$$

Question 11(b)(ii)

Required to show that $M^{-1}M = I$.

$$M^{-1}M = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} (3 \times 2) + (-1 \times 4) & (3 \times 1) + (-1 \times 3) \\ (-4 \times 2) + (2 \times 4) & (-4 \times 1) + (2 \times 3) \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 6-4 & 3-3 \\ -8+8 & -4+6 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= I$$

 $\therefore M^{-1}M = I$

Question 11(b)(iii)

Required to solve for *r*, *s*, *t* and *u*.

Now,

$$M^{-1} \times M \times \begin{pmatrix} r & s \\ t & u \end{pmatrix} = M^{-1} \times \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$

Therefore,

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = M^{-1} \times \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} (3 \times 2) + (-1 \times 4) & (3 \times 1) + (-1 \times -1) \\ (-4 \times 2) + (2 \times 4) & (-4 \times 1) + (2 \times -1) \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 6 - 4 & 3 + 1 \\ -8 + 8 & -4 - 2 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 2 & 4 \\ 0 & -6 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{2} & \frac{4}{2} \\ \frac{2}{2} & -\frac{6}{2} \\ \frac{2}{2} & -\frac{6}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$$

Equating the corresponding entries, we get:

- r = 1
- *s* = 2
- t = 0
- u = -3