Solutions to CSEC Maths P2 January 2014

Question 1(a)

$$
\begin{aligned}
& \left(1 \frac{3}{4}-\frac{1}{8}\right)+\left(\frac{5}{6} \div \frac{2}{3}\right) \\
& \frac{13}{8}+\frac{5}{4} \\
& \frac{23}{8}
\end{aligned}
$$

Question 1(b)

By calculator
2.399
$=2.40$ (correct to 2 decimal places)

Question 1(c)(i)

$$
\text { Cost of bracelets in China }=\$ 6800
$$

Amount paid in duty $=\$ 1360$
Total cost $=6800+1360=\$ 8160$

Question 1(c)(ii)(a)

Selling price of 165 bracelets $=\$ 68.85 \times \$ 165$

$$
=\$ 11360.25
$$

Selling price exceeds cost price, hence a profit was made

$$
\begin{gathered}
\text { Profit }=\text { Selling Price }- \text { Total Cost } \\
=\$ 11360.25-\$ 81600.00 \\
=\$ 3200.25
\end{gathered}
$$

Question 1(c)(ii)(b)

$$
\begin{aligned}
& \text { Percentage Profit }=\frac{3200.25}{8160.00} \times 100 \\
& =39.2 \% \cong 39 \%
\end{aligned}
$$

Question 2(a)(i)

$$
\begin{aligned}
& 2(x-6)+3 x \leq 8 \\
& 2 x-12+3 x \leq 8 \\
& 2 x+3 x-12 \leq 8 \\
& 2 x+3 x \leq 8+12 \\
& 5 x \leq 20 \\
& x \leq 4
\end{aligned}
$$

Question 2(a)(ii)

Question 2(b)(i)

$$
\begin{aligned}
& 3 x-6 y+a x-2 a y \\
& 3(x-2 y)+a(x-2 y) \\
& (x-2 y)(3+a)
\end{aligned}
$$

Question 2(b)(iii)

$$
\begin{aligned}
& p^{2}-1 \\
& (p-1)(p+1)
\end{aligned}
$$

Question 2(c)

$$
\begin{aligned}
& (2 k-3)(k-2) \\
& 2 k^{2}-4 k-3 k+6 \\
& 2 k^{2}-7 k+6
\end{aligned}
$$

Question 2(d)

Substituting $x=1$ in $3 x+y=2$
$y=-1$
Substituting $x=1$ in $4 x-2 y=6$
$y=-1$
Hence the point $(1,-1)$ is the point of intersection of both lines

Question 3(i)
Number of students which study Spanish only $=32-20=12$
U

Question 3(ii)
$32-20=12$ students which study Spanish but not French

Question 3(b) (i)

$$
\begin{aligned}
& l=x+5+2 x \\
& l=(3 x+5) m
\end{aligned}
$$

Question 3(b) (ii) (a)

$$
\begin{aligned}
& \text { Perimeter }=x+3+5+x+2+3+(3 x+5)+x \\
& \text { Perimeter }=(8 x+16) m \\
& 8 x+16=56 \\
& x=5
\end{aligned}
$$

Question 3(b)(ii)(b)

Area of square, $\mathrm{P}=5 \times 5=25$
Area of rectangle, $\mathrm{Q}=8 \times 5=40$
Area of rectangle, $\mathrm{R}=10 \times 3=30$
Total Area $=25+30+40=95 \mathrm{~m}^{2}$

Question 4(a)

Line 1: $y=x+2$
Line 2: $y=x$
Line 3: $y=2$
Question 4(b)

$$
\begin{aligned}
& \text { Using points }(0,0) \text { and }(2,2) \\
& m=\frac{2-0}{2-0}=\frac{2}{2} \\
& m=1
\end{aligned}
$$

Question 4(c)

Question 4(d)

$$
\begin{aligned}
& y \leq 2 \\
& y \geq x \\
& x \leq 0
\end{aligned}
$$

Question 4(e)

Gradient of line 1 is 1
Hence required gradient of the perpendicular line is -1 .
Since the required lines passes through the origin, then its equation is $y=-x$

Question 5(a)(ii)

53°

Question 5(a)(iii)

Question 5(b)(i)

$$
\begin{aligned}
& \text { Area } P Q R S=\frac{1}{2}(12+6) 15 \\
& =135 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 5(b)(ii)

Volume of block $=135 \times 3=405 \mathrm{~cm}^{2}$

Question 5(b)(iii)

$$
\begin{aligned}
& \text { Mass of } 1 \mathrm{~cm}^{3} \text { of the metal }=\frac{1.5 \times 1000}{405} \\
& =3.703 \cong 3.7 \mathrm{~g}(1 \mathrm{dp})
\end{aligned}
$$

Question 6(a)(i)

$$
x=28^{\circ}(\text { Alternate Angles })
$$

Question 6(a)(ii)

$$
\begin{aligned}
& \text { Angle } y=180-\frac{180-28}{2} \\
& \text { Angle } y=104^{o}
\end{aligned}
$$

Question 6(a)(iii)

$$
z=104^{\circ}(\text { Vertically opposite and Corresponding Angles })
$$

Question 6(b)(i)
J has coordinates ($-4,1$)
Question 6(b)(ii)
$K^{\prime} L^{\prime}=2 \mathrm{~cm}$
Question 6(b)(iii)
The translation is a reflection

Question 6(b)(iv)

$$
\begin{aligned}
& \mathrm{J}^{\prime \prime}=(1,-2) \\
& \mathrm{K}^{\prime \prime}=(4,-2) \\
& \mathrm{L}^{\prime \prime}=(4,0)
\end{aligned}
$$

Question 7(a)

The number of seedlings is 85
Question 7(b)(i)
The lower class limit is 8

```
Question 7(b)(ii)
```

The upper class boundary is 12.5

Question 7(b)(iii)

Class width $=12.5-7.5=5$
Question 7(c)

Height, \boldsymbol{x} (cm) LCL-UCL	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Lower } \\ \text { Class } \\ \text { Boundary } \end{array} \\ \hline \end{array}$	Upper Class Boundary UCB	Midpoint or Midclass Interval MCI	$\underset{f}{\text { Frequency, }}$	Points to be plotted (MC1, Frequency)
					$(0,0)$
$3-7$	$2.5 \leq x<7.5$		$\frac{2.5+7.5}{2}=5$	0	$(5,0)$
8-12	$7.5 \leq x<12.5$		$\frac{7.5+12.5}{2}=10$	3	$(10,3)$
13-17	$12.5 \leq x<17.5$		$\frac{12.5+17.5}{2}=15$	12	$(15,12)$
18-22	$17.5 \leq x<22.5$		$\frac{17.5+22.5}{2}=20$	16	$(20,16)$
23-27	$22.5 \leq x<27.5$		$\frac{22.5+27.5}{2}=25$	22	$(25,22)$
28-32	$27.5 \leq x<32.5$		$\frac{27.5+32.5}{2}=30$	18	$(30,18)$
33-37	$32.5 \leq x<37.5$		$\frac{32.5+37.5}{2}=35$	14	$(35,14)$
				$\sum f=85$	$(40,0)$

Question 7(d)

Question 8(b)

	No. of Trapezia (\boldsymbol{n})	No. of Triangles	No. of Dots
(i)	4	$4 n$	$4 n+2$
(ii)	10	$4(4)=16$	$4(4)+2=16$ $+2=18$
(ii)	$\frac{64}{4}=16$	$4(10)=40$	$4(10)+2=40+$ $2=42$
(iv)	n	64	$64+2=66$

When $\mathrm{n}=1$, number of triangles $=4 \times 1=4$ and the number of dots $=4+2=6$
When $n=2$, number of triangles $=4 \times 2=8$ and the number of dots $=8+2=10$
When $\mathrm{n}=3$, number of triangles $=4 \times 3=12$ and the number of dots $=10+2=12$

Hence if the number of trapezia $=n$, then the number of triangles will be 4 times this $=4 \times n=4 n$ and the number of dots will therefore be 2 more than the number of trapezia $4 n+2$

Question 9(a)(i)(a)

$$
\begin{aligned}
& g(x)=3 x-2 \\
& g(4)=3(4)-2 \\
& g(4)=12-2 \\
& g(4)=10
\end{aligned}
$$

Question 9(a)(i)(b)

$$
\begin{aligned}
& h g(4)=h(10) \\
& \frac{10}{10}-3 \\
& 1-3 \\
& =-2
\end{aligned}
$$

Question 9(a)(ii)(a)

$$
\begin{aligned}
& \text { Let } y=h(x) \\
& y=\frac{10}{x}-3 \\
& y+3=\frac{10}{x} \\
& x(y+3)=10 \\
& x=\frac{10}{y+3} \\
& h^{-1}(x)=\frac{10}{x+3}, x \neq 3
\end{aligned}
$$

Question 9(a)(ii)(b)

$$
\begin{aligned}
& g g(x)=3(3 x-2)-2 \\
& =9 x-6-2 \\
& =9 x-8
\end{aligned}
$$

Question 9(b)(i)

Roots are $x=-1$ and $x=5$

Question 9(b)(ii)(a)

$$
\begin{aligned}
& \text { if } x=-1 \text { and } x=5 \text { are the roots of } x^{2}+b x+c=y \text {, then } \\
& x^{2}+b x+c=(x-(-1))(x-5) \\
& =(x+1)(x-5) \\
& =x^{2}-4 x-5 \\
& \text { Hence } c=-5
\end{aligned}
$$

Question 9(b)(ii)(b)
From the above equation, $b=-4$

Question 9(b)(iii)

$$
\begin{aligned}
& \text { Minimum point occurs at }\left(-\frac{b}{2 a}, \frac{4 a c-b^{2}}{4 a}\right) \\
& \left(\frac{-(-4)}{2(1)}, \frac{4(1)(-5)-(-4)^{2}}{4(1)}\right) \\
& (2,-9)
\end{aligned}
$$

Question 10(a)(i)

$$
F \hat{A} W=90-54=36^{\circ}
$$

Question 10(a)(ii)

$$
S \widehat{K} F=180-54=126^{\circ}
$$

(Opposite angles of a cyclic quadrilateral are supplementary)

Question10(a)(iii)

Opposite sides SK and AF are parallel
Angles KSA and SAF are co-interior opposite angles, hence they are supplementary
Therefore,

$$
\begin{aligned}
& 54+62+<A S W=180^{\circ} \\
& <A S W=64^{\circ}
\end{aligned}
$$

Question 10(b)(i)(a)

$$
\begin{aligned}
& Q R^{2}=(120)^{2}+(150)^{2}-2(120)(150) \cos 23 \\
& Q R^{2}=3761.83 \\
& Q R=61.33 \\
& \cong 61.3(1 d p)
\end{aligned}
$$

Question 10(b)(i)(b)

$$
\begin{aligned}
& \text { Area } P Q R=\frac{1}{2}(120)(150)(\sin 23) \\
& =3516.58 \\
& =3516.6 \mathrm{~km}^{2}(1 \mathrm{dp})
\end{aligned}
$$

Question 10(b)(ii)

$<P Q S=252-180$
$<P Q S=72^{\circ}$
$<N P R=72+23=95^{\circ}$
Hence the bearing of R from P is 095°

Question 11(a)(i)

$$
\begin{aligned}
& \operatorname{det} T=(2 \times 3)-(-1 \times 1) \\
& =6-(-1) \\
& =7
\end{aligned}
$$

Question 11(a)(ii)

If (a, b) is mapped onto $(4,9)$ under the translation T, then $(4,9)$ would be mapped onto (a, b) under the translation T^{-1}, therefore we multiply the point $(4,9)$ by the inverse of T to yield the values of a and b respectfully.

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{3}{7} & \frac{1}{7} \\
-\frac{1}{7} & \frac{2}{7}
\end{array}\right)\binom{4}{9}=\binom{a}{b} \\
& \binom{a}{b}=\left(\begin{array}{cc}
\frac{3}{7} \times 4 & \frac{1}{7} \times 9 \\
-\frac{1}{7} \times 4 & \frac{2}{7} \times 9
\end{array}\right) \\
& \binom{a}{b}=\binom{3}{2} \\
& a=3 ; b=2
\end{aligned}
$$

Question 11(b)(i)

Question 11(b)(ii)(a)

$$
\begin{aligned}
& \overrightarrow{M N}=\overrightarrow{M O}+\overrightarrow{O N} \\
& \overrightarrow{M N}=-(m)+n \\
& \overrightarrow{M N}=-m+n
\end{aligned}
$$

Question 11(b)(ii)(b)

$$
\begin{aligned}
& M L=\frac{2}{3} M N \\
& \overrightarrow{M L}=-\frac{2}{3} m+\frac{2}{3} n
\end{aligned}
$$

Question 11(b)(iii)

$$
\begin{aligned}
& \overrightarrow{O L}=\overrightarrow{O M}+\overrightarrow{M L} \\
& m+\left(-\frac{2}{3} m+\frac{2}{3} n\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3} m+\frac{2}{3} n \\
& \frac{1}{3}\binom{3}{6}+\frac{2}{3}\binom{9}{0} \\
& \binom{1}{2}+\binom{6}{0} \\
& \binom{7}{2} \\
& \overrightarrow{O L}=\binom{7}{2}
\end{aligned}
$$

