Solutions to CSEC Maths P2 June 2016

Question 1(a)(i)

$$
\begin{aligned}
\frac{3 \frac{3}{8}-2 \frac{1}{4}}{1 \frac{1}{2}} & =\frac{\frac{27}{8}-\frac{9}{4}}{\frac{3}{2}} \\
& =\frac{\frac{27-(9 \times 2)}{8}}{\frac{3}{2}} \\
& =\frac{\frac{9}{8}}{\frac{3}{2}} \\
& =\frac{9}{8} \times \frac{2}{3} \\
& =\frac{3}{4} \times \frac{1}{1} \\
& =\frac{3}{4}
\end{aligned}
$$

Question 1(a)(ii)

$$
\begin{aligned}
(2.86+0.75)+0.481^{2} & =3.61+0.2316 \\
& =3.8416 \\
& =3.84 \quad \text { (to } 2 \mathrm{dp} \text {) }
\end{aligned}
$$

Question 1(b)(i)

$$
\begin{aligned}
\text { Discount } & =5 \% \text { of cash payment } \\
& =0.05 \times 1399 \\
& =\$ 69.95
\end{aligned}
$$

Selling Price $=\$ 1399-\$ 69.95$

$$
=\$ 1329.05
$$

Question 1(b)(ii)
Profit, if cash is paid $=\$ 1329.05-\$ 1064.00$

$$
=\$ 265.05
$$

Percentage profit, if cash is paid $=\frac{\text { Profit }}{\text { Cost price }} \times 100$

$$
\begin{aligned}
& =\frac{\$ 265.05}{\$ 1064} \times 100 \\
& =24.91 \%
\end{aligned}
$$

If cash was not paid, then a discount is not applied.

$$
\begin{aligned}
\therefore \text { Profit } & =\$ 1399-\$ 1064 \\
& =\$ 335
\end{aligned}
$$

Profit percentage $=\frac{\text { Profit }}{\text { Cost price }} \times 100$

$$
=\frac{\$ 335}{\$ 1064} \times 100
$$

$$
=31.5 \%
$$

Question 1(c)

Carton Size of $350 \mathrm{ml}=\$ 4.20$

$$
\begin{aligned}
1 \mathrm{ml} & =\frac{\$ 4.20}{350} \\
& =\$ 0.012
\end{aligned}
$$

Carton Size of $450 \mathrm{ml}=\$ 5.35$

$$
\begin{aligned}
1 \mathrm{ml} & =\frac{\$ 5.35}{450} \\
& =\$ 0.0119
\end{aligned}
$$

Carton Size of $500 \mathrm{ml}=\$ 5.80$

$$
\begin{aligned}
1 \mathrm{ml} & =\frac{\$ 5.80}{500} \\
& =\$ 0.0116
\end{aligned}
$$

The most cost-effective carton would be the 500 ml , as it costs least per ml .

Question 2(a)(i)

$$
\begin{aligned}
& 4 a^{2}-16 \\
= & 4\left(a^{2}-4\right) \\
= & 4(a+2)(a-2)
\end{aligned}
$$

Question 2(a)(ii)

$$
\begin{aligned}
& 3 y^{2}+2 y-8 \\
= & 3 y^{2}+6 y-4 y-8 \\
= & 3 y(y+2)-4(y+2) \\
= & (3 y-4)(y+2)
\end{aligned}
$$

Question 2(b)

$2 x+y=3 \quad \rightarrow$ Equation 1
$5 x-2 y=12 \rightarrow$ Equation 2

Multiply Equation 2 by 2 to get:
$4 x+2 y=6 \quad \rightarrow$ Equation 3
$5 x-2 y=12 \rightarrow$ Equation 2

Equation $3+$ Equation 2 gives:
$9 x=18$
$x=\frac{18}{9}$
$x=2$

Substituting $x=2$ into Equation 1 gives:

$$
\begin{aligned}
2(2)+y & =3 \\
4+y & =3 \\
y & =3-4 \\
y & =-1
\end{aligned}
$$

$\therefore x=2$ and $y=-1$

Question 2(c)
Since y is directly proportional to x, then
$y \propto x$
$y=k x$

Substituting $x=6$ and $y=3$ into $y=k x$ gives:
$3=k(6)$
$k=\frac{3}{6}$
$k=\frac{1}{2}$

So, we have $y=\frac{1}{2} x$.

When $x=10$ and $y=u$,
$u=\frac{1}{2}(10)$
$u=5$

When $x=t$ and $y=9$
$9=\frac{1}{2} t$
$t=9 \times 2$
$t=18$
$\therefore u=5$ and $t=18$

Question 3(a)(i)
Total number of students in class $=18-x+x+14-x+5$

$$
=37-x
$$

Question 3(a)(ii)
$(H \cup F)^{\prime}=5$ which is not equal to 0
$\therefore H \cup F \neq U$
Hence, the statement given is false.

$$
\begin{aligned}
H \cap F^{\prime} & =18-7 \\
& =11
\end{aligned}
$$

So, $H \cap F^{\prime} \neq 0$

$$
H \cap F^{\prime} \neq \emptyset
$$

Hence, the statement given is false.

Question 3(a)(iii)

There are a total of 30 students in the class.
$\therefore 37-x=30$

$$
\begin{aligned}
& x=37-30 \\
& x=7
\end{aligned}
$$

The number of students who study both History and French is, $n(H \cap F)=7$.

Question 3(b)(i)

Question 3(b)(ii)
The length of $P R=8.7 \mathrm{~cm}$.
The measure of $\angle P R Q=30^{\circ}$.

Question 4(a)
External volume of the box $=l \times w \times h$

$$
\begin{aligned}
& =30 \times 20 \times 15 \\
& =9000 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 4(b)(i)
Internal length of the box $=30-(2 \times 1.5)$

$$
\begin{aligned}
& =30-3 \\
& =27 \mathrm{~cm}
\end{aligned}
$$

Question 4(b)(ii)
Internal width of the box $=20-(2 \times 1.5)$

$$
\begin{aligned}
& =20-3 \\
& =17 \mathrm{~cm}
\end{aligned}
$$

Question 4(b)(iii)
Internal depth of the box $=15-(1 \times 1.5)$

$$
\begin{aligned}
& =15-1.5 \\
& =13.5 \mathrm{~cm}
\end{aligned}
$$

Question 4(c)
Internal volume of the box $=l \times w \times h$

$$
\begin{aligned}
& =27 \times 17 \times 13.5 \\
& =6196.5 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 4(d)
Volume of silver $=$ External volume of the box - Internal volume of the box

$$
\begin{aligned}
& =9000-6196.5 \\
& =2803.5 \mathrm{~cm}^{3}
\end{aligned}
$$

Density of silver is $10.5 \mathrm{gcm}^{-3}$.

$$
\begin{aligned}
\text { Mass of box } & =2803.5 \times 10.5 \mathrm{~g} \\
& =29436.75 \mathrm{~g} \\
& =\frac{29436.75}{1000} \mathrm{~kg} \\
& =29.44 \mathrm{~kg} \quad \text { (to } 2 \text { decimal places) }
\end{aligned}
$$

Question 5(a)(i)
Angles in a straight line $=180^{\circ}$

$$
\begin{aligned}
x & =180^{\circ}-128^{\circ} \\
& =52^{\circ}
\end{aligned}
$$

Question 5(a)(ii)
Angle y and 128° are corresponding angles.
$y=128^{\circ}$

Question 5(a)(iii)
The sum of angles in a triangle is equal to 180°.

$$
w+52^{\circ}+80^{\circ}=180^{\circ}
$$

$$
\begin{aligned}
& w=180^{\circ}-52^{\circ}-80^{\circ} \\
& w=48^{\circ}
\end{aligned}
$$

Question 5(b)(i)
This was a translation through the vector $\binom{2}{-4}$.
The transition can be defined as $T=\binom{2}{-4}$.

Question 6(a)(i)
A line passing through the origin would have a y-intercept (c) value of 0 .
Since the gradient is the same, then the equation of the line would be:
$x+y=0$

Question 6(a)(ii)
Coordinates at the ends of the line $A B: \quad(0,3)$ and $(3,0)$
Midpoint of $A B=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{0+3}{2}, \frac{3+0}{2}\right)$
$=\left(\frac{3}{2}, \frac{3}{2}\right)$

Gradient of $A B=-1$
The product of the gradients of perpendicular lines $=-1$.

$$
\text { Gradient, } \begin{aligned}
m & =\frac{-1}{-1} \\
& =1
\end{aligned}
$$

Substituting $m=1$ and point $\left(\frac{3}{2}, \frac{3}{2}\right)$ into the equation of a line:
$\frac{3}{2}=(1)\left(\frac{3}{2}\right)+c$
$c=\frac{3}{2}-\frac{3}{2}$
$c=0$
\therefore Equation of line is $y=x$.

Question 6(b)(i)
$y=x^{2}-2 x-3$

When $x=1$,

$$
\begin{aligned}
& y=(1)^{2}-2(1)-3 \\
& y=1-2-3 \\
& y=-4
\end{aligned}
$$

When $x=3$,

$$
\begin{aligned}
& y=(3)^{2}-2(3)-3 \\
& y=9-6-3 \\
& y=0
\end{aligned}
$$

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}	5	0	-3	-4	-3	0	5

Question 6(b)(ii)

Question 6(a)(iii)

The minimum value of $y=x^{2}-2 x-3$ occurs when $x=1$.
The values of x for which $x^{2}-2 x-3=-x+3$ are $x=-2$ and $x=3$.

Question 7(a)

Weight (kg)	Tally	Number of Bags
$1-10$	III	3
$11-20$	IIII	4
$21-30$	HII	5
$31-40$	II I	6
$41-50$		2

Question 7(b)(i)
The upper class boundary of the class interval 21-30 is 30.5 .

Question 7(b)(ii)
Class Width $=$ Upper Class Boundary - Lower Class Boundary

$$
\begin{aligned}
& =30.5-20.5 \\
& =10
\end{aligned}
$$

Question 7(b)(iii)
Class Midpoint $=\frac{U C B+L C B}{2}$

$$
\begin{aligned}
& =\frac{20.5+30.5}{2} \\
& =25.5
\end{aligned}
$$

Question 7(c)

Question 8(a)

Figure 4 of the sequence is shown below:

Question 8(b)

Figure Number (\boldsymbol{N})	Number of Knots (K)	Number of Strings (\boldsymbol{S})
1	1	1
2	3	7
3	7	15
4	-15	31
7	-1023	-2047
10		

Consider the Figure n.

The number of knots $=2^{n}-1$

The number of strings $=2^{n+1}-1$
(i) For Figure 4, number of knots $=2^{4}-1$

$$
\begin{aligned}
& =16-1 \\
& =15
\end{aligned}
$$

For Figure 4, number of strings $=2^{4+1}-1$

$$
\begin{aligned}
& =32-1 \\
& =31
\end{aligned}
$$

(ii) $255=2^{n+1}-1$

With the use of a calculator, it can be deduced that $n=7$

For Figure 7, number of knots $=2^{7}-1$

$$
\begin{aligned}
& =128-1 \\
& =127
\end{aligned}
$$

(iii) For Figure 10, number of knots $=2^{10}-1$

$$
\begin{aligned}
& =1024-1 \\
& =1023
\end{aligned}
$$

For Figure 10, number of strings $=2^{10+1}-1$

$$
\begin{aligned}
& =2048-1 \\
& =2047
\end{aligned}
$$

Question 9(a)(i)
$f(x)=2 x-7$
Let $y=f(x)$.
$y=2 x-7$
Interchange the variables x and y.
$x=2 y-7$
Make y the subject.
$2 y=x+7$
$y=\frac{x+7}{2}$
$\therefore f^{-1}(x)=\frac{x+7}{2}$
$g(x)=x^{2}+1$
Let $y=g(x)$.
$y=x^{2}+1$
Interchange the variables x and y.
$x=y^{2}+1$
Make y the subject.
$y^{2}=x-1$
$y=\sqrt{x-1}$
$\therefore g^{-1}(x)=\sqrt{x-1}$

Now,

$$
\begin{aligned}
f g(x) & =f[g(x)] \\
& =2\left(x^{2}+1\right)-7 \\
& =2 x^{2}+2-7 \\
& =2 x^{2}-5
\end{aligned}
$$

Let $y=f g(x)$.
$y=2 x^{2}-5$
Interchange the variables x and y.
$x=2 y^{2}-5$
Make y the subject.

$$
2 y^{2}=x+5
$$

$$
y^{2}=\frac{x+5}{2}
$$

$$
y=\sqrt{\frac{x+5}{2}}
$$

$\therefore(f g)^{-1}(x)=\sqrt{\frac{x+5}{2}}$

Question 9(a)(ii)
$(f g)^{-1}(x)=\sqrt{\frac{x+5}{2}}$
$(f g)^{-1}(5)=\sqrt{\frac{5+5}{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{10}{2}} \\
& =\sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
f^{-1}(5) & =\frac{5+7}{2} \\
& =\frac{12}{2} \\
& =6
\end{aligned}
$$

$$
g^{-1} f^{-1}(5)=g^{-1}(6)
$$

$$
=\sqrt{6-1}
$$

$$
=\sqrt{5}
$$

$$
\therefore(f g)^{-1}(5)=g^{-1} f^{-1}(5)
$$

Question 9(b)(i)

The car arrived at Town C at 08:30.

Question 9(b)(ii)

The car was at a stop from 07:00 to 07:30 which is 30 minutes and from 08:30 to 08:45 which is 15 minutes.

The total time the car stopped $=30+15$

$$
=45 \text { minutes }
$$

Question 9(b)(iii)

$$
\begin{aligned}
\text { Constant speed } & =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{100-40}{1 \mathrm{hr}} \\
& =60 \mathrm{kmh}^{-1}
\end{aligned}
$$

Question 9(b)(iv)

$$
\begin{aligned}
\text { Total distance } & =40+60+100 \\
& =200 \mathrm{~km}
\end{aligned}
$$

Total time taken $=1+1+1 \frac{1}{4}$ $=3 \frac{1}{4}$ hours

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =\frac{200}{3 \frac{1}{4}} \\
& =\frac{800}{12} \\
& =61.54 \mathrm{kmh}^{-1}
\end{aligned}
$$

Question 10(a)(i)
The two tangents that can be drawn to a circle from a point outside the circle are equal in length.

Hence, $E H=E F$ and triangle $E H F$ is isosceles.
$\therefore E \widehat{H F}=E \hat{F} H$ since the base angles of an isosceles triangle are equal

$$
\begin{aligned}
\angle E F H & =\frac{180^{\circ}-44^{\circ}}{2} \\
& =\frac{136^{\circ}}{2} \\
& =68^{\circ}
\end{aligned}
$$

Question 10(a)(ii)
The angle made by a tangent to a circle and a radius, at the point of contact, is a right angle. So, $O \widehat{H} E$ and $O \widehat{F} E=90^{\circ}$.

The sum of the angles of a quadrilateral is 360°.

$$
\begin{aligned}
F \hat{O} H & =360^{\circ}-\left(90^{\circ}+90^{\circ}+44^{\circ}\right) \\
& =136^{\circ}
\end{aligned}
$$

The angle subtended by a chord at the center of a circle, in this case, $F \hat{O} H$, is twice the angle that the chord subtends at the circumference, standing on the same arc.

$$
\begin{aligned}
F \hat{G} H & =\frac{1}{2}\left(136^{\circ}\right) \\
& =68^{\circ}
\end{aligned}
$$

Question 10(a)(iii)
The angle made by a tangent to a circle and a radius, at the point of contact, is a right angle.
$\therefore O \widehat{H E}=90^{\circ}$.

Question 10(a)(iv)
The angle in a semi-circle is a right angle.
$\therefore J \hat{G} H=90^{\circ}$.

Question 10(b)(i)
The sum of the angles in a triangle is equal to 180°.

$$
\begin{aligned}
F \hat{T} S & =180^{\circ}-\left(90^{\circ}+40^{\circ}\right) \\
& =50^{\circ}
\end{aligned}
$$

Angles in a straight line $=180^{\circ}$.

$$
\begin{aligned}
T \hat{S} R & =180^{\circ}-40^{\circ} \\
& =140^{\circ}
\end{aligned}
$$

The sum of the angles in a triangle is equal to 180°.

$$
\begin{aligned}
R \widehat{T S} S & =180^{\circ}-\left(140^{\circ}+22^{\circ}\right) \\
& =18^{\circ}
\end{aligned}
$$

Question 10(b)(ii)
Using the sine rule,

$$
\begin{aligned}
\frac{S T}{\sin 22^{\circ}} & =\frac{150}{\sin 18^{\circ}} \\
S T & =\frac{150 \times \sin 22^{\circ}}{\sin 18^{\circ}} \\
S T & =181.8 \mathrm{~m} \quad \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

Question 10(b)(iii)

$$
\begin{aligned}
\frac{T F}{181.83} & =\sin 40^{\circ} \\
T F & =181.83 \times \sin 40^{\circ} \\
T F & =116.9 \mathrm{~m} \quad \text { (to } 1 \text { decimal place) })
\end{aligned}
$$

Question 11(a)(i)
The position vectors of points A, B and C, relative to the origin O, are $\overrightarrow{O A}=\binom{2}{-2}$,
$\overrightarrow{O B}=\binom{6}{1}$ and $\overrightarrow{O C}=\binom{10}{4}$ respectively.

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{A O}+\overrightarrow{O B} \\
& =-\overrightarrow{O A}+\overrightarrow{O B} \\
& =-\binom{2}{-2}+\binom{6}{1} \\
& =\binom{4}{3}
\end{aligned}
$$

$\overrightarrow{A B}=\binom{4}{3}$ is of the form $\binom{x}{y}$, where $x=4$ and $y=3$

Now,

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{A O}+\overrightarrow{O C} \\
& =-\overrightarrow{O A}+\overrightarrow{O C} \\
& =-\binom{2}{-2}+\binom{10}{4} \\
& =\binom{8}{6}
\end{aligned}
$$

$\overrightarrow{A C}=\binom{8}{6}$ is of the form $\binom{x}{y}$, where $x=8$ and $y=6$

Question 11(a)(ii)
Required to determine whether A, B and C are collinear.
$\overrightarrow{A B}=\binom{4}{3}$
$\overrightarrow{A C}=\binom{8}{6}$
$=2\binom{4}{3}$
$\overrightarrow{A C}$ is a scalar multiple (=2) of $\overrightarrow{A B}$.
Hence, $\overrightarrow{A C}$ is parallel to $\overrightarrow{A B}$.
A is a common point. Hence, A and B both lie on $\overrightarrow{A C}$ and A, B and C are collinear.

Question 11(b)
Required to determine the value of x for which $\left(\begin{array}{ll}3 & x \\ 2 & 4\end{array}\right)$ is a singular matrix

Let $A=\left(\begin{array}{ll}3 & x \\ 2 & 4\end{array}\right)$.
$|A|=(3 \times 4)-(x \times 2)$
$=12-2 x$

If A is a singular matrix, then $|A|$ or $\operatorname{det} A=0$.
$\therefore 12-2 x=0$

$$
2 x=12
$$

$$
x=\frac{12}{2}
$$

$$
x=6
$$

Question 11(c)(i)

Required to determine $N P$.
$N=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$ and $P=\left(\begin{array}{ll}1 & 5 \\ 2 & 1\end{array}\right)$
$\begin{aligned} N P & =\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\left(\begin{array}{ll}1 & 5 \\ 2 & 1\end{array}\right) \\ & =\left(\begin{array}{ll}(4 \times 1)+(1 \times 2) & (4 \times 5)+(1 \times 1) \\ (3 \times 1)+(2 \times 2) & (3 \times 5)+(2 \times 1)\end{array}\right) \\ & =\left(\begin{array}{ll}4+2 & 20+1 \\ 3+4 & 15+2\end{array}\right) \\ & =\left(\begin{array}{ll}6 & 21 \\ 7 & 17\end{array}\right)\end{aligned}$

Question 11(c)(ii)

Required to determine whether matrix multiplication is commutative.

We are given that $P N=\left(\begin{array}{cc}19 & 11 \\ 11 & 4\end{array}\right)$.
It was found that $N P=\left(\begin{array}{ll}6 & 21 \\ 7 & 17\end{array}\right)$.

Since $P N \neq N P$, then matrix multiplication is not commutative.

Question 11(c)(iii)

Required to determine the inverse of N.

$$
N=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)
$$

$$
\begin{aligned}
\operatorname{det} N & =(4 \times 2)-(1 \times 3) \\
& =8-3 \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
\therefore N^{-1} & =\frac{1}{5}\left(\begin{array}{cc}
2 & -(1) \\
-(3) & 4
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-3 & 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{2}{5} & -\frac{1}{5} \\
-\frac{3}{5} & \frac{4}{5}
\end{array}\right)
\end{aligned}
$$

Question 11(c)(iv)
Required to calculate the values of x and y for which $\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\binom{1}{2}$

$$
\begin{aligned}
\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)\binom{x}{y} & =\binom{1}{2} \\
\binom{x}{y} & =\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)^{-1}\binom{1}{2} \\
\binom{x}{y} & =N^{-1}\binom{1}{2} \\
\binom{x}{y} & =\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-3 & 4
\end{array}\right)\binom{1}{2} \\
\binom{x}{y} & =\frac{1}{5}\left(\left(\begin{array}{l}
2 \times 1 \\
(-3 \times 1)+(-1 \times 2) \\
(4 \times 2)
\end{array}\right)\right. \\
\binom{x}{y} & =\frac{1}{5}\binom{2-2}{-3+8} \\
\binom{x}{y} & =\frac{1}{5}\binom{0}{5} \\
\binom{x}{y} & =\binom{0}{1}
\end{aligned}
$$

$\therefore x=0$ and $y=1$

