Solutions to CSEC Maths P2 January 2016

Question 1a

Using a calculator, $(3.6+\sqrt{51.84}) \div 3.75=2.88$

Question 1b

In Jar A, 150 g of peanut butter $=\$ 2.14$

$$
\begin{aligned}
& 150 \mathrm{~g}=\$ 2.14 \\
& 1 \mathrm{~g}=\frac{2.14}{150}=\$ 0.014
\end{aligned}
$$

$\mathrm{Jar} \mathrm{B}, 400 \mathrm{~g}$ of peanut butter $=\$ 6.50$

$$
1 \mathrm{~g}=\frac{6.50}{400}=\$ 0.0016
$$

Jar A is cheaper per gram, hence is the better buy.

$$
\begin{aligned}
& \hline \text { Question 1c part (i) } \\
& \text { Principal }=\$ 1498 \quad \text { Rate }=6 \% \quad \text { Time }=\frac{6}{12}=\frac{1}{2} \text { year } \\
& \qquad \text { Simple Interest }=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}=\frac{1498 \times 6 \times \frac{1}{2}}{100}=\$ 44.94
\end{aligned}
$$

Question 1c part (ii)

Interest after 3 years $=\frac{1498 \times 6 \times 3}{100}=\$ 269.64$

$$
\begin{aligned}
\text { Total amount } & =\text { Principal }+ \text { Interest Earned } \\
\text { Total amount } & =\$ 1498+\$ 269.94 \\
& =\$ 1767.67
\end{aligned}
$$

Question 1c part (iii)

$$
\begin{aligned}
& \$ 449.40=\frac{1498 \times 6 \times T}{100} \\
& \quad \mathrm{~T}=\frac{449.40 \times 100}{1498 \times 6}=5 \text { years }
\end{aligned}
$$

Question 2a part (i)

$$
\begin{aligned}
8-2 & \leq 5 x+x \\
6 & \leq 6 x \\
x & \geq 1
\end{aligned}
$$

Question 2a part (ii)

Question 2b

$$
\begin{array}{r}
2 x(x+5)-3(x-4)=2 x^{2}+10 x-3 x+12 \\
=2 x^{2}+7 x+12
\end{array}
$$

Question 2c

$$
\frac{3 x^{2} \times 4 x^{3}}{2 x}=\frac{12 x^{2+3}}{2 x}=6 x^{4}
$$

$$
\begin{aligned}
& \text { Question 2d } \\
& \begin{aligned}
& \frac{x+1}{2}+\frac{5-x}{5}=\frac{5(x+1)+2(5-x)}{10} \\
&=\frac{5 x+5+10-2 x}{10} \\
&=\frac{3 x+15}{10}=\frac{3(x+5)}{10}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { Question 2e } \\
& \begin{aligned}
4 \mathrm{x}^{2}-4=(2 \mathrm{x}-2) & (2 \mathrm{x}+2) \\
& =2(\mathrm{x}-1)(\mathrm{x}+1)
\end{aligned}
\end{aligned}
$$

(Difference of two squares)

Question 3a part (i)

Students who visited only Dominica $=10$ students

Question 3a part (ii)

Total number of students who visited Canada $=3+\mathrm{x}$

Question 3a part (iii)

Total number of students in form $=25$

$$
\begin{aligned}
& 3+x+10+2 x=25 \\
& 3 x=12 \\
& x=4 \text { students }
\end{aligned}
$$

Question 3a part (v)

$\mathrm{C} v \mathrm{D}=3+4+10=17$ students

$$
\begin{aligned}
& C \cap D=x=4 \text { students } \\
& \begin{aligned}
(C \cup D)^{\prime} & =25-(C \cup D) \\
& =25-17 \\
& =8 \text { students }
\end{aligned}
\end{aligned}
$$

Question 3b part (i)

Question 3b part (ii)
$\mathrm{FH}=8.5 \mathrm{~cm}$

Question 4a part (i)

$$
\mathrm{LM}=8 \mathrm{~cm}
$$

Question 4a part (ii)

Total no. of squares $=45$

$$
\text { Area }=45 \times 1 \mathrm{~cm}^{2}=45 \mathrm{~cm}^{2}
$$

Question 4a part (iii)

$\mathrm{LM}=20 \mathrm{~km}$

$$
\begin{aligned}
& 8 \mathrm{~cm}=20 \mathrm{~km} \\
& 1 \mathrm{~cm}=\frac{20}{8}=2.5 \mathrm{~km}
\end{aligned}
$$

```
Question 4a part (iv)
1cm = 2.5 km
    2.5 km = (2.5 < 100,000) cm
        x =250,000 cm
```

Scale: 1: 250,000

Question 4a part (v)

$3 \mathrm{~cm}=3 \times 2.5 \mathrm{~km}$

$$
=7.5 \mathrm{~km}
$$

(vi) $3 \mathrm{~cm}^{2}=3(2.5)^{2}$
$=3 \times 6.25$
$=18.75 \mathrm{~km}^{2}$

Question 4b part (i)

Area of Cross section $=$ Area of Rectangle + Area of Semi Circle

$$
\begin{aligned}
& =(5 \times 6)+\frac{1}{2} \pi\left(3^{2}\right) \\
& =30+14.13 \\
& =44.13 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 4b part (ii)

Volume of prism $=$ Cross sectional area of the prism \times length
Volume of Prism $\leq 900 \mathrm{~cm}^{3}$
Area of Cross Section $=44.13 \mathrm{~cm}^{3}$
Let the length $=1$
Volume of prism $=$ Cross sectional area of the prism \times length
$900 \leq 44.131$
$1 \leq \frac{900}{44.13}=20.39 \mathrm{~m}$

Question 5a part (i)

The length RS

Using Pythagoras' Theorem:

$$
\begin{gathered}
11.2^{2}+R T^{2}=14.8^{2} \\
R T^{2}=14.8^{2}-11.2^{2} \\
R T=\sqrt{14.8^{2}-11.2^{2}} \\
R T=9.67 \mathrm{~m}
\end{gathered}
$$

$$
\mathrm{RS}=\mathrm{RT}-\mathrm{ST}
$$

$$
\mathrm{RS}=9.67-6
$$

$$
\mathrm{RS}=3.67 \mathrm{~m}
$$

Question 5a part (ii)
$<$ RTW

$$
\begin{aligned}
& \text { Let }<\text { RTW }=\mathrm{x} \\
& \sin \mathrm{x}=\frac{11.2}{14.8} \\
& \mathrm{x}=\sin ^{-1}\left(\frac{11.2}{14.8}\right) \\
& \mathrm{x}=49.2^{\circ} \\
& <\text { RTW }=49.2^{\circ}
\end{aligned}
$$

Question 5b part (i)
$\Delta \mathrm{ABC}$ coordinates: $\mathrm{A}(3,2) \mathrm{B}(6,2) \mathrm{C}(3,4)$

Question 5b part (ii)

$\Delta A^{\prime} B^{\prime} C^{\prime}$ coordinates: $\mathrm{A}^{\prime}(2,-3) \mathrm{B}^{\prime}(2,-3) \mathrm{C}^{\prime}(4,-3)$

Question 5b part (iii)

$\Delta A^{\prime} B^{\prime} C^{\prime}$ maps as a 90° clockwise rotation of $\Delta \mathrm{ABC}$ about the origin.

Question 5b part (iv)

Question 5b part (v)

All three triangles are congruent.

```
Question 6a part (i)
```


Question 6a part (ii)

Between 2011 and 2012, there was the greatest increase in cars sold, by 1600 cars.

Question 6a part (iii)

Total number of cars sold (In hundreds) $=19+10+26+16+30=101$
Total number of cars sold $=10100$ cars .

Question 6a part (iv)

Mean (in hundreds) $=22.5$
(Sum of all car sales from 2010 to 2015) $\div 6=22.5$
Let sales in $2015=x$
$(101+x) \div 6=22.5$
$101+\mathrm{x}=135$
$\mathrm{x}=135-101$
$\mathrm{x}=34$
Number of cars sold in $2015=3400$ cars

Question 6b part (i)

$J K: 2 y=5 x+6$
To determine gradient, we must put the equation in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
Dividing by two:
$y=2.5 \mathrm{x}+3$
m , being the gradient $=2.5$

Question 6b part (ii)

The gradient of two lines perpendicular to each other are the negative inverses of each other.
So, the gradient of $\mathrm{GH}=\frac{-1}{2.5}=\frac{-2}{5}$

Question 6b part (iii)

Using the point $(5,-1)$ and $m=\frac{-2}{5}$

$$
\begin{aligned}
& y=m x+c \\
& -1=\frac{-2}{5}(5)+c \\
& c=-1+2 \\
& c=1
\end{aligned}
$$

In the form $y=m x+c$:

$$
y=\frac{-2}{5} x+1
$$

Question 7a

Time (minutes)	Number of Students who Completed (Frequency)	Cumulative Frequency
$1-5$	1	1
$6-10$	2	3
$11-15$	5	8
$16-20$	7	15
$21-25$	10	25
$26-30$	8	40
$31-35$	2	50
$36-40$		

Question 7c part (i)

The median time taken $=$ Time at $(50 / 2)=25$
Median Time $=25.5$ minutes

Question 7c part (ii)

No. of students who took 30 minutes or less $=39$
Probability of a student taking 30 minutes or less $=\frac{\# \text { of students who took } 30 \text { min or less }}{\text { Total no.of students }}$

$$
=\frac{39}{50}=0.78
$$

Question 8a

Question 8b

Figure	Number of Dots	Number of Lines
1	4	6
2	7	11
3	10	16
4	13	21
10	Omitted	
	31	51
16	Omitted	
	49	81
N	Omitted	
	$3 \mathrm{~N}+1$	$5 \mathrm{~N}+1$

Question 9a part (i)

The two inequalities are: $\mathrm{x} \geq 2$ and $\mathrm{x}+\mathrm{y} \leq 10$

Question 9a part (ii)

The three pairs of values are: $(2,3),(2,8)$ and $(7,3)$

$$
\begin{aligned}
& \hline \text { Question 9a part (iii) } \\
& \hline P=5 x+2 y-3
\end{aligned}
$$

Substituting (2,3):
$P=5(2)+2(3)-3=13$
Substituting $(2,8)$:
$P=5(2)+2(8)-3=23$
Substituting (7,3):
$\mathrm{P}=5(7)+2(3)-3=38$
P has the maximum value at $(7,3)$.

Question 9b part (i)

$g(x)=x^{2}$
$g\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}$
$\operatorname{fg}\left(-\frac{1}{2}\right)=f\left(\frac{1}{4}\right)=\frac{3}{2\left(\frac{1}{4}\right)+1}=\frac{3}{1 \frac{1}{2}}=2$

Question 9b part (ii)
$\mathrm{f}(\mathrm{x})=\frac{3}{2 x+1}$
let $\mathrm{y}=\frac{3}{2 x+1}$
Make x the subject:
$2 x+1=\frac{3}{y}$
$2 \mathrm{x}=\frac{3}{y}-1$
$\mathrm{X}=\frac{\frac{3}{y}-1}{2}$
$f^{-1}(x)=\frac{\frac{3}{x}-1}{2}=\frac{3-x}{2 x}$

Question 10a part (i)
Area of minor sector $=\frac{40}{360} \times \frac{22}{7} \times 21^{2}=154 \mathrm{~cm}^{2}$

Question 10a part (ii)

Area of Triangle $=\frac{1}{2}(21)(21) \sin 40$

$$
=141.73 \mathrm{~cm}^{2}
$$

Question 10a part (iii)

Area of shaded segment $=$ Area of minor sector - Area of Triangle

$$
\begin{aligned}
& =154-141.73 \\
& =12.27 \mathrm{~cm}^{2}
\end{aligned}
$$

```
Question 10b part (i)
```

$\angle \mathrm{ADC}=90^{\circ}$ (The angle in a semi-circle is 90°)

Question 10b part (ii)
$<A C D=36^{\circ}$ (The angle at the centre is twice the angle at the circumference.

```
Question 10b part (iii)
```

$<\mathrm{CAD}=54^{\circ}$ (Angles in a triangle add up to 180°

Question 10b part (iv)

$$
<\mathrm{OEA}=28^{\circ}
$$

$\angle O A E=90^{\circ}$ (Angle made by a tangent to a circle and a radius make a right angle.
$<$ OEA $=180-(72+90)=18{ }^{\circ}$

Question 11a part (i)

The given coordinates expressed in the form $(x y)$ is shown below,

- $O B^{-}=(42)$
- $A B^{\triangle}=-O A^{\triangle}+O B^{\lrcorner}=-(-28)+(42)=(6-6)$
- $O M^{\lrcorner}=O A^{-}+A M^{\hookrightarrow}=(-28)+0.5 \times(6-6)=(15)$

Question 11a part (ii)

To show that $A C^{\lrcorner}$and $O B^{\lrcorner}$are parallel we must first determine $A C^{\wedge}$.

$$
A C^{\lrcorner}=-O A^{\lrcorner}+O C^{\lrcorner}==-(-28)+(09)=\left(\begin{array}{ll}
2 & 1
\end{array}\right)
$$

If two vectors are parallel, then one will be a multiple of the next. We can clearly see that $2 A C^{\curvearrowright}=O B^{\wedge}$ therefore, $A C^{\curvearrowright}$ and $O B^{\star}$ are parallel.

Question 11b part (i)

If a matrix is singular the determinant is zero. Hence

$$
|M|=0
$$

To determine the value of p we must equate the determinant to zero. Hence:

$$
\begin{gathered}
(2 p \times 1)-(4 \times(-3))=0 \\
2 p+12=0 \\
p=6
\end{gathered}
$$

The matrix sum of $2 A+B$ is calculated below:

$$
\begin{gathered}
2 A+B=2(12-43)+(5-103) \\
2 A+B=(24-86)+(5-103)=(73-89)
\end{gathered}
$$

Question 11b part (ii)

To determine B^{-1},
The adjoint matrix of B is provided below,

$$
A_{a d j}=\left(\begin{array}{lll}
3 & 1 & 0
\end{array}\right)
$$

The determinant of B is $|B|=(5 \times 3)-(0 \times(-1))=15$

The inverse of matrix B is therefore,

$$
B^{-1}=\frac{1}{15}(3105)=(3 / 151 / 1505 / 15)=(1 / 51 / 1503 / 5)
$$

Question 11b part (iii)

Given:

$$
(5-103)(x y)=(93)
$$

To solve for x and y we pre-multiply both sides of the equation by B^{-1}. Hence,

$$
(1 / 51 / 1503 / 5)(5-103)(x y)=(1 / 51 / 1503 / 5)(93)
$$

Solving:

$$
(10001)(x y)=\left(\frac{9}{5}+\frac{3}{15} 0+\frac{9}{15}\right)=\left(\frac{4}{5} \frac{3}{5}\right)
$$

Therefore, $x=4 / 5$ and $y=3 / 5$.

