Solutions to CSEC Maths P2 January 2018

Question 1(a)(i)

Required to calculate $5 \frac{1}{2} \div 3 \frac{2}{3}+1 \frac{4}{5}$, giving your answer as a fraction in its lowest terms.

$$
\begin{aligned}
& 5 \frac{1}{2} \div 3 \frac{2}{3}+1 \frac{4}{5} \\
= & \left(\frac{11}{2} \div \frac{11}{3}\right)+\frac{9}{5} \\
= & \left(\frac{11}{2} \times \frac{3}{11}\right)+\frac{9}{5} \\
= & \frac{3}{2}+\frac{9}{5} \\
= & \frac{15}{10}+\frac{18}{10} \\
= & \frac{33}{10} \quad \text { as a fraction in its lowest terms. }
\end{aligned}
$$

Question 1(a)(ii)
Required to calculate 165×0.38^{2}, giving your answer in EXACT value.

$$
\begin{aligned}
165 \times 0.38^{2} & =165 \times 0.38 \times 0.38 \\
& =23.826 \quad \text { (in exact form) }
\end{aligned}
$$

Question 1(b)(i)
Required to write the answer in (a)(ii) correct to two decimal places.
$23.826=23.83 \quad$ (to two decimal places)

Question 1(b)(ii)
Required to write the answer in (a)(ii) correct to three significant figures.
$23.826=23.8 \quad$ (to three significant figures)
Question 1(b)(iii)
Required to write the answer in (a)(ii) correct to the nearest whole number.
$23.826=24 \quad$ (to the nearest whole number)

Question 1(c)(i)

Required to determine the simple interest earned.

Simple Interest earned $=$ Amount received - Principal amount

$$
\begin{aligned}
& =\$ 5810-\$ 5000 \\
& =\$ 810
\end{aligned}
$$

Question 1(c)(ii)

Required to determine the annual interest paid by the credit union.

$$
\begin{aligned}
S I & =\frac{P \times R \times T}{100} \\
810 & =\frac{5000 \times R \times 3}{100} \\
810 & =150 R \\
R & =\frac{810}{150} \\
R & =5.4 \%
\end{aligned}
$$

\therefore The annual interest paid by the credit union is 5.4\%

Question 1(c)(iii)

Required to determine the length of time it would take for Mr. Adam's investment to be doubled, at the same rate of interest.

The investment is $\$ 5000$. For the investment to be doubled, the interest amount will have to be $\$ 5000$.

$$
\begin{aligned}
S I & =\frac{P \times R \times T}{100} \\
5000 & =\frac{5000 \times 5.4 \times T}{100} \\
100 & =5.4 T \\
T & =\frac{100}{5.4} \\
T & =18.52 \text { years } \quad \text { (to } 2 \text { decimal places) }
\end{aligned}
$$

Question 2(a)(i)

Required to determine the value of $1 * 2$.

$$
\begin{aligned}
a * b & =\sqrt{a+4 b} \\
1 * 2 & =\sqrt{1+4(2)} \\
& =\sqrt{1+8} \\
& =\sqrt{9} \\
& =3
\end{aligned}
$$

Question 2(a)(ii)
Required to determine whether the operation $*$ is commutative and justify your answer.
$a * b=\sqrt{a+4 b}$
$b * a=\sqrt{b+4 a}$

Since $a * b \neq b * a$, then the operation $*$ is not commutative.

Question 2(b)(i)
Required to solve the inequality $3-2 x>5$.
$3-2 x>5$
$-2 x>5-3$
$-2 x>2$

$$
\begin{aligned}
& x<\frac{2}{-2} \\
& x<-1
\end{aligned}
$$

Question 2(b)(ii)
Required to represent your answer in (b)(i) on the number line.

Question 2(c)(i)
Required to write two equations in x and y to represent the information above.

Let x represent the cost of an adult ticket.
Let y represent the cost of a child ticket.

Since 2 adult tickets at $\$ x$ each and 3 children tickets at $\$ y$ each cost $\$ 43.00$, then the equation is : $2 x+3 y=43$

Since 1 adult ticket at $\$ x$ each and 1 child ticket1 at $\$ y$ each cost $\$ 18.50$, then the equation is : $x+y=18.50$

Question 2(c)(ii)

Required to solve the equations simultaneously to determine the cost of one adult ticket.
$2 x+3 y=43 \quad \rightarrow$ Equation 1
$x+y=18.50 \quad \rightarrow$ Equation 2

Multiplying Equation 2 by 3 gives:
$3 x+3 y=55.50 \rightarrow$ Equation 3

Equation 3 - Equation 1 gives:
$x=12.50$
\therefore The cost of 1 adult ticket is $\$ 12.50$.

Question 3(a)(i)

Required to state the value of $n(P \cup R)$.

$$
\begin{aligned}
& P \cup R=\{b, v, s, d, e, f, i, g\} \\
& n(P \cup R)=8
\end{aligned}
$$

Question 3(a)(ii)(a)

Required to list the members of $M \cap P$.
$M \cap P=\{b, d\}$

Question 3(a)(ii)(b)
Required to list the members of $M \cup R^{\prime}$.
$M=\{k, b, i, d\}$
$R^{\prime}=\{k, b, v, s, t, w\}$
$M \cup R^{\prime}=\{k, b, i, d, v, s, t, w\}$

Question 3(b)(i)
Required to use a ruler, a pencil and a pair of compasses to construct triangle $P Q R$.
$P Q=8 \mathrm{~cm}$
Angle $P Q R=120^{\circ}$
$Q R=5 \mathrm{~cm}$

Question 3(b)(ii)
Required to measure and state the length of the side $P R$.

Acceptable answers for the length of $P R$ are within the range $11.3 \leq P R \leq 11.4 \mathrm{~cm}$.

Question 3(b)(iii)

Required to construct the point S, such that $P Q R S$ is a parallelogram.

To register for The Student Hub's premium classes or purchase resources, Whatsapp +18684724221

P	8 cm	Q

Question 4(a)(i)
Required to write the equation of the line, l, in the form $y=m x+c$.
$3 x-4 y=5$

$$
-4 y=-3 x+5
$$

Dividing throughout by -4 gives:
$y=\frac{3}{4} x-\frac{5}{4}$
which is of the form $y=m x+c$, where $m=\frac{3}{4}$ and $c=-\frac{5}{4}$.

Question 4(a)(ii)

Required to determine the gradient of the line, l.
$y=\frac{3}{4} x-\frac{5}{4}$
The gradient of the line, $l=\frac{3}{4}$.

Question 4(a)(iii)
Required to determine the value of r.
$y=\frac{3}{4} x-\frac{5}{4}$
Substituting point $P(r, 2)$ gives:
$2=\frac{3}{4} r-\frac{5}{4}$
$8=3 r-5$
$3 r=8+5$
$3 r=13$
$r=\frac{13}{3}$
Question 4(a)(iv)
Required to find the equation of the straight line passing through the point $(6,0)$ which is perpendicular to l.

The gradient of $l=\frac{3}{4}$.
The gradient of the line perpendicular to $l=\frac{-1}{\frac{3}{4}}$

$$
=-\frac{4}{3}
$$

Recall: $y-y_{1}=m\left(x-x_{1}\right)$
Substituting $m=-\frac{4}{3}$ and the point $(6,0)$ gives:
$y-0=-\frac{4}{3}(x-6)$

$$
y=-\frac{4}{3} x+8
$$

\therefore The equation of the required line is $y=-\frac{4}{3} x+8$.

Question 4(b)(i)
Required to draw straight lines $x+y=10$ and $y=x$ on the grid.

Consider $x+y=10$.
When $x=0, y=10$.

When $y=0, x=10$.

Consider $y=x$.
When $x=0, y=0$.
When $x=10, y=10$.

Question 4(b)(ii)
Required to shade the region which satisfies the four inequalities.

Inequalities: $x \geq 0, y \geq 0, x+y \leq 10, x \geq y$
(See graph above)

Question 5(a)(i)
Required to state the name of the polygon given.

The polygon has 6 sides.
Hence, it is a hexagon.

Question 5(a)(ii)
Required to calculate the perimeter of the polygon EFGHIJ.

Perimeter of $E F G H I J=6 \times 5$
$=30 \mathrm{~cm}$

Question 5(a)(iii)
Required to determine the size of each interior angle of the polygon.

The sum of the interior angles of a polygon of n sides $=180^{\circ}(n-2)$.

The sum of the 6 interior angles of the given hexagon $=180^{\circ}(6-2)$

$$
\begin{aligned}
& =180^{\circ}(4) \\
& =720^{\circ}
\end{aligned}
$$

Each interior angle of the hexagon $=\frac{720^{\circ}}{6}$

$$
=120^{\circ}
$$

Question 5(a)(iv)
Required to show that the area of the polygon, to the nearest whole number, is $65 \mathrm{~cm}^{2}$.

$$
\text { Area of } \begin{aligned}
\triangle O E F & =\frac{1}{2}(O E)(O F) \sin E \hat{O} F \\
& =\frac{1}{2}(5)(5) \sin 60^{\circ}
\end{aligned}
$$

The hexagon comprises of 6 of these triangles.

$$
\begin{aligned}
\therefore \text { Area of hexagon } & =6 \times \frac{1}{2}(5)(5) \sin 60^{\circ} \\
& =64.95 \\
& =65 \mathrm{~cm}^{2} \quad \text { (to the nearest whole number) }
\end{aligned}
$$

Question 5(b)(i)
Required to determine the capacity of the tank, in litres.

Cross-sectional area of the tank = Area of the hexagon

$$
=64.95 \mathrm{~cm}^{2}
$$

After 52 seconds, the volume of water poured $=75 \times 52$

$$
=3900 \mathrm{~cm}^{3}
$$

The tank is $\frac{2}{5}$ full.
Hence,
${ }_{5}^{2} V=3900$
$V=\frac{3900}{\frac{2}{5}}$

$$
V=9750 \mathrm{~cm}^{3}
$$

Now,
$1000 \mathrm{~cm}^{3}=1 l$
$1 \mathrm{~cm}^{3}=\frac{1}{1000}$
$9750 \mathrm{~cm}^{3}=\frac{1}{1000} \times 9750$
$=9.75 l$
\therefore The capacity of the tank is 9.75 litres.

Question 5(b)(ii)
Required to calculate the height, h, in metres, of the tank.
$V=$ Cross-sectional area $\times h$
$V=64.95 h$

Now,

$$
\begin{aligned}
\frac{2}{5} V & =3900 \\
\frac{2}{5} \times 64.95 \times h & =3900 \\
25.98 \times h & =3900 \\
h & =\frac{3900}{25.98}
\end{aligned}
$$

$$
h=150 \mathrm{~cm} \quad \text { (to the nearest whole number) }
$$

$100 \mathrm{~cm}=1 \mathrm{~m}$
$1 \mathrm{~cm}=\frac{1}{100}$
$150 \mathrm{~cm}=1.50 \mathrm{~m} \quad$ (to 2 decimal places)
\therefore The height, h, of the tank is 1.50 m .
Question 6(a)
Required to state the coordinates of R.

The coordinates of R are (0,3).

Question 6(b)(i)

Required to draw $\triangle P^{\prime} Q^{\prime} R^{\prime}$, a reflection of $\triangle P Q R$ in the line $y=1$.

Question 6(b)(ii)

Required to draw $\Delta P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$, a reflection of $\Delta P^{\prime} Q^{\prime} R^{\prime}$ in the line $x=0$.

Question 6(c)

Required to describe, fully, the transformation that maps $\Delta P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ onto $\triangle P Q R$.

The transformation that maps $\Delta P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ onto $\triangle P Q R$ is a rotation of 180° about the point $(0,1)$.

Question 6(d)
Required to calculate the area of the image made with triangle $P Q R$ undergoes an enlargement of scale factor 2.

Consider $\triangle P Q R$:

Area of $\triangle P Q R=\frac{b \times h}{2}$
$=\frac{3 \times 2}{2}$
$=3$ square units

Area of enlarged triangle $=3 \times(\text { scale factor })^{2}$

$$
\begin{aligned}
& =3 \times(2)^{2} \\
& =3 \times 4 \\
& =12 \text { square units }
\end{aligned}
$$

Question 7(a)(i)

Required to determine the range of the marks obtained by 10 students in a test.

The highest mark is 45 .
The lowest mark is 26 .
Range $=$ Highest mark - Lowest mark

$$
\begin{aligned}
& =45-26 \\
& =19
\end{aligned}
$$

Question 7(a)(ii)

Required to determine the median of the marks obtained by 10 students in a test.

Arranging the data in ascending order gives:

$\begin{array}{llllllllll}26 & 29 & 31 & 35 & 37 & 38 & 38 & 38 & 42 & 45\end{array}$

Median $=\frac{37+38}{2}$
$=37.5$

To register for The Student Hub's premium classes or purchase resources, Whatsapp +18684724221

Question 7(a)(iii)
Required to determine the interquartile range of the marks obtained by 10 students in a test.

Arranging the data in ascending order gives:

26	29	31	35	37	38	38	38	42	45

The lower quartile, $Q_{1}=31$.
The upper quartile, $Q_{3}=38$.

$$
\begin{aligned}
\text { Interquartile Range } & =Q_{3}-Q_{1} \\
& =38-31 \\
& =7
\end{aligned}
$$

Question 7(a)(iv)

Required to determine the probability that a student chosen at random scores less than half the total marks in the test.

The total marks in the test $=60$.

$$
\begin{aligned}
\text { Half of the total marks } & =\frac{60}{2} \\
& =30
\end{aligned}
$$

$P($ student scores less than half the total)

To register for The Student Hub's premium classes or purchase resources, Whatsapp +18684724221
$=\frac{\text { Number of students who scored less than } 30}{\text { Total number of students }}$
$=\frac{2}{10}$
$=\frac{1}{5} \quad$ or $\quad 0.2 \quad$ or 20%

Question 7(b)

Required to draw a frequency polygon to represent the information in the table.

Mass (kg)	Midpoint	Frequency
$60-64$	62	8
$65-69$	67	11
$70-74$	72	15
$75-79$	77	9
$80-84$	82	5
$85-89$	87	2

Title: Frequency polygon showing the masses, in kg , of 50 adults prior to the start of a fitness program.

Frequency

Question $C_{\text {(}}^{\prime}$)

Required to draw Figure 4 of the sequence.

Figure 4 of the sequence is shown below.

Question 8(b)
Required to complete the rows (i), (ii), (iii) and (iv).
(i)

Figure	Number of Toothpicks in Pattern	Perimeter of Figure
1	3	$0+1+2=3$
2	7	$1+2+2=5$
3	11	$2+3+2=7$
4	15	$3+4+2=9$
\vdots		

(ii)

To register for The Student Hub's premium classes or purchase resources, Whatsapp +18684724221

$\frac{20}{}$	$\underline{79}$	$19+20+2=41$
\vdots	127	$31+32+2=65$
$\frac{32}{2}$		
\vdots	$\underline{4 n-1}$	$\underline{(n-1)+n+2=2 n+1}$

(i) For Figure 4, number of toothpicks $=4(4)-1$

$$
\begin{aligned}
& =16-1 \\
& =15
\end{aligned}
$$

(ii) For Figure 4, number of toothpicks $=4(20)-1$

$$
\begin{aligned}
& =80-1 \\
& =79
\end{aligned}
$$

(iii) $4 n-1=127$

$$
\begin{aligned}
4 n & =127+1 \\
4 n & =128 \\
n & =\frac{128}{4} \\
n & =32
\end{aligned}
$$

(iv) For Figure n, number of toothpicks $=4 n-1$

Question 9(a)(i)

Required to show, by calculation, that the EXACT roots of the quadratic equation $x^{2}+2 x-5=0$ are $-1 \pm \sqrt{6}$.
$x^{2}+2 x-5=0$ is of the form $a x^{2}+b x+c=0$ where $a=1, b=2$ and $c=-5$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{(2)^{2}-4(1)(-5)}}{2(1)} \\
& =\frac{-2 \pm \sqrt{4+20}}{2} \\
& =\frac{-2 \pm \sqrt{24}}{2} \\
& =\frac{-2 \pm \sqrt{4 \times 6}}{2} \\
& =\frac{-2 \pm \sqrt{4} \sqrt{6}}{2} \\
& =\frac{-2 \pm 2 \sqrt{6}}{2} \\
& =\frac{2(-1 \pm \sqrt{6})}{2} \\
& =-1 \pm \sqrt{6}
\end{aligned}
$$

Question 9(a)(ii)

Required to solve the simultaneous equations: $2+x=y$

$$
x y=5
$$

$2+x=y \quad \rightarrow$ Equation 1
$x y=5 \quad \rightarrow$ Equation 2
Substituting Equation 1 into Equation 2 gives:

$$
\begin{array}{r}
x(2+x)=5 \\
2 x+x^{2}=5 \\
x^{2}+2 x-5=0
\end{array}
$$

The exact roots of the quadratic equation $x^{2}+2 x-5=0$ are $-1 \pm \sqrt{6}$.
Hence, $x=-1-\sqrt{6}$ and $x=-1+\sqrt{6}$.

When $x=-1-\sqrt{6}$,

$$
\begin{aligned}
y & =2+(-1-\sqrt{6}) \\
& =2-1-\sqrt{6} \\
& =1-\sqrt{6}
\end{aligned}
$$

When $x=-1+\sqrt{6}$,

$$
\begin{aligned}
y & =2+(-1+\sqrt{6}) \\
& =2-1+\sqrt{6} \\
& =1+\sqrt{6}
\end{aligned}
$$

$\therefore x=-1-\sqrt{6}$ and $y=1-\sqrt{6} \quad$ or $\quad x=-1+\sqrt{6}$ and $y=1+\sqrt{6}$.

Question 9(b)(i)

Required to complete the table for the function $y=2^{x}$.

When $x=-1$,

$$
\begin{aligned}
& y=2^{-1} \\
& y=\frac{1}{2}
\end{aligned}
$$

When $x=2$,

$$
y=2^{2}
$$

$$
y=4
$$

$$
\text { When } \begin{aligned}
x & =1, \\
y & =2^{1} \\
y & =2
\end{aligned}
$$

When $x=4$,

$$
y=2^{4}
$$

$$
y=16
$$

The completed table is shown below:

x	-1	0	1	2	3	4
y	$\frac{1}{2}$	1	2	4	8	16

Question 9(b)(ii)

Required to draw the graph of $y=2^{x}$.

Question 9(b)(iii)

Required to determine the value of x for which $2^{x}=11$ by drawing appropriate lines on the graph.

To re
\therefore When $^{x}=11, x=3.4$.

Question 10(a)(i)
Required to calculate the measure of $A \hat{C} D$, giving reasons for each step of your answer.

The angle $A \widehat{O} D$ subtended by a chord $(A D)$ at the center of a circle, O, is twice the angle that the chord subtends at the circumference, standing on the same arc.

Hence,

$$
\begin{aligned}
A \hat{C D} & =\frac{1}{2} A \hat{O} D \\
& =\frac{1}{2}\left(114^{\circ}\right) \\
& =57^{\circ}
\end{aligned}
$$

Question 10(a)(ii)
Required to calculate the measure of $A \hat{E} D$, giving reasons for each step of your answer.

The angle between a tangent ($E A$ and $E D$) to a circle and a radius $(O A$ and $O D$) at the point of contact $(A$ and $D)$ is a right angle.

Hence, $O \hat{A} E=O \widehat{D} E$

$$
=90^{\circ}
$$

Consider the quadrilateral $A O D E$.
The sum of the interior angles of a quadrilateral is 360°.

$$
\begin{aligned}
A \widehat{E} D & =360^{\circ}-\left(90^{\circ}+114^{\circ}+90^{\circ}\right) \\
& =360^{\circ}-294^{\circ} \\
& =66^{\circ}
\end{aligned}
$$

Question 10(a)(iii)
Required to calculate the measure of $O \hat{A C} C$, giving reasons for each step of your answer.

The angle between a tangent $(D G)$ to a circle and a chord $(D C)$ at the point of contact (D) is equal to the angle $(D \hat{A} C)$ in the alternate segment.

Since $O A$ and $O D$ are both radii of the same circle, then $O A=O D$ and $\triangle O A D$ is isosceles.
$O \widehat{A} D=O \widehat{D} A$
$=\frac{180^{\circ}-114^{\circ}}{2}$
$=\frac{66^{\circ}}{2}$
$=33^{\circ}$

The base angles of an isosceles triangle are equal and the sum of the interior angles in a triangle is 180°.

Hence,
$O \hat{A} C=33^{\circ}-18^{\circ}$
$=15^{\circ}$

Question 10(a)(iv)
Required to calculate the measure of $A \widehat{B} C$, giving reasons for each step of your answer.

The sum of the interior angles in a triangle add up to 180°.

$$
\begin{aligned}
A \widehat{D} C & =180^{\circ}-\left(18^{\circ}+57^{\circ}\right) \\
& =180^{\circ}-75^{\circ} \\
& =105^{\circ}
\end{aligned}
$$

The opposite angles of a cyclic quadrilateral are supplementary.
Hence,

$$
\begin{aligned}
A \widehat{B} C & =180^{\circ}-105^{\circ} \\
& =75^{\circ}
\end{aligned}
$$

Question 10(b)(i)
Required to calculate the length of the wire $R P$.

Consider $\triangle P R S$:

Using Pythagoras' Theorem:

$$
\begin{aligned}
R P^{2} & =P S^{2}+S R^{2} \\
& =(60)^{2}+(100)^{2} \\
& =3600+10000 \\
& =13600 \\
R P & =\sqrt{13600} \\
& =116.6 \mathrm{~cm} \quad \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

Question 10(b)(ii)

Required to calculate the length of the wire $R T$.

Consider $\triangle P R T$:

Using Pythagoras' Theorem:

$$
\begin{aligned}
R T^{2} & =P T^{2}+P R^{2} \\
& =(20)^{2}+(\sqrt{13600})^{2} \\
& =400+13600 \\
& =14000 \\
R T & =\sqrt{14000}
\end{aligned}
$$

$$
=118.3 \mathrm{~cm} \quad \text { (to } 1 \text { decimal place) }
$$

Question 10(b)(iii)
Required to calculate the angle $T R V$.

Consider $\triangle T R V$:

Question 10(b)(iv)
Required to complete the following statements:
The size of the angle through which the wire moves from $R P$ to $R T$ is \qquad
An angle which is the same in size as angle $R T V$ is \qquad

Consider $\triangle P R T$:

To register for The Student Hub's premium classes or purchase resources, Whatsapp +18684724221

T

From $R P$ to $R T$, the wire moves through $P \hat{R} T$.

$$
\begin{aligned}
\tan P \hat{R} T & =\frac{P T}{P R} \\
& =\frac{20}{\sqrt{13600}} \\
& =0.171 \\
P \hat{R} T & =\tan ^{-1}(0.171) \\
& =9.7^{\circ}
\end{aligned}
$$

$R \widehat{T} V$ has the same size as $P \widehat{T} V$ (or $S \widehat{U} W$ or $Q \widehat{W} U$).

The completed statements are as follows:
The size of the angle through which the wire moves from $R P$ to $R T$ is \qquad 9.7° \qquad An angle which is the same in size as angle $R T V$ is \qquad angle $P R T$.

Question 11(a)(i)

Required to determine the vector $\overrightarrow{O Q}$.

$$
\begin{aligned}
& \overrightarrow{O P}=\binom{3}{4} \\
& \overrightarrow{P Q}=\binom{-1}{2}
\end{aligned}
$$

So, we have,

$$
\begin{aligned}
\overrightarrow{O Q} & =\overrightarrow{O P}+\overrightarrow{P Q} \\
& =\binom{3}{4}+\binom{-1}{2} \\
& =\binom{3+(-1)}{4+2} \\
& =\binom{2}{6}
\end{aligned}
$$

Required to show that $\overrightarrow{O Q}$ is parallel to $\overrightarrow{R S}$, giving a reason for your answer.

$$
\begin{aligned}
\overrightarrow{R S} & =\binom{1}{3} \\
& =\frac{1}{2}\binom{2}{6} \\
& =\frac{1}{2} \overrightarrow{O Q}
\end{aligned}
$$

Since $\overrightarrow{R S}$ is a scalar multiple of $\overrightarrow{O Q}$, then $\overrightarrow{O Q}$ and $\overrightarrow{R S}$ are parallel.

Question 11(b)(i)
Required to express $\overrightarrow{X Z}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
$\overrightarrow{X Z}=\overrightarrow{X Y}+\overrightarrow{Y Z}$
$\overrightarrow{X Z}=\boldsymbol{a}+\boldsymbol{b}$

Question 11(b)(ii)

Required to express $\overrightarrow{M Y}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
M is the midpoint of $X Z$.
$\overrightarrow{X M}=\frac{1}{2} \overrightarrow{X Z}$

$$
=\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b})
$$

$\therefore \overrightarrow{M X}=-\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b})$

$$
\begin{aligned}
\overrightarrow{M Y} & =\overrightarrow{M X}+\overrightarrow{X Y} \\
& =-\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{a} \\
& =-\frac{1}{2} \boldsymbol{a}-\frac{1}{2} \boldsymbol{b}+\boldsymbol{a} \\
& =\frac{1}{2} \boldsymbol{a}-\frac{1}{2} \boldsymbol{b} \\
& =\frac{1}{2}(\boldsymbol{a}-\boldsymbol{b})
\end{aligned}
$$

Question 11(c)(i)
Required to determine the inverse of A.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right) \\
& \begin{aligned}
\operatorname{det} A & =a d-b c \\
& =(-1)(2)-(0)(3) \\
& =-2-0 \\
& =-2
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{adj}(A) & =\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 & 0 \\
-3 & -1
\end{array}\right)
\end{aligned}
$$

$\therefore A^{-1}=\frac{1}{\operatorname{det} A} \times \operatorname{adj}(A)$

$$
=\frac{1}{-2}\left(\begin{array}{cc}
2 & 0 \\
-3 & -1
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
\frac{2}{-2} & \frac{0}{-2} \\
\frac{-3}{-2} & \frac{-1}{-2}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
-1 & 0 \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right)
$$

Question 11(c)(ii)

Required to show that $A^{-1} A=I$, the identity matrix.

The identity matrix is $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Now,
$A^{-1}=\frac{1}{-2}\left(\begin{array}{cc}2 & 0 \\ -3 & -1\end{array}\right)$
So, we have,

$$
\begin{aligned}
A^{-1} A & =\frac{1}{-2}\left(\begin{array}{cc}
2 & 0 \\
-3 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right) \\
& =\frac{1}{-2}\left(\begin{array}{cc}
(2 \times-1)+(0 \times 3) & (2 \times 0)+(0 \times 2) \\
(-3 \times-1)+(-1 \times 3) & (-3 \times 0)+(-1 \times 2)
\end{array}\right) \\
& =\frac{1}{-2}\left(\begin{array}{cc}
-2+0 & 0+0 \\
3+(-3) & 0+(-2)
\end{array}\right) \\
& =\frac{1}{-2}\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{-2}{-2} & \frac{0}{-2} \\
\frac{0}{-2} & \frac{-2}{-2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Hence, $A^{-1} A=I$.

Question 11(c)(iii)
Required to determine the matrix A^{2}.
$A^{2}=A \times A$
$=\left(\begin{array}{cc}-1 & 0 \\ 3 & 2\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 3 & 2\end{array}\right)$
$=\left(\begin{array}{cc}(-1 \times-1)+(0 \times 3) & (-1 \times 0)+(0 \times 2) \\ (3 \times-1)+(2 \times 3) & (3 \times 0)+(2 \times 2)\end{array}\right)$
$=\left(\begin{array}{cc}1+0 & 0+0 \\ -3+6 & 0+4\end{array}\right)$
$=\left(\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right)$
$\therefore A^{2}=\left(\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right)$
Question 11(c)(iv)(a)
Required to explain why the matrix product $A B$ is not possible.

The number of columns of A which is 2 is not equal to the number of rows of B which is 3. Hence, the product $A B$ is not possible.

Question 11(c)(iv)(b)
Required to state the order of the matrix product $B A$.

The size of the matrix B is 3×2.
The size of the matrix A is 2×2.
Therefore, the size of the matrix product $B A$ is 3×2.

