Solutions to CSEC Maths P2 January 2014

Question 1(a)

$$\begin{pmatrix} 1\frac{3}{4} - \frac{1}{8} \end{pmatrix} + \begin{pmatrix} \frac{5}{6} \div \frac{2}{3} \end{pmatrix} \\ \frac{13}{8} + \frac{5}{4} \\ \frac{23}{8} \end{cases}$$

Question 1(b)

By calculator 2.399 = 2.40(correct to 2 decimal places)

Question 1(c)(i)

- Cost of bracelets in China = \$6800
 - Amount paid in duty = \$1360
- Total cost = 6800 + 1360 = \$8160

Question 1(c)(ii)(a)

Selling price of 165 bracelets = $$68.85 \times 165

= \$11360.25

Selling price exceeds cost price, hence a profit was made

Profit = Selling Price - Total Cost

=\$11360.25-\$81600.00

=\$3200.25

Question 1(c)(ii)(b)

Percentage Profit = $\frac{3200.25}{8160.00} \times 100$ = 39.2% \approx 39%

		www.kerwinspringer.com
Question 2(a)(i)		
	$2(x-6) + 3x \le 8$	
	$2x - 12 + 3x \le 8$	
	$2x + 3x - 12 \le 8$	
	$2x + 3x \le 8 + 12$	
	$5x \le 20$	
	$x \leq 4$	
Question 2(a)(ii)		
	— — —	
	4	
Question 2(b)(i)		
	3x - 6y + ax - 2ay	
	3(x-2y) + a(x-2y)	
	(x-2y)(3+a)	
Question 2(b)(iii)		
	$p^2 - 1$	
	(p-1)(p+1)	
$O_{\text{updation}} \mathcal{I}(a)$		
Question 2(c)		
	(2k-3)(k-2)	
	$2k^2 - 4k - 3k + 6$	
	$2k^2 - 7k + 6$	
Question 2(d)		
	Substituting $x = 1$ in $3x + y = 2$	
	y = -1	
	Substituting $x = 1$ in $4x - 2y = 6$	

Hence the point (1,-1) is the point of intersection of both lines

y = -1

Question 3(i)

Number of students which study Spanish only = 32-20 = 12

Question 3(ii)

32-20 = 12 students which study Spanish but not French

Question 3(b) (i)

l = x + 5 + 2xl = (3x + 5)m

Question 3(b) (ii)(a)

Perimeter = x + 3 + 5 + x + 2 + 3 + (3x + 5) + xPerimeter = (8x + 16)m8x + 16 = 56x = 5

Question 3(b)(ii)(b)

Area of square, $P = 5 \times 5 = 25$ Area of rectangle, $Q = 8 \times 5 = 40$ Area of rectangle, $R = 10 \times 3 = 30$ Total Area = $25+30+40 = 95m^2$

Question 4(a)

Line 1: y=x+2

Line 2: y=x

Line 3: y=2

Question 4(b)

Question 4(c)

Question 4(d)		
	$y \leq 2$	
	$y \ge x$ $x \le 0$	
	$x \leq 0$	
Question 4(e)		

Gradient of line 1 is 1

Hence required gradient of the perpendicular line is -1.

Since the required lines passes through the origin, then its equation is y = -x

Question 5(a)(ii)

53°

Question 5(a)(iii)

Question 5(b)(i)

Area PQRS =
$$\frac{1}{2}(12+6)15$$

= $135cm^2$

Question 5(b)(ii)

Volume of block = $135 \times 3 = 405 cm^2$

Question 5(b)(iii)

Mass of
$$1cm^{3}$$
 of the metal $=\frac{1.5 \times 1000}{405}$
= 3.703 \cong 3.7g (1dp)

Question 6(a)(i)

 $x = 28^{\circ}$ (Alternate Angles)

Question 6(a)(ii)

Angle
$$y = 180 - \frac{180 - 28}{2}$$

Angle $y = 104^{\circ}$

Question 6(a)(iii)

 $z = 104^{\circ}$ (Vertically opposite and Corresponding Angles)

Question 6(b)(i)

J has coordinates (-4,1)

Question 6(b)(ii)

K'L' = 2cm

Question 6(b)(iii)

The translation is a reflection

Question 6(b)(iv)

J'' = (1,-2)

K"=(4,-2)

L"=(4,0)

Question 7(a)

The number of seedlings is 85

Question 7(b)(i)

The lower class limit is 8

Question 7(b)(ii)

The upper class boundary is 12.5

Question 7(b)(iii)

Class width = 12.5 - 7.5 = 5

Question 7(c)

Height, x (cm) LCL-UCL	Lower Class Boundary LCB	Upper Class Boundāry UCB	Midpoint or Mid- class Interval MCI	Frequency, f	Points to be plotted (MCI, Frequency)
		-			(0, 0)
3 - 7	2.5≤:	x < 7.5	$\frac{2.5+7.5}{2}=5$	0	(5, 0)
8 - 12	$7.5 \le x$	<12.5	$\frac{7.5+12.5}{2} = 10$	3	(10, 3)
13 – 17	12.5≤⇒	x <17.5	$\frac{12.5+17.5}{2} = 15$	12	(15, 12)
18 - 22	17.5≤>	x < 22.5	$\frac{17.5 + 22.5}{2} = 20$	16	(20, 16)
23 – 27	22.5≤:	x < 27.5	$\frac{22.5 + 27.5}{2} = 25$	22	(25, 22)
28 - 32	27.5≤:	x < 32.5	$\frac{27.5+32.5}{2} = 30$	18	(30, 18)
33 – 37	32.5≤:	x < 37.5	$\frac{32.5+37.5}{2} = 35$	14	(35, 14)
				$\sum f = 85$	(40, 0)

Question 7(d)

Question 8(a)

Question 8(b)

	No. of Trapezia (n)	No. of Triangles	No. of Dots
	n	4n	4n + 2
(i)	4	4(4) = 16	4(4)+2=16 + 2= 18
			+2=18
(ii)	10	4(10)=40	4(10)+2=40+ 2=42
			2=42
(ii)	$\frac{64}{4} = 16$	64	64+2=66
(iv)	п	4 <i>n</i>	4 <i>n</i> +2

When n=1, number of triangles = $4 \times 1 = 4$ and the number of dots = 4 + 2 = 6When n=2, number of triangles = $4 \times 2 = 8$ and the number of dots = 8+2=10

When n=3, number of triangles = $4 \times 3 = 12$ and the number of dots = 10 + 2 = 12

Hence if the number of trapezia = n, then the number of triangles will be 4 times this = $4 \times n = 4n$ and the number of dots will therefore be 2 more than the number of trapezia 4n + 2

Question 9(a)(i)(a)

Question 9(a)(i)(b)

Question 9(a)(ii)(a)

g(x) = 3x - 2 g(4) = 3(4) - 2 g(4) = 12 - 2 g(4) = 10
hg(4) = h(10) $\frac{10}{10} - 3$ 1 - 3 = -2
Let $y = h(x)$

$y = \frac{10}{x} - 3$ $y + 3 = \frac{10}{x}$ x(y + 3) = 10 $x = \frac{10}{y + 3}$ $h^{-1}(x) = \frac{10}{x + 3}, x \neq 3$

Question 9(a)(ii)(b)

gg(x) = 3(3x - 2) - 2= 9x - 6 - 2 = 9x - 8

Question 9(b)(i)

Roots are x=-1 and x=5

Question 9(b)(ii)(a)

if x = -1 and x = 5 are the roots of $x^2 + bx + c = y$, then $x^2 + bx + c = (x - (-1))(x - 5)$ = (x + 1)(x - 5) $= x^2 - 4x - 5$ Hence c = -5

Question 9(b)(ii)(b)

From the above equation, b=-4

Question 9(b)(iii)

Minimum point occurs at
$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$$

 $\left(\frac{-(-4)}{2(1)}, \frac{4(1)(-5)-(-4)^2}{4(1)}\right)$
 $(2,-9)$

Question 10(a)(i)

$$F\hat{A}W = 90 - 54 = 36^{\circ}$$

Question 10(a)(ii)

 $S\widehat{K}F = 180 - 54 = 126^{\circ}$

(Opposite angles of a cyclic quadrilateral are supplementary)

Question10(a)(iii)

Opposite sides SK and AF are parallel

Angles KSA and SAF are co-interior opposite angles, hence they are supplementary

Therefore,

 $54 + 62 + < ASW = 180^{\circ}$ $< ASW = 64^{\circ}$

Question 10(b)(i)(a)

$QR^2 = (120)^2 + (150)^2 - 2(120)(150)\cos 23$
$QR^2 = 3761.83$
QR = 61.33
\cong 61.3 (1 <i>dp</i>)

Question 10(b)(i)(b)

Area $PQR = \frac{1}{2}(120)(150)(sin23)$ = 3516.58 $= 3516.6km^2(1dp)$

Question 10(b)(ii)

< PQS = 252 - 180 $< PQS = 72^{\circ}$ $< NPR = 72 + 23 = 95^{\circ}$ Hence the bearing of R from P is 095°

Question 11(a)(i)

$$det T = (2 \times 3) - (-1 \times 1) = 6 - (-1) = 7$$

Question 11(a)(ii)

If (a,b) is mapped onto (4,9) under the translation T, then (4,9) would be mapped onto (a,b) under the translation T^{-1} , therefore we multiply the point (4,9) by the inverse of T to yield the values of a and b respectfully.

$$\begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \begin{pmatrix} 4 \\ 9 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{3}{7} \times 4 & \frac{1}{7} \times 9 \\ -\frac{1}{7} \times 4 & \frac{2}{7} \times 9 \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$a = 3; b = 2$$

Question 11(b)(i)

Question 11(b)(ii)(a)

 $\overline{MN} = \overline{MO} + \overline{ON}$ $\overline{MN} = -(m) + n$ $\overline{MN} = -m + n$

Question 11(b)(ii)(b)

$$ML = \frac{2}{3}MN$$
$$\overrightarrow{ML} = -\frac{2}{3}m + \frac{2}{3}m$$

Question 11(b)(iii)

$$\overline{OL} = \overline{OM} + \overline{ML}$$
$$m + \left(-\frac{2}{3}m + \frac{2}{3}n\right)$$

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

www.kerwinspringer.com

$$\frac{1}{3}m + \frac{2}{3}n$$

$$\frac{1}{3}\binom{3}{6} + \frac{2}{3}\binom{9}{0}$$

$$\binom{1}{2} + \binom{6}{0}$$

$$\binom{7}{2}$$

$$\overrightarrow{OL} = \binom{7}{2}$$