Solutions to CSEC Maths P2 JAN 2012

Question 1a part (i)

Required to Calculate

 $\left(1\frac{3}{4}\right)^2 \div 3\frac{1}{2}$ $= \left(\frac{7}{4}\right)^2 \div \frac{7}{2}$ $= \frac{49}{16} \div \frac{7}{2}$ $= \frac{49}{16} \times \frac{2}{7}$ $= \frac{7}{8} \quad [\text{Exact Value}]$

Question 1a part (ii)

Required to Calculate $\sqrt{0.0529} + 0.216$

Using the Calculator

$$\sqrt{0.0529} + 0.216 = 0.23 + 0.216$$

= 0.446

 $= 4.46 \times 10^{-1}$ [Exact Value]

Question 1b part (i)

Data Given: Basic wage of a typist = \$22.50 per hour for a 40-hour work week

Overtime Rate = $1\frac{1}{2}$ the basic hourly rate

Required to Calculate the typist's basic weekly wage

Basic Weekly Wage = Basic Hourly Rate × Number of hours in a basic work week

= \$22.50 \times 40

= \$900.00

Question 1b part (ii)

Required to Calculate Overtime Wage for one hour of overtime work

Overtime Wage for one hour of overtime work = $1\frac{1}{2} \times basic$ hourly rate

$$=1\frac{1}{2} \times $22.50$$

= \$33.75

Question 1b part (iii)

Required to Calculate Wage earned for overtime if she worked for a total of 52 hours

Overtime Wage for 52 *hours = Number of Overtime Hours × Overtime Rate*

 $= (52 - 40) \times 33.75

= \$405.00

Question 1b part (iv)

Required to Calculate Number of overtime hours worked to obtain a total wage of \$1440.00

Number of Overtime hours worked = $\frac{Overtime Wage}{Overtime Rate}$

 $=\frac{(Total Wage-Basic Wage)}{Overtime Rate}$

 $=\frac{(\$1440-\$900)}{\$33.75}$

 $=\frac{\$540}{\$33.75}$

= 16 hours

Question 2a

Data Given: 3x + 2y = 13

x - 2y = -1

Required to Calculate the value of *x* and *y*

Using the Method of Substitution

Step 1: Let 3x + 2y = 13 be Equation 1

Let x - 2y = 1 be Equation 2

Step 2: From Equation 2, we find for an expression in terms of y

$$x = -1 + 2y$$
$$x = 2y - 1$$
 [Equation 3]

Step 3: Substitute Equation 3 into Equation 1

$$3(2y - 1) + 2y = 13$$

 $6y - 3 + 2y = 13$
 $8y - 3 = 13$
 $8y = 16$
 $y = \frac{16}{8}$
 $y = 2$

Step 4: Substitute y = 2 into Equation 2

$$x - 2(2) = -1$$
$$x - 4 = -1$$
$$x = -1 + 4$$
$$x = 3$$

Thus, x = 3 and y = 2

Question 2b part (i)

Required to Factorize

 $x^2 - 16$

Step 1: Express as the difference of two square

$$(x)^2 - (4)^2$$

Step 2: Factorize

$$(x-4)(x+4)$$

Question 2b part (ii)

Required to Factorize

 $2x^2 - 3x + 8x = 12$

Step 1: $2x^2 - 3x + 8x - 12$

Step 2: Factorize

2x(x+4) - 3(x+4)

(x+4)(2x-3)

Question 2c part (i)(a)

Given Data: Adult tickets cost \$30.00 each

Children tickets costs \$15.00 each

A company bought 28 tickets

Required to Find the number of tickets for children

x tickets were for adults

Number of tickets for children = total number of tickets - number of tickets for adults

= 28 - x

Question 2c part (i)(b)

Required to Find the amount spent on tickets for adults

Amount spent on tickets for adults = cost of 1 adult ticket × number of tickets

= \$30 $\times x$

= \$30*x*

Question 2c part (i)(c)

Required to Find the amount spent on tickets for children

Amount spent on tickets for children = cost of tickets for one child × number of tickets

= \$15 × (28 – *x*)

= \$15(28 - *x*)

Question 2c part (ii)

Required to Show the amount spent on 28 tickets is (15x + 420)

Total amount spent on all 28 tickets

= amount spent on adult tickets + amount spent on children tickets

= 30 + 15(28 - x)

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

= 30x + 420 - 15x

= \$(15*x* + 420)

Question 2c part (ii)

Data Given: Cost of 28 tickets = \$660

Required to Calculate the number of adult tickets bought

Total cost of tickets = \$660 660 = 15x + 420 660 - 420 = 15x 240 = 15x $x = \frac{240}{15}$

x = 16

Total Number of adult tickets bought is 16

Question 3a part (i)

Data Given: $U = \{51, 52, 53, 54, 55, 56, 57, 58, 58\}$

 $A = \{ Odd \ numbers \}$

 $B = \{Prime numbers\}$

Required to List the members of the set *A*

 $A = \{51, 53, 55, 57, 59\}$

Question 3a part (ii)

Required to List the members of the set *B*

 $B = \{53, 59\}$

Question 3b part (iii)

Required to Draw a Venn Diagram to represent the sets *A*, *B* and *U*

Question 3b part (i)(a)

Required to Construct a triangle *CDE* in which DE = 10cm, DC = 8cm and angle $CDE = 45^{\circ}$

Question 3b part (i)(b)

Required to Construct a line, CF, perpendicular to DE such that F lies on DE

Question 3b part(ii)

Required to Measure size of $D\hat{C}E$

Using a Protractor

Angle $DCE = 83^{\circ}$

Question 4a part(i)

Data Given: Table showing part of a bus schedule

Town	Arrive	Depart
Belleview		6:40 am
Chagvielle	7:35 am	7:45 am
St. Andrews	8:00 am	

Required to Calculate the time spent at Chagville

Time spent at Chagville = Departure time from Chagville = Arival Time at chagville

= 7:45am - 7:35am

= 10 minutes

Question 4a part(ii)

Required to Calculate the time taken to travel from Belleview to Chagville

Time taken to travel from Belleview to Chagville = Arrival time at Chagville – Departure time from Belleview

= 7:35am - 6:40am

= 55 minutes

Question 4a part (iii)

Required to Calculate the distance, in km, between Belleview and Chagville, if the bus travelled

at an average speed of $54kmh^{-1}$

Distance between Belleview and CHagville = time taken to travel from Belleview to Chagville × Average Speed during the journey

 $= \frac{55}{60} \times 54$ $= 49\frac{1}{2}km$

Question 4b part

Data Given: The base area of a cylindrical bucket = $300cm^2$

4.8 litres of water was poured into the bucket

Required to Calculate the height of the water in the bucket

Volume of water in the cylindrical bucket = $300 \times h$

 $4800 cm^3 = 300 \times h$

$$h = \frac{4800}{300}$$

h = 16cm

Question 4c part (i)

Data Given: Length of cuboid = 13cm

Width of cuboid = 4cm

Height of cuboid = hcm

Required to Find an expression for the area of the shaded face

Area of the shaded face = $h \times w$

 $= 4 \times h$

 $=4h \ cm^2$

Question 4c part (ii)

Required to Write an expression for the volume of the cuboid, in terms of h

Volume of the cuboid = *length* \times *width* \times *height*

 $= 13 \times 4 \times h$

 $= 52h \, cm^3$

Question 4c part (iii)

Required to Calculate h, if the volume of the cuboid is $286cm^3$

Volume of the cuboid in $cm^3 = 286cm^3$

286 = 52h

$$h = \frac{286}{52}$$

h = 5.5

Question 5a part(i)

Given Data: Two triangles *JKL* and *MLP*

$$JK$$
 is parallel to ML $LM = MP$ KLP is a straight line

Angle $JLM = 22^{\circ}$ Angle $LMP = 36^{\circ}$

Required to find $M\hat{L}P$

 $M\hat{L}P = 180^{\circ} - 36^{\circ}$

 $M\hat{L}P = 144^{\circ}$

$$=\frac{144}{2}$$

= 72°

Question 5a part (ii)

Required to find $L\hat{J}K$

 $L\hat{J}K = 22^{\circ}$

Question 5a part (iii)

Required to find JKL

 $J\widehat{K}L = 72^{\circ}$

Question 5a part (iv)

Required to find $K\hat{L}J$

 $K\hat{L}J = 180^{\circ} - (22^{\circ} + 72^{\circ})$

= 86°

Question 5b part (i)

Data Given: Diagram showing PQR and its image P'Q'R'

Required to State the coordinates of *P* and *Q*

P = (2,1) and Q = (4,3)

Question 5b part (ii)

Required to Describe Fully the transformation that maps triangle *PQR* onto triangles P'Q'R'Triangles *PQR* is mapped onto triangle P'Q'R' by a reflection in the x - axis

Question 5b part (iii)

Required to Write the coordinates of images *P* and *Q* under the translation (3 - 6)

<u>Step 1</u>: *P* → *P'' P''*(2 1) + (3 - 6) = (5 - 5) ∴ *P''* = (5, -5) <u>Step 2: *Q* → *Q'' Q''* = (4 3) + (3 - 6) = (7 - 3) ∴ *Q''* = (7, -3)</u>

Question 6a

Data Given: An incomplete table with corresponding values of *x* and *y* for the function

 $y = x^2 - 2x - 3$ for integer values from -2 to 4

Required to Copy and Complete the Table

	х	-2	-1	0	1	2	3	4
	у	5	0	-3	-4	-3	0	5
Wh	x = 1	n x = -1 $y = (-1)^2 - 2(-1) - 3$ = 1 + 2 - 3						
			=	0				
When $x = 2$ $y = (2)^2 - 2(2) - 3$								
			<i>y</i> =	= 4 - 4	- 3			
			<i>y</i> =	= -3				

Question 6b

Required to Plot the graph of $y = x^2 - 2x - 3$ for $-2 \le x \le 4$

Question 6c

Required to Use Graph to Estimate the value of *y* when x = 3.5

When x = 3.5 y = 2.2

Question 6d part (i)

Required to Write the equation of the axis of symmetry

Equation of the axis of symmetry is x = 1

Question 6b part (ii)

Required to Estimate the minimum value of the function *y*

The minimum value of the function y is y = -4

Question 6b part (iii)

Required to State the solutions of the equation $x^2 - 2x - 3 = 0$

The solutions of the equation $x^2 - 2x - 3 = 0$ is x = 1 and x = 3

Question 7a

Data Given: Histogram showing distribution of heights of seedlings in a sample **Required to Copy and Complete** the table

Height in cm, <i>x</i>	$LCB \le x \le UCB$	Midpoint or	Frequency, f
LCL-OCL		Milu-Class Interval	
1 – 10	$0.5 \le x \le 10.5$	5.5	18
11 – 20	$10.5 \le x \le 20.5$	15.5	25
21 – 30	$20.5 \le x \le 30.5$	25.5	23
31 - 40	$30.5 \le x \le 40.5$	35.5	20
41 – 50	$40.5 \le x \le 505$	45.5	14
$\int fx = 2420$			$\sum f = 100$

Question 7b part (i)

Required to Determine the modal class interval

Modal Class Interval is 11-20

Question 7b part (ii)

Required to Determine the number of seedlings in the sample

The number of seedlings = 18 + 25 + 23 + 20 + 14

= 100

Question 7b part (iii)

Required to Determine the mean height of the seedlings

Mean Height of Seedlings = $\frac{\sum fx}{\sum f}$ $\sum fx = (5.4 \times 18) + (15.4 \times 25) + (25.5 \times 23) + (3.5 \times 20) + (45.5 \times 14)$ = 2420 $\frac{\sum fx}{\sum f} = \frac{2420}{100}$ = 24.2 cm

Question 7b part (iv)

Required to Determine the probability that a seedling chosen at random has a height that is greater than 30*cm*

 $P(Seedling is greater than 30 cm) = \frac{Number of seedlings greater than 30 cm}{Total number of seedlings}$

 $=\frac{34}{100}$ $=\frac{17}{50}$

Question 8a				
Data Given:	Table of value	es and diagrams show	ing a sequence of	shapes
Required to D	raw the 4 th sha	pe in the pattern		
Question 8b	(i)			

Required to Copy and Complete the table for Figure 4

	Total Number of Straws		
Figure	Formula	Number	
1	1(6) - 0	6	
2	2(6) – 1	11	
3	3(6) - 2	16	
4	4(6) - 3	21	

10	
10	

Question 8b(ii)

Required to Copy and Complete the table for Figure 10

	Total Number of Straws		
Figure	Formula	Number	
1	1(6) - 0	6	
2	2(6) – 1	11	
3	3(6) - 2	16	
4	4(6) - 3	21	
10	10(6) - 9	51	

Question 8c part

Required to Find the figure in the sequence which uses 106 straws

Total Number of straws = (Figure Number \times 6) – (Figure Number – 1)

 $(n \times 6) - (n - 1) = 106$

6n - n + 1 = 106

5n + 1 = 106

5n = 105

n = 21

Thus, figure 21 has 106 *straws*

Question 8d

Required to Find an expression, in *n*, for the number of straws in the nth pattern

Total number of straws used in the nth pattern = n(6) - (n - 1)

= -5n + 1

Question 9a part (i)

Data Given: $y = \frac{2x+3}{x-4}$

Required to make *x* the subject of the formula

$$y(x - 4) = 2x + 3$$

$$xy - 4y = 2x + 3$$

$$xy - 2x = 3 + 4y$$

$$(y - 2)x = 4y + 3$$

$$x = \frac{4y + 3}{y - 2}$$

Question 9a part (ii)

Required to Determine the inverse of $f(x) = \frac{2x+3}{x-4}, x \neq 4$

$$f(x) = \frac{2x+3}{x-4}$$

Let $y = f(x)$
 $y = \frac{4x+3}{x-2}$
 $f^{-1}(x) = \frac{4x+3}{x-2}$

Question 9a part (iii)

Required to Find the value of *x* for which f(x) = 0

Let
$$\frac{2x+3}{x-4} = 0$$

 $2x + 3 = 0$
 $2x = -3$
 $x = -\frac{3}{2}$

Thus, when f(x) = 0, $x = -\frac{3}{2}$

Question 9b part (i)

Data Given: Diagrams showing the graphs of lines x = 6, x + y = 40 and 3y = x

Required to State the other two inequalities which define the shaded region

 $x \ge 6$ and $x + y \le 40$

Question 9b part (ii)

Required to Identify the three pairs of values for which *p* has a maximum or minimum value

(6,2), (6,34), (30,10)

Question 9b part (iii)

Required to Identify the pair of values which makes *p* a maximum

When x = 6 and y = 2 p = 4(6) + 3(2) = 30When x = 6 and y = 34 p = 4(6) + 3(34) = 126When x = 30 and y = 10 p = 4(30) + 3(10)= 150

Thus, the pair of values which makes p a maximum is (30,10)

Question 10a part(i)

Data Given: Diagram showing a regular hexagon with center 0 and A0 = 8cm

Required to Determine the size of angle *AOB*

Angle $AOB = 60^{\circ}$

[Each interior angle is 60° in an equilateral triangle

Question 10a part(ii)

Required to Calculate to the nearest whole number, the area of the hexagon

```
Let x be \frac{1}{2} of the perimeter of Triangle AOB

x = \frac{5+5+5}{2}

= 7.5

Using Heron's Formula

Area = \sqrt{7.5(7.5-5)(7.5-5)(7.5-5)}

= \sqrt{7.5 \times 2.5 \times 2.5 \times 2.5}

= \sqrt{117.1875}

= 6 \times \sqrt{117.1875}

= 64.9

\approx 65 cm^2
```

Question 10b part(i)

Data Given: Diagram showing a vertical pole *PL* standing on a horizontal plane *KLM*, where the angle of elevation of *P* from *K* is 28°. KL = 15m, LM = 19m and $K\hat{L}M = 115^{\circ}$

Required to Copy the diagram showing the angle of elevation and one right angle

Angle of Elevation = 28°

Question 10b part(ii)(a)

Required to Calculate *PL*

$$tan\theta = \frac{opp}{adj}$$
$$tan28^{\circ} = \frac{PL}{15}$$

 $PL = 15tan28^{\circ}$

PL = 7.97m

= 8.0 m [to 2 significant figures]

Question 10b part(ii)(b)

Required to Calculate *KM*

Using the Cosine Rule

 $KM^{2} = LM^{2} + KL^{2} - 2(LM)(KL) \cos \cos K\hat{L}M$

 $= (19)^{2} + (15)^{2} - 2(19)(15)\cos 115^{\circ}$

= 586 + 240.89

= 826.89

 $KL = \sqrt{826.89}$ = 28.7 m

 $\approx 29m$ [to 2 significant figures]

Question 10b part(ii)(c)

Required to Calculate the angle of elevation of *P* from *M*

 $tanP\widehat{M}L = \frac{PL}{LM}$ $= \frac{8}{19}$ $P\widehat{M}L = \left(\frac{8}{19}\right)$ $\approx 22.7^{\circ}$ $\approx 23^{\circ} \qquad [to 2 significant figures]$

Question 11a part(i)(a)

Given Data: Diagram showing position vectors *OA* and *OB*

Required to Find OA in the form (x y)

OA = (-13) is of the form (x y) where x = -1 and y = 3

Question 11a part(i)(b)

Required to Find OB in the form (x y)

OA = (51) is of the form (x y) where x = 5 and y = 1

Question 11a part(i)(c)

Required to Find BA in the form (x y)

Using the Vector Triangle Law

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

BA = BO + OA

= (51) + (-13)

= (-5 - 1 - 1 + 3)

= (-62) is of the form (x y), where x = -6 and y = 2

Question 11b part(ii)(a)

Data Given: *G* is the midpoint of the line *AB*

```
Required to Find BG in the form (x y)
```

 $BG = \frac{1}{2}BA$

$$\frac{1}{2}BA = \frac{1}{2}(-62)$$

= (-31) is of the form (x y), where x = -3 and y = 1

Question 11b part(ii)(b)

Required to Find OG in the form (x y)

OG = OB + BG

$$= (51) + (-31)$$

= (22) is of the form (x y), where x = 2 and y = 2

Question 11b part (i)

Data Given: L = (3 2 1 4) and M = (-1 3 0 2)

Required to Evaluate L + 2M

L + 2M

= (3 2 1 4) + 2(-1 3 0 2)= (2 2 1 4) + (-2 6 0 2)

$$= (3214) + (-2602)$$

= (1818)

Question 11b part (ii)

Required to Evaluate *LM*

LM

$$= (3 2 1 4)(-1 3 0 2)$$

= $((3 \times -1) + (2 \times 0) (3 \times 3) + (2 \times 2) (1 \times -1) + (4 \times 0) (1 \times 3) + (4 \times 2))$
= $LM = (-3 13 - 1 11)$

Question 11c part (i)

Data Given: $Q = (4 \ 2 \ 1 \ 1)$

Required to find Q^{-1}

$$Q^{-1} = \frac{1}{|Q|} (d - b - c a)$$

$$Q^{-1} = \frac{1}{ad - bc} (1 - 2 - 1 4)$$

$$= \frac{1}{(1)(4) - (-2)(-1)} (1 - 2 - 1 4)$$

$$= \frac{1}{2} (1 - 2 - 1 4)$$

$$= \left(\frac{1}{2} - 1 - \frac{1}{2} 2\right)$$

Question 11c part (ii)

Required to find the value of x and y in the equation $(4\ 2\ 1\ 1\)(x\ y\) = (8\ 3\)$

Step 1: Multiply Matrices

((4x + 2y) (1x + 1y)) = (83)

Step 2: Equating Entries

4x + 2y = 8 [Equation 1]

x + y = 3 [Equation 2]

Step 4: Multiply Equation 2 by 4

$$4(x+y) = 4(3)$$

4x + 4y = 12 [Equation 3]

Step 5: Subtract Equation 1 from Equation 2

4x + 4y = 12 - 4x + 2y = 82y = 4

 $y = \frac{4}{2}$

y = 2

Step 6: Substitute y = 2 into Equation 2

x + y = 3x + 2 = 3x = 3 - 2x = 1

Thus, x = 1 and y = 2