Solutions to CSEC Maths P2 June 2013

Question 1(a)(i)

$$
\begin{aligned}
\text { Numerator } & =1 \frac{4}{5}-\frac{1}{3} \\
& =\frac{9}{5}-\frac{1}{3} \\
& =\frac{27-5}{15} \\
& =\frac{22}{15}
\end{aligned}
$$

$$
\begin{aligned}
\text { Denominator } & =2 \frac{2}{5} \\
& =\frac{12}{5}
\end{aligned}
$$

\therefore Numerator \div Denominator $=\frac{22}{15} \div \frac{12}{5}$

$$
\begin{aligned}
& =\frac{22}{15} \times \frac{5}{12} \\
& =\frac{110}{180} \\
& =\frac{11}{18}
\end{aligned}
$$

Question 1(a)(ii)

$$
\begin{aligned}
\sqrt{1.5625}+(0.32)^{2} & =1.25+0.1024 \\
& =1.3524 \quad \text { (in exact form) }
\end{aligned}
$$

Question 1(b)
If 350 ml is sold for $\$ 4.20$,
Then 1 ml will cost the buyer $\frac{\$ 4.20}{350}=\$ 0.012$ per ml

If 450 ml is sold for $\$ 5.13$,
Then 1 ml will cost the buyer $\frac{\$ 5.13}{450}=\$ 0.0114$ per ml

Hence, the better buy is the 450 ml carton costing \$5.13/

Question 1(c)(i)
Interest for the first year $=8 \%$ of $\$ 9600$

$$
\begin{aligned}
& =\frac{8}{100} \times \$ 9600 \\
& =\$ 768
\end{aligned}
$$

Question 1(c)(ii)
At the end of the first year,
Amount owed $=$ The sum borrowed + The interest acquired

$$
\begin{aligned}
& =\$ 9600+\$ 768 \\
& =\$ 10368
\end{aligned}
$$

At the beginning of the second year,
Amount owed $=$ Total amount owed at the end of the first year - Amount repaid

$$
\begin{aligned}
& =\$ 10368-\$ 4368 \\
& =\$ 6000
\end{aligned}
$$

Question 1(c)(iii)
Required to calculate the interest on the remaining balance for the second year.

Amount of interest on the remaining balance $=8 \%$ of $\$ 6000$

$$
\begin{aligned}
& =\frac{8}{100} \times \$ 6000 \\
& =\$ 480
\end{aligned}
$$

Question 2(a)(i)

$$
\begin{aligned}
& 2 x^{3}-8 x \\
= & 2 x\left(x^{2}-4\right) \\
= & 2 x(x-2)(x+2) \quad \text { (difference of two squares) }
\end{aligned}
$$

Question 2(a)(ii)

$$
\begin{aligned}
& 3 x^{2}-5 x-2 \\
= & 3 x^{2}-6 x+x-2 \\
= & 3 x(x-2)+1(x-2) \\
= & (3 x+1)(x-2)
\end{aligned}
$$

Question 2(b)(i)

$$
\begin{aligned}
F & =\frac{9}{5} C+32 \\
F-32 & =\frac{9}{5} C \\
\frac{9}{5} C & =F-32 \\
9 C & =5(F-32) \\
C & =\frac{5(F-32)}{9}
\end{aligned}
$$

Question 2(b)(ii)
When $F=113$,

$$
C=\frac{5(113-32)}{9}
$$

$$
=\frac{5(81)}{9}
$$

$$
=45
$$

Question 2(c)(i)(a)
The number of tickets sold $=500$
The number of tickets sold at $\$ 6$ each $=x$
\therefore The remaining tickets sold at $\$ 10$ each $=500-x$

Question 2(c)(i)(b)
The total cost of x tickets at $\$ 6$ each $=6 x$
The cost of $(500-x)$ tickets at $\$ 10$ each $=10(500-x)$

Thus, the total amount of money collected $=6 x+10(500-x)$

$$
\begin{aligned}
& =6 x+5000-10 x \\
& =5000-4 x
\end{aligned}
$$

Question 2(c)(ii)
$5000-4 x=4108$

$$
\begin{aligned}
4 x & =5000-4108 \\
4 x & =892 \\
x & =\frac{892}{4} \\
x & =223
\end{aligned}
$$

$\therefore 223$ tickets were sold for $\$ 6$ each.

Question 3(a)(i)

Question 3(a)(ii)
Total number of students $=2+4 x+x+(20-x)$

$$
\begin{aligned}
& =2+4 x+x+20-x \\
& =4 x+22
\end{aligned}
$$

Question 3(a)(iii)

The total number of students in the class is 30 .
So,

$$
\begin{aligned}
4 x+22 & =30 \\
4 x & =30-22 \\
4 x & =8 \\
x & =\frac{8}{4} \\
x & =2
\end{aligned}
$$

Therefore, the number of students who uses cameras only $=4 x$

$$
\begin{aligned}
& =4(2) \\
& =8
\end{aligned}
$$

Question 3(b)(i)

Consider the triangle $A B C$.
Using Pythagoras' Theorem,

$$
\begin{aligned}
A B^{2}+B C^{2} & =A C^{2} \\
\therefore B C^{2} & =A C^{2}-A B^{2} \\
& =(10)^{2}-(8)^{2} \\
& =100-64 \\
& =36 \\
B C & =\sqrt{36} \\
& =6 \mathrm{~m}
\end{aligned}
$$

Question 3(b)(ii)

The two triangles, $A D E$ and $A B C$, have the same size of angles and are equiangular.
However, none of their sides are equal.
So, the two triangles are equiangular but not congruent.
Therefore, the two triangles $A D E$ and $A B C$ are similar since they possess the same ship but differ in size.

Question 3(b)(iii)
Note that if two triangles are similar, then the ratio of their corresponding sides are equal.

$$
\begin{aligned}
A D & =8-3.2 \\
& =4.8 \mathrm{~m}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{A D}{A B} & =\frac{D E}{B C} \\
\frac{4.8}{8} & =\frac{D E}{6} \\
D E & =\frac{6 \times 4.8}{8} \\
& =3.6 \mathrm{~m}
\end{aligned}
$$

Question 4(a)(i)
By measurement with a ruler, $D E=5 \mathrm{~cm}$.

Question 4(a)(ii)
By measurement with a protractor, $E \hat{C} D=37^{\circ}$.

Question 4(a)(iii)
By measurement with a ruler, $E D=E C=5 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$.

Therefore,
The perimeter of triangle $C D E=5+5+8$

$$
=18 \mathrm{~cm}
$$

Question 4(a)(iv)

By measurement with a ruler, $E G=3 \mathrm{~cm}$.

Since G is the midpoint of $C D$ and $\triangle C D E$ is isosceles, then $E G$ is perpendicular to $C D$.
Therefore,

$$
\text { Area of } \begin{aligned}
\triangle C D E & =\frac{b \times h}{2} \\
& =\frac{8 \times 3}{2} \\
& =\frac{24}{2} \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 4(b)(i)

$$
\text { Gradient of } \begin{aligned}
A B & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-4}{3-(-1)} \\
& =\frac{-2}{4} \\
& =-\frac{1}{2}
\end{aligned}
$$

Question 4(b)(ii)
Let the midpoint of $A B$ be M.
Using the midpoint formula, we get

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-1+3}{2}, \frac{4+2}{2}\right) \\
& =\left(\frac{2}{2}, \frac{6}{2}\right) \\
& =(1,3)
\end{aligned}
$$

Question 4(b)(iii)

The gradient of the perpendicular bisector $=\frac{-1}{-\frac{1}{2}}$

$$
\begin{aligned}
& =-1 \div-\frac{1}{2} \\
& =-1 \times-2 \\
& =2
\end{aligned}
$$

Thus, $m=2$.

Substituting $m=2$ and the midpoint $(1,3)$ into $y=m x+c$, we get
$3=(2)(1)+c$
$3=2+c$
$c=3-2$
$c=1$
\therefore Equation of the perpendicular bisector $A B$ is $y=2 x+1$.

Question 5(a)(i)
$A \propto R^{2}$
$\therefore A=k R^{2}$ where k is the constant of proportion

Question 5(a)(ii)

Substituting $A=36$ and $R=3$ gives,

$$
\begin{aligned}
36 & =k(3)^{2} \\
36 & =9 k \\
k & =\frac{36}{9} \\
k & =4
\end{aligned}
$$

Question 5(a)(iii)
$A=4 R^{2}$
When $R=5$,

$$
\begin{aligned}
A & =4(5)^{2} \\
& =4 \times 25 \\
& =100
\end{aligned}
$$

When $A=196$,

$$
\begin{aligned}
196 & =4 R^{2} \\
R^{2} & =\frac{196}{4} \\
R^{2} & =49 \\
R & =\sqrt{49} \\
R & =7
\end{aligned}
$$

The completed table is shown below.

\boldsymbol{A}	36	100	196
\boldsymbol{R}	3	5	7

Question 5(b)(i)

$$
\begin{aligned}
g(2) & =4(2)+5 \\
& =8+5 \\
& =13
\end{aligned}
$$

$\therefore f g(2)=f(13)$

$$
=\frac{2(13)+1}{3}
$$

$$
=\frac{26+1}{3}
$$

$$
=\frac{27}{3}
$$

$$
=9
$$

Question 5(b)(ii)
$f(x)=\frac{2 x+1}{3}$

Let $y=f(x)$.
$y=\frac{2 x+1}{3}$

Interchange the variables x and y.
$x=\frac{2 y+1}{3}$

Make y the subject.
$3 x=2 y+1$
$2 y=3 x-1$
$y=\frac{3 x-1}{2}$
$\therefore f^{-1}(x)=\frac{3 x-1}{2}$

Now,

$$
\begin{aligned}
f^{-1}(3) & =\frac{3(3)-1}{2} \\
& =\frac{9-1}{2} \\
& =\frac{8}{2} \\
& =4
\end{aligned}
$$

Question 6(a)(i)
$54 \mathrm{kmh}^{-1}=54 \times \frac{1000}{3600}$

$$
=15 \mathrm{~ms}^{-1}
$$

Question 6(a)(ii)
Distance $=$ Speed \times Time
$=15 \times 20$
$=300 \mathrm{~m}$

Question 6(b)(i)

Note that the image and the object are congruent. Also, the image is laterally inverted. Therefore, the transformation is a reflection in the line $x=7$.

Question 6(b)(ii)
Required to draw $\Delta L^{\prime \prime} M^{\prime \prime} N$ ".

Question 6(b)(iii)
Translate $\Delta L " M " N$ " by the vector $-\binom{0}{-3}=\binom{0}{3}$ which will result in $\Delta L M N$.
Then reflect the image $\Delta L M N$ in the line $x=7$ which will result in the image $\Delta L^{\prime} M^{\prime} N^{\prime}$.

Question 7(a)
The completed table is shown below.

Amount Spent ($\boldsymbol{x})$ L.C.L-U.C.L	Lower Class Boundary Upper Class Boundary	Number of Students Frequency (\boldsymbol{f})	Cumulative Frequency	Points to be Plotted
				$(0.5,0)$
$1-10$	$0.5 \leq x<10.5$	3.	3	$(10.5,3)$
$11-20$	$10.5 \leq x<20.5$	7	$7+3=5$	$(20.5,10)$
$21-30$	$20.5 \leq x<30.5$	9	$10+9=19$	$(30.5,19)$
$31-40$	$30.5 \leq x<40.5$	11	$19+11=30$	$(40.5,30)$
$41-50$	$40.5 \leq x<50.5$	8	$30+8=38$	$(50.5,38)$
$51-60$	$50.5 \leq x<60.5$	2	$38+2=40$	$(60.5,40)$

Question 7(b)

The cumulative frequency graph for the data is shown below.

Question 7(c)(i)

Now, $\frac{1}{2}$ of $40=20$.
Therefore, the median amount of money spent $=\$ 31.50$ (by read-off).

Question 7(c)(ii)
$P($ student spends less than $\$ 23)=\frac{\text { Number of students who spends less than } \$ 23}{\text { Total number of students }}$
$=\frac{12}{40}$

$$
=\frac{3}{10}
$$

Question 8(a)

The fourth diagram in the sequence is shown below:

Question 8(b)
Required to complete the missing values in the table.

	Name of Diagram (\boldsymbol{N})	No. of Wires (\boldsymbol{W})	No. of Balls (\boldsymbol{B})
	1	12	6
	2	20	12
(i)	3	28	16
(ii)	20	36	20

For the N th diagram,
$W=8 N+4 \quad$ and $\quad B=4 N+4$

When $N=4$,
$W=8(4)+4$
and
$B=4(4)+4$
$=32+4$
$=36$
$=16+4$
$=20$

When $N=20$,

$$
\begin{aligned}
W & =8(20)+4 & \text { and } & B
\end{aligned}=4(20)+4.4 .
$$

Question 8(c)(i)
The rule to find W is : $W=8 N+4$

Question 8(c)(ii)
The rule to find B is : $B=4 N+4$

Question 9(a)(i)
Number of oranges $=x$
Number of mangoes $=y$
Total number of fruits $=x+y$

Since the total number of oranges and mangoes must not exceed 6, then the inequality to represent this information is:
$x+y \leq 6$

Question 9(a)(ii)
Since Trish must buy at least 2 mangoes, then the inequality to represent this information is:
$y \geq 2$

Question 9(a)(iii)
Inequality: $y \leq 2 x$
In words, the number of mangoes is less than or equal to two times the number of oranges.

Question 9(a)(iv)
Required to draw the lines associated with the following two inequalities:
$x+y \leq 6$
$y \geq 2$

Question 9(a)(v)

Required to shade the region that satisfies all the inequalities.

WhatsApp +1868 4724221 to register for premium online class @ The Student Hub

Question 9(b)(i)

$$
\begin{aligned}
3 x^{2}-12 x+8 & =3\left(x^{2}-4 x\right)+8 \\
& =3\left(x^{2}-4 x+4\right)+8-3(4) \\
& =3(x-2)^{2}+8-12 \\
& =3(x-2)^{2}-4 \quad \text { which is of the form } a(x+h)^{2}+k
\end{aligned}
$$

$$
\text { where } a=3, h=-2 \text { and } k=-4
$$

Question 9(b)(ii)
When $x=0$,

$$
\begin{aligned}
y & =3(0)^{2}-12(0)+8 \\
& =0-0+8 \\
& =8
\end{aligned}
$$

The minimum point is $(2,-4)$.

Question 10(a)(i)
The angle made by a tangent to a circle and any chord, at the point of contact, is 90°. So, $O \hat{B} E=90^{\circ}$.
$O B$ is the radius and $E B C$ is the tangent. The point of contact is B.
$\therefore E \hat{B} F=90^{\circ}-35^{\circ}$

$$
=55^{\circ}
$$

Question 10(a)(ii)
Since $O B$ and $O A$ are both radii of the same circle, then $O B=O A$.
The base angles of an isosceles triangle are equal.
$\therefore \triangle O A B$ is an isosceles triangle with $O \hat{B} A=O \hat{A} B=40^{\circ}$.

The sum of angles in a triangle add up to 180°.

$$
\begin{aligned}
\therefore B \widehat{O} A & =180^{\circ}-\left(40^{\circ}+40^{\circ}\right) \\
& =180^{\circ}-80^{\circ} \\
& =100^{\circ}
\end{aligned}
$$

Question 10(a)(iii)
The angle subtended by a chord at the center of a circle is twice the angle that the chord subtends at the circumference, standing on the same arc.

So,
$A \hat{F} B=\frac{1}{2}\left(100^{\circ}\right)$
$=50^{\circ}$

Question 10(a)(iv)
The sum of angles in a triangle add up to 180°.
$\therefore O \hat{A} F=180^{\circ}-\left(50^{\circ}+35^{\circ}+40^{\circ}+40^{\circ}\right)$

$$
=180^{\circ}-165^{\circ}
$$

$$
=15^{\circ}
$$

Question 10(b)(i)
The diagrams are as follows.
For triangle RFT:

For triangle TFS:

For triangle $S F R$:

Question 10(b)(ii)
Consider triangle RFT:

$\tan 27^{\circ}=\frac{25}{R F}$
$\therefore R F=\frac{25}{\tan 27^{\circ}}$

$$
=49.1 \mathrm{~m}
$$

Question 10(b)(iii)
Consider the triangle $S F R$.
Using Pythagoras' Theorem,

$$
\begin{aligned}
S R^{2} & =F R^{2}+F S^{2} \\
& =(49.06)^{2}+(43.3)^{2} \\
& =4281.77 \\
S R= & \sqrt{4281.77} \\
& =65.4 \mathrm{~m} \quad \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

Question 10(b)(iv)
Consider triangle TFS:

$$
\begin{aligned}
\tan x & =\frac{25}{43.3} \\
x & =\tan ^{-1}\left(\frac{25}{43.3}\right) \\
x & =30.0^{\circ} \quad \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

Question 11(a)(i)(a)
Using the vector triangle law, we get

$$
\begin{aligned}
A B & =A O+O B \\
& =-(2 \boldsymbol{a})+2 \boldsymbol{b} \\
& =-2 \boldsymbol{a}+2 \boldsymbol{b}
\end{aligned}
$$

Question 11(a)(i)(b)
$O P=P A=\boldsymbol{a}$
$A Q=\frac{1}{2} A B$

$$
=\frac{1}{2}(-2 \boldsymbol{a}+2 \boldsymbol{b})
$$

$P Q=P A+A Q$
$=\boldsymbol{a}+\frac{1}{2}(-2 \boldsymbol{a}+2 \boldsymbol{b})$
$=a-a+b$
$=\boldsymbol{b}$

Question 11(a)(ii)
$O B=2 P Q$
Since $P Q$ can be represented as a scalar multiple of $A B$, then $O B$ and $P Q$ are parallel.

Therefore, $|O B|=2|P Q|$.
That is, $O B$ is twice the length of $P Q$.

Question 11(b)(i)

$$
\begin{aligned}
\operatorname{det} M & =a d-b c \\
& =(2)(3)-(1)(4) \\
& =6-4 \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{adj}(M) & =\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 & -1 \\
-4 & 2
\end{array}\right) \\
\therefore M^{-1} & =\frac{1}{\operatorname{det} M} \times \operatorname{adj}(M) \\
& =\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
-4 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
\frac{-4}{2} & \frac{2}{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-2 & 1
\end{array}\right)
\end{aligned}
$$

Question 11(b)(ii)
Required to show that $M^{-1} M=I$.

$$
\begin{aligned}
M^{-1} M & =\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
-4 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
(3 \times 2)+(-1 \times 4) & (3 \times 1)+(-1 \times 3) \\
(-4 \times 2)+(2 \times 4) & (-4 \times 1)+(2 \times 3)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\begin{array}{cc}
6-4 & 3-3 \\
-8+8 & -4+6
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =I
\end{aligned}
$$

$\therefore M^{-1} M=I$

Question 11(b)(iii)

Required to solve for r, s, t and u.

Now,
$M^{-1} \times M \times\left(\begin{array}{cc}r & S \\ t & u\end{array}\right)=M^{-1} \times\left(\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right)$

Therefore,

$$
\begin{aligned}
\left(\begin{array}{cc}
r & S \\
t & u
\end{array}\right) & =M^{-1} \times\left(\begin{array}{cc}
2 & 1 \\
4 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
-4 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
4 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
(3 \times 2)+(-1 \times 4) & (3 \times 1)+(-1 \times-1) \\
(-4 \times 2)+(2 \times 4) & (-4 \times 1)+(2 \times-1)
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
6-4 & 3+1 \\
-8+8 & -4-2
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
2 & 4 \\
0 & -6
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{2}{2} & \frac{4}{2} \\
\frac{0}{2} & \frac{-6}{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 2 \\
0 & -3
\end{array}\right)
\end{aligned}
$$

Equating the corresponding entries, we get:
$r=1$
$s=2$
$t=0$
$u=-3$

