Solutions to CSEC Maths P2 JAN 2012

Question 1a part (i)

Required to Calculate

$$
\left(1 \frac{3}{4}\right)^{2} \div 3 \frac{1}{2}
$$

$=\left(\frac{7}{4}\right)^{2} \div \frac{7}{2}$
$=\frac{49}{16} \div \frac{7}{2}$
$=\frac{49}{16} \times \frac{2}{7}$
$=\frac{7}{8} \quad[$ Exact Value]
Question 1a part (ii)
Required to Calculate $\sqrt{0.0529}+0.216$
Using the Calculator
$\sqrt{0.0529}+0.216=0.23+0.216$
$=0.446$
$=4.46 \times 10^{-1}$
[Exact Value]

Question 1b part (i)
Data Given: \quad Basic wage of a typist $=\$ 22.50$ per hour for a 40-hour work week
Overtime Rate $=1 \frac{1}{2}$ the basic hourly rate
Required to Calculate the typist's basic weekly wage
Basic Weekly Wage $=$ Basic Hourly Rate \times Number of hours in a basic work week
$=\$ 22.50 \times 40$
$=\$ 900.00$

Question 1b part (ii)
Required to Calculate Overtime Wage for one hour of overtime work
Overtime Wage for one hour of overtime work $=1 \frac{1}{2} \times$ basic hourly rate
$=1 \frac{1}{2} \times \$ 22.50$
$=\$ 33.75$

Question 1b part (iii)

Required to Calculate Wage earned for overtime if she worked for a total of 52 hours

Overtime Wage for 52 hours $=$ Number of Overtime Hours \times Overtime Rate
$=(52-40) \times \$ 33.75$
$=\$ 405.00$

Question 1b part (iv)
Required to Calculate Number of overtime hours worked to obtain a total wage of \$1440.00

Number of Overtime hours worked $=\frac{\text { Overtime Wage }}{\text { Overtime Rate }}$
$=\frac{(\text { Total Wage }- \text { Basic Wage })}{\text { Overtime Rate }}$
$=\frac{(\$ 1440-\$ 900)}{\$ 33.75}$
$=\frac{\$ 540}{\$ 33.75}$
$=16$ hours

Question 2a

Data Given: $\quad 3 x+2 y=13$

$$
x-2 y=-1
$$

Required to Calculate the value of x and y
Using the Method of Substitution
Step 1: Let $3 x+2 y=13$ be Equation 1
Let $x-2 y=1$ be Equation 2
Step 2: From Equation 2, we find for an expression in terms of y

$$
\begin{aligned}
& x=-1+2 y \\
& x=2 y-1 \quad[\text { Equation } 3]
\end{aligned}
$$

Step 3: Substitute Equation 3 into Equation 1
$3(2 y-1)+2 y=13$
$6 y-3+2 y=13$
$8 y-3=13$
$8 y=16$
$y=\frac{16}{8}$
$y=2$
Step 4: Substitute $y=2$ into Equation 2

$$
\begin{aligned}
& x-2(2)=-1 \\
& x-4=-1 \\
& x=-1+4 \\
& x=3
\end{aligned}
$$

Thus, $x=3$ and $y=2$
Question 2b part (i)

Required to Factorize

$$
x^{2}-16
$$

Step 1: Express as the difference of two square
$(x)^{2}-(4)^{2}$
Step 2: Factorize

$$
(x-4)(x+4)
$$

Question 2b part (ii)

Required to Factorize

$$
2 x^{2}-3 x+8 x=12
$$

Step 1: $2 x^{2}-3 x+8 x-12$
Step 2: Factorize

$$
\begin{aligned}
& 2 x(x+4)-3(x+4) \\
& (x+4)(2 x-3)
\end{aligned}
$$

Question 2c part (i)(a)
Given Data: Adult tickets cost \$30.00 each
Children tickets costs $\$ 15.00$ each
A company bought 28 tickets
Required to Find the number of tickets for children
x tickets were for adults
Number of tickets for children $=$ total number of tickets - number of tickets for adults $=28-x$

Question 2c part (i)(b)
Required to Find the amount spent on tickets for adults
Amount spent on tickets for adults $=$ cost of 1 adult ticket \times number of tickets
$=\$ 30 \times x$
$=\$ 30 x$

Question 2c part (i)(c)
Required to Find the amount spent on tickets for children
Amount spent on tickets for children $=$ cost of tickets for one child \times number of tickets
$=\$ 15 \times(28-x)$
$=\$ 15(28-x)$

Question 2c part (ii)
Required to Show the amount spent on 28 tickets is $\$(15 x+420)$
Total amount spent on all 28 tickets

$$
=\text { amount spent on adult tickets }+ \text { amount spent on children tickets }
$$

$=30+15(28-x)$

Whatsapp +1868 7840619 to register for premium online classes @ The Student Hub
$=30 x+420-15 x$
$=\$(15 x+420)$
Question 2c part (ii)
Data Given: \quad Cost of 28 tickets $=\$ 660$
Required to Calculate the number of adult tickets bought
Total cost of tickets $=\$ 660$
$660=15 x+420$
$660-420=15 x$
$240=15 x$
$x=\frac{240}{15}$
$x=16$
Total Number of adult tickets bought is 16

Question 3a part (i)
Data Given: $\quad U=\{51,52,53,54,55,56,57,58,58\}$

$$
\begin{aligned}
& A=\{\text { Odd numbers }\} \\
& B=\{\text { Prime numbers }\}
\end{aligned}
$$

Required to List the members of the set A
$A=\{51,53,55,57,59\}$

Question 3a part (ii)
Required to List the members of the set B
$B=\{53,59\}$
Question 3b part (iii)
Required to Draw a Venn Diagram to represent the sets A, B and U

Question 3b part (i)(a)
Required to Construct a triangle $C D E$ in which $D E=10 \mathrm{~cm}, D C=8 \mathrm{~cm}$ and angle $C D E=45^{\circ}$

Question 3b part (i)(b)
Required to Construct a line, $C F$, perpendicular to $D E$ such that F lies on $D E$

Question 3b part(ii)
Required to Measure size of $D \hat{C} E$
Using a Protractor
Angle $D C E=83^{\circ}$

Question 4a part(i)
Data Given: Table showing part of a bus schedule

Town	Arrive	Depart
Belleview		$6: 40 \mathrm{am}$
Chagvielle	$7: 35 \mathrm{am}$	$7: 45 \mathrm{am}$
St. Andrews	$8: 00 \mathrm{am}$	

Required to Calculate the time spent at Chagville
Time spent at Chagville $=$ Departure time from Chagville $=$ Arival Time at chagville
$=7: 45 a m-7: 35 a m$
$=10$ minutes

Question 4a part(ii)
Required to Calculate the time taken to travel from Belleview to Chagville

Time taken to travel from Belleview to Chagville
$=$ Arrival time at Chagville - Departure time from Belleview
$=7: 35 a m-6: 40 a m$
$=55$ minutes

Question 4a part (iii)
Required to Calculate the distance, in km, between Belleview and Chagville, if the bus travelled at an average speed of $54 \mathrm{kmh}^{-1}$

Distance between Belleview and CHagville
$=$ time taken to travel from Belleview to Chagville
\times Average Speed during the journey
$=\frac{55}{60} \times 54$
$=49 \frac{1}{2} \mathrm{~km}$

Question 4b part
Data Given: \quad The base area of a cylindrical bucket $=300 \mathrm{~cm}^{2}$
4.8 litres of water was poured into the bucket

Required to Calculate the height of the water in the bucket
Volume of water in the cylindrical bucket $=300 \times h$
$4800 \mathrm{~cm}^{3}=300 \times h$
$h=\frac{4800}{300}$
$h=16 \mathrm{~cm}$
Question 4c part (i)
Data Given: \quad Length of cuboid $=13 \mathrm{~cm}$
Width of cuboid $=4 \mathrm{~cm}$
Height of cuboid $=h \mathrm{~cm}$
Required to Find an expression for the area of the shaded face
Area of the shaded face $=h \times w$
$=4 \times h$
$=4 \mathrm{hcm}^{2}$

Question 4c part (ii)

Required to Write an expression for the volume of the cuboid, in terms of h
Volume of the cuboid $=$ length \times width \times height
$=13 \times 4 \times h$
$=52 \mathrm{~h} \mathrm{~cm}{ }^{3}$
Question 4c part (iii)
Required to Calculate h, if the volume of the cuboid is $286 \mathrm{~cm}^{3}$
Volume of the cuboid in $\mathrm{cm}^{3}=286 \mathrm{~cm}^{3}$
$286=52 h$
$h=\frac{286}{52}$
$h=5.5$

Question 5a part(i)

Given Data: Two triangles $J K L$ and $M L P$
$J K$ is parallel to $M L \quad L M=M P \quad K L P$ is a straight line

$$
\text { Angle } J L M=22^{\circ} \quad \text { Angle } L M P=36^{\circ}
$$

Required to find $M \hat{L} P$
$M \hat{L} P=180^{\circ}-36^{\circ}$
$M \hat{L} P=144^{\circ}$
$=\frac{144^{\circ}}{2}$
$=72^{\circ}$

Question 5a part (ii)
Required to find $L \hat{J} K$
$L \hat{J} K=22^{\circ}$

Question 5a part (iii)
Required to find $J K L$
$J \widehat{K} L=72^{\circ}$

Question 5a part (iv)

Required to find $K \hat{L} J$
$K \hat{L} J=180^{\circ}-\left(22^{\circ}+72^{\circ}\right)$
$=86^{\circ}$

Question 5b part (i)
Data Given: \quad Diagram showing $P Q R$ and its image $P^{\prime} Q^{\prime} R^{\prime}$

Required to State the coordinates of P and Q
$P=(2,1)$ and $Q=(4,3)$

Question 5b part (ii)
Required to Describe Fully the transformation that maps triangle $P Q R$ onto triangles $P^{\prime} Q^{\prime} R^{\prime}$
Triangles $P Q R$ is mapped onto triangle $P^{\prime} Q^{\prime} R^{\prime}$ by a reflection in the x - axis

Question 5b part (iii)
Required to Write the coordinates of images P and Q under the translation (3-6)
Step 1: $P \rightarrow P^{\prime \prime}$
$P^{\prime \prime}(21)+(3-6)$
$=(5-5)$
$\therefore P^{\prime \prime}=(5,-5)$
Step 2: $Q \rightarrow Q^{\prime \prime}$
$Q^{\prime \prime}=(43)+(3-6)$
$=(7-3)$
$\therefore Q^{\prime \prime}=(7,-3)$

Question 6a

Data Given: An incomplete table with corresponding values of x and y for the function $y=x^{2}-2 x-3$ for integer values from -2 to 4

Required to Copy and Complete the Table

x	-2	-1	0	1	2	3	4
y	5	0	-3	-4	-3	0	5

When $x=-1$

$$
\begin{aligned}
& y=(-1)^{2}-2(-1)-3 \\
& =1+2-3 \\
& =0
\end{aligned}
$$

When $x=2$

$$
y=(2)^{2}-2(2)-3
$$

$$
y=4-4-3
$$

$$
y=-3
$$

Question 6b

Required to Plot the graph of $y=x^{2}-2 x-3$ for $-2 \leq x \leq 4$

Question 6c

Required to Use Graph to Estimate the value of y when $x=3.5$
When $x=3.5 \quad y=2.2$

Question 6d part (i)

Required to Write the equation of the axis of symmetry
Equation of the axis of symmetry is $x=1$
Question 6b part (ii)
Required to Estimate the minimum value of the function y
The minimum value of the function y is $y=-4$

Question 6b part (iii)
Required to State the solutions of the equation $x^{2}-2 x-3=0$
The solutions of the equation $x^{2}-2 x-3=0$ is $x=1$ and $x=3$

Question 7a
Data Given: Histogram showing distribution of heights of seedlings in a sample
Required to Copy and Complete the table

Height in cm, x LCL-UCL	LCB $\leq x \leq$ UCB	Midpoint or Mid-Class Interval	Frequency, f
$1-10$	$0.5 \leq x \leq 10.5$	5.5	18
$11-20$	$10.5 \leq x \leq 20.5$	15.5	25
$21-30$	$20.5 \leq x \leq 30.5$	25.5	23
$31-40$	$30.5 \leq x \leq 40.5$	35.5	20
$41-50$	$40.5 \leq x \leq 505$	45.5	14
$\sum f x=2420$			$f=100$

Question 7b part (i)
Required to Determine the modal class interval
Modal Class Interval is $11-20$

Question 7b part (ii)

Required to Determine the number of seedlings in the sample
The number of seedlings $=18+25+23+20+14$

$$
=100
$$

Question 7b part (iii)

Required to Determine the mean height of the seedlings
Mean Height of Seedlings $=\frac{\Sigma \quad f x}{\Sigma \quad f}$
$\sum \quad f x=(5.4 \times 18)+(15.4 \times 25)+(25.5 \times 23)+(3.5 \times 20)+(45.5 \times 14)$
$=2420$
$\frac{\sum \quad f x}{\Sigma \quad f}=\frac{2420}{100}$
$=24.2 \mathrm{~cm}$
Question 7b part (iv)
Required to Determine the probability that a seedling chosen at random has a height that is greater than 30 cm
$P($ Seedling is greater than 30 cm$)=\frac{\text { Number of seedlings greater than } 30 \mathrm{~cm}}{\text { Total number of seedlings }}$
$=\frac{34}{100}$
$=\frac{17}{50}$

Question 8a

Data Given: Table of values and diagrams showing a sequence of shapes

Required to Draw the $4^{\text {th }}$ shape in the pattern

Question 8b (i)
Required to Copy and Complete the table for Figure 4

	Total Number of Straws	
Figure	Formula	Number
1	$1(6)-0$	6
2	$2(6)-1$	11
3	$3(6)-2$	16
4	$4(6)-3$	21

10		

Question 8b(ii)

Required to Copy and Complete the table for Figure 10

	Total Number of Straws	
Figure	Formula	Number
1	$1(6)-0$	6
2	$2(6)-1$	11
3	$3(6)-2$	16
4	$4(6)-3$	21
10		
	$10(6)-9$	51

Question 8c part

Required to Find the figure in the sequence which uses 106 straws
Total Number of straws $=($ Figure Number $\times 6)-($ Figure Number -1$)$
$(n \times 6)-(n-1)=106$
$6 n-n+1=106$
$5 n+1=106$
$5 n=105$
$n=21$
Thus, figure 21 has 106 straws

Question 8d
Required to Find an expression, in n, for the number of straws in the nth pattern
Total number of straws used in the nth pattern $=n(6)-(n-1)$
$=-5 n+1$

Question 9a part (i)
Data Given: $\quad y=\frac{2 x+3}{x-4}$
Required to make x the subject of the formula
$y(x-4)=2 x+3$
$x y-4 y=2 x+3$
$x y-2 x=3+4 y$
$(y-2) x=4 y+3$
$x=\frac{4 y+3}{y-2}$
Question 9a part (ii)
Required to Determine the inverse of $f(x)=\frac{2 x+3}{x-4}, x \neq 4$
$f(x)=\frac{2 x+3}{x-4}$
Let $y=f(x)$
$y=\frac{4 x+3}{x-2}$
$f^{-1}(x)=\frac{4 x+3}{x-2}$

Question 9a part (iii)

Required to Find the value of x for which $f(x)=0$
Let $\frac{2 x+3}{x-4}=0$
$2 x+3=0$
$2 x=-3$
$x=-\frac{3}{2}$
Thus, when $f(x)=0, x=-\frac{3}{2}$

Question 9b part (i)

Data Given: Diagrams showing the graphs of lines $x=6, x+y=40$ and $3 y=x$
Required to State the other two inequalities which define the shaded region
$x \geq 6$ and $x+y \leq 40$
Question 9b part (ii)
Required to Identify the three pairs of values for which p has a maximum or minimum value
$(6,2),(6,34),(30,10)$
Question 9b part (iii)
Required to Identify the pair of values which makes p a maximum
When $x=6$ and $y=2$

$$
p=4(6)+3(2)
$$

$$
=30
$$

When $x=6$ and $y=34$
$p=4(6)+3(34)$
$=126$
When $x=30$ and $y=10$

$$
p=4(30)+3(10)
$$

$$
=150
$$

Thus, the pair of values which makes p a maximum is $(30,10)$

Question 10a part(i)

Data Given: Diagram showing a regular hexagon with center O and $A O=8 \mathrm{~cm}$
Required to Determine the size of angle $A O B$
Angle $A O B=60^{\circ}$
[Each interior angle is 60° in an equilateral triangle

Question 10a part(ii)

Required to Calculate to the nearest whole number, the area of the hexagon
Let x be $\frac{1}{2}$ of the perimeter of Triangle $A O B$
$x=\frac{5+5+5}{2}$
$=7.5$
Using Heron's Formula

$$
\begin{aligned}
& \text { Area }=\sqrt{7.5(7.5-5)(7.5-5)(7.5-5)} \\
& =\sqrt{7.5 \times 2.5 \times 2.5 \times 2.5} \\
& =\sqrt{117.1875} \\
& =6 \times \sqrt{117.1875} \\
& =64.9 \\
& \approx 65 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 10b part(i)

Data Given: Diagram showing a vertical pole $P L$ standing on a horizontal plane $K L M$, where the angle of elevation of P from K is $28^{\circ} . K L=15 \mathrm{~m}, L M=19 \mathrm{~m}$ and $K \hat{L} M=115^{\circ}$

Required to Copy the diagram showing the angle of elevation and one right angle

Angle of Elevation $=28^{\circ}$

Question 10b part(ii)(a)

Required to Calculate $P L$

$\tan \theta=\frac{o p p}{a d j}$
$\tan 28^{\circ}=\frac{P L}{15}$
$P L=15 \tan 28^{\circ}$
$P L=7.97 m$
$=8.0 \mathrm{~m} \quad[$ to 2 significant figures $]$
Question 10b part(ii)(b)

Required to Calculate $K M$

Using the Cosine Rule
$K M^{2}=L M^{2}+K L^{2}-2(L M)(K L) \cos \cos K \hat{L} M$
$=(19)^{2}+(15)^{2}-2(19)(15) \cos 115^{\circ}$
$=586+240.89$
$=826.89$
$K L=\sqrt{826.89}$
$=28.7 \mathrm{~m}$
$\approx 29 \mathrm{~m} \quad$ [to 2 significant figures]
Question 10b part(ii)(c)
Required to Calculate the angle of elevation of P from M
$\tan P \widehat{M} L=\frac{P L}{L M}$
$=\frac{8}{19}$
$P \widehat{M} L=\left(\frac{8}{19}\right)$
$\approx 22.7^{\circ}$
$\approx 23^{\circ} \quad$ [to 2 significant figures]

Question 11a part(i)(a)
Given Data: Diagram showing position vectors $O A$ and $O B$

Required to Find OA in the form (x y)
$O A=(-13)$ is of the form $(x y)$ where $x=-1$ and $y=3$
Question 11a part(i)(b)
Required to Find $O B$ in the form ($x y$)
$O A=(51)$ is of the form $(x y)$ where $x=5$ and $y=1$

Question 11a part(i)(c)

Required to Find $B A$ in the form ($x y$)
Using the Vector Triangle Law
$B A=B O+O A$
$=\left(\begin{array}{ll}5 & 1\end{array}\right)+(-13)$
$=(-5-1-1+3)$
$=(-62)$ is of the form $(x y)$, where $x=-6$ and $y=2$

Question 11b part(ii)(a)
Data Given: $\quad G$ is the midpoint of the line $A B$
Required to Find $B G$ in the form ($x y$)
$B G=\frac{1}{2} B A$
$\frac{1}{2} B A=\frac{1}{2}(-62)$
$=(-31)$ is of the form $(x y)$, where $x=-3$ and $y=1$

Question 11b part(ii)(b)
Required to Find $O G$ in the form ($x y$)
$O G=O B+B G$
$=(51)+(-31)$
$=(22)$ is of the form $(x y)$, where $x=2$ and $y=2$
Question 11b part (i)
Data Given: $\quad L=\left(\begin{array}{llll}3 & 2 & 1 & 4\end{array}\right)$ and $M=(-1302)$
Required to Evaluate $L+2 M$
$L+2 M$
$=\left(\begin{array}{lll}3 & 2 & 1\end{array} 4\right)+2(-1302)$
$=\left(\begin{array}{lll}3 & 2 & 1\end{array} 4\right)+(-2602)$
$=\left(\begin{array}{llll}1 & 8 & 1 & 8\end{array}\right)$

Question 11b part (ii)
Required to Evaluate $L M$
LM

Whatsapp +18687840619 to register for premium online classes @ The Student Hub

```
\(=\left(\begin{array}{llll}3 & 2 & 1 & 4\end{array}\right)(-1302)\)
\(=((3 \times-1)+(2 \times 0)(3 \times 3)+(2 \times 2)(1 \times-1)+(4 \times 0)(1 \times 3)+(4 \times 2))\)
\(=L M=(-313-111)\)
```

Question 11c part (i)
Data Given: $\quad Q=\left(\begin{array}{llll}4 & 2 & 1 & 1\end{array}\right)$
Required to find Q^{-1}
$Q^{-1}=\frac{1}{|Q|}(d-b-c a)$
$Q^{-1}=\frac{1}{a d-b c}(1-2-14)$
$=\frac{1}{(1)(4)-(-2)(-1)}(1-2-14)$
$=\frac{1}{2}(1-2-14)$
$=\left(\frac{1}{2}-1-\frac{1}{2} 2\right)$

Question 11c part (ii)
Required to find the value of x and y in the equation (4211)(xy)=(83)
Step 1: Multiply Matrices
$((4 x+2 y)(1 x+1 y))=(83)$
Step 2: Equating Entries
$4 x+2 y=8 \quad$ [Equation 1]
$x+y=3 \quad$ [Equation 2]
Step 4: Multiply Equation 2 by 4
$4(x+y)=4(3)$
$4 x+4 y=12 \quad$ [Equation 3$]$
Step 5: Subtract Equation 1 from Equation 2
$4 x+4 y=12-$
$4 x+2 y=8$
$2 y=4$
$y=\frac{4}{2}$
$y=2$
Step 6: Substitute $y=2$ into Equation 2
$x+y=3$
$x+2=3$
$x=3-2$
$x=1$

Thus, $x=1$ and $y=2$

