Sample Exam 1 - Solutions

SECTION I

1. Write down the value of the underlined digit in the place value chart below. [1]

Hundreds of Thousands	Tens of Thousands	Thousand	Hundred	Tens	Ones
4	7	$\underline{8}$	0	9	9

The value of the underlined digit 8 is $8 \times 1000=8000$.

Answer \qquad 8000 \qquad
2. Write down the smallest prime number in the box below.

21	57	31
47	43	67

The prime numbers are $31,47,43$ and 67 . The smallest of these is 31 .

Answer \qquad 31 \qquad
3. What is $\frac{41}{3}$ as a mixed number?

$$
\begin{aligned}
3 \text { thirds } & =1 \text { whole } \\
41 \text { thirds } & =41 \div 3 \\
& =13 \text { wholes and } 2 \text { thirds }
\end{aligned}
$$

So, 41 thirds will be equivalent to $13 \frac{2}{3}$

Answer \qquad $13 \frac{2}{3}$
4. Calculate $22.2 \div 6$

$$
\begin{array}{r}
03.7 \\
6 \longdiv { 2 2 . 2 } \\
-18 \\
\hline 42 \\
-\frac{42}{0}
\end{array}
$$

Answer \qquad 3.7 \qquad
5. Write the missing number in the box below to make the statement correct. [1]

$$
\begin{aligned}
& (23 \times 10)-(23 \times 4)=23 \times \square \\
& 23 \times 10=10 \text { groups of } 23 \\
& 23 \times 4=4 \text { groups of } 23 \\
& \begin{array}{r}
(23 \times 10)-(23 \times 4)=6 \text { groups of } 23 \\
\\
=23 \times 6
\end{array}
\end{aligned}
$$

Answer \square $=6$ \qquad
6. $4^{2}-\sqrt{81}=$

$$
\begin{aligned}
4^{2} & =4 \times 4 \\
& =16
\end{aligned}
$$

$$
\sqrt{81}=9 \text { since } 9 \times 9=81
$$

So, $4^{2}-\sqrt{81}=16-9$

$$
=7
$$

Answer \qquad 7 \qquad
7. $3-\frac{3}{7}=$
[1]

$$
\begin{aligned}
3-\frac{3}{7} & =2+1-\frac{3}{7} \\
& =2+\frac{7}{7}-\frac{3}{7} \\
& =2+\frac{4}{7} \\
& =2 \frac{4}{7}
\end{aligned}
$$

Answer \qquad $2 \frac{4}{7}$
8. Calculate the total value of the bills and coins below.

$$
\begin{aligned}
& \begin{aligned}
\text { Dollars } & =\$ 50+\$ 1+\$ 20+\$ 1+\$ 1+\$ 5 \\
& =\$ 78
\end{aligned} \\
& \text { Cents }=25 \$+10 ¢+10 ¢+5 ¢ \\
&=50 ¢
\end{aligned}
$$

Total $=\$ 78+50$ cents

Answer \$ \qquad 78.50 \qquad
9. Multiply 254 by 12 .
[1]

254
$\times \quad 12$
2540
5008
3048

Answer \qquad 3048 \qquad
10. Insert the missing numbers in the boxes below.

	6	3	8
+	5	3	9
1	1	7	7

To get the 7 in the ones column, the sum of the ones must end in 7.
Adding the ones: $8+\square=17, \quad \square=9$

To get the 7 in the tens column, the sum of the tens must end in 7 . We also have a ten from the ones column.

Adding the tens:

$$
\square+3+1=7, \quad \square=3
$$

11. What is the length, in cm, between points \boldsymbol{A} and \boldsymbol{B} ?

The distance of $A B=38.1 \mathrm{~cm}-33.5 \mathrm{~cm}$

$$
=4.6 \mathrm{~cm}
$$

Answer \qquad 4.6 cm \qquad
12. The time is shown below on the analog clock. Write down the time on the digital clock.

Digital clock

$$
2: 50
$$

13. The calendar below is ripped at the bottom.

What is the date of the fourth Monday?

October 2010							
Sun	Mon	Tues	Wed	Thurs	Fri	Sat	
			1	2	3	4	
5	6	7	8	9	10	11	

Monday

$1^{\text {st }}$	6
$2^{\text {nd }}$	$6+7=13$
$3^{\text {rd }}$	$13+7=20$
$4^{\text {th }}$	$20+7=27$

So, the $4^{\text {th }}$ Monday is October $27^{\text {th }}$.

Answer The $4^{\text {th }}$ Monday is October $27^{\text {th }}$
14. Two objects balance the scale below.

What is the mass of the oval object?

Mass of oval object $=3 \mathrm{~kg}-1750 \mathrm{~g}$

$$
\begin{aligned}
& =3000-1750 \\
& =1250 \mathrm{~g}
\end{aligned}
$$

Answer
1250 \qquad g
15. Looking at the diagram below, write down the two angles which are less than 90°.

P appears to be less than 90°. Also, R appears to be less than 90°.
Q appears to be greater than 90°. Also, S appears to be greater than 90°.

Answer \qquad Angles P and R^{2} \qquad
16. Write down the name of a solid that does not have a uniform cross-section.

A cone does not have a uniform cross-section.
Other solids include sphere or pyramid.

Answer \qquad cone \qquad
17. Write down the plane shape that has all the properties described in the table. [1]

Number of pairs of Parallel sides	Number of pairs of Equal sides	Number lines of Symmetry
2	2	2

B has one pair of equal sides. C has one pair of equal sides.
A has 2 pairs of parallel sides, 2 pairs of equal sides and 2 lines of symmetry.

Answer \qquad A \qquad
18. The pictograph below shows the favourite ice-cream flavour by 60 students.

How many students does represent?

Total number of $\wp=11$
Total number of $\xi=2$ (which is equivalent to 1)
So, total number of $\wp=11+1=12$
Therefore, 12 represents 60 students.
Hence, one represents $\frac{60}{12}=5$ students.

Answer \qquad 5 students \qquad
19. The tally chart below shows the favourite subject by a class of 25 students.

Subject	Number of Students
Mathematics	HI II
English	HI III
History	HI IIII
Science	H\| I

Name the subject that represents the mode.

The mode will be History since it is chosen by most students.

Answer \qquad History \qquad
20. The table below shows the number of cars sold in four weeks.

Week	Number of Cars Sold
Week 1	32
Week 2	23
Week 3	21
Week 4	40

Calculate the mean number of cars sold on a weekly basis.
[1]

Mean number of cars sold $=\frac{\text { Total number of cars sold over four weeks }}{\text { Number of weeks }}$

$$
\begin{aligned}
& =\frac{32+23+21+40}{4} \\
& =\frac{116}{4} \\
& =29
\end{aligned}
$$

Answer \qquad 29 cars \qquad

Section II
21. Twenty-six paperclips fit exactly along the length of a table. Each paperclip has a length of 3.5 cm .

Calculate the total length of the table.

Total length of the table $=$ Length of 1 paperclip \times Number of paperclips

$$
\begin{aligned}
& =3.5 \mathrm{~cm} \times 26 \\
& =91 \mathrm{~cm}
\end{aligned}
$$

Answer \qquad 91 cm
22. A bottle contains 450 ml of orange juice. Carl drank 135 ml of the orange juice. What percent of orange juice is left in the bottle?

Amount of orange juice in the bottle $=450 \mathrm{ml}$

Amount of orange juice Carl drank $=135 \mathrm{ml}$
Amount of orange juice remaining in the bottle $=450$

- 135

315

Percent of orange juice remaining in the bottle $=\frac{\text { Amount of juice remaining }}{\text { Amount of juice in the bottle }} \times 100$

$$
\begin{aligned}
& =\frac{315}{450} \times 100 \\
& =70 \%
\end{aligned}
$$

Answer \qquad 70\% \qquad
23. Jane collected 56 seashells. She has $\frac{4}{9}$ the number of seashells that Dolly collected.

How many seashells did they collect altogether?

Jane collected 56 seashells.
So, $\frac{4}{9}$ of the number of seashells that Dolly has is 56 .
The number of seashells that Dolly has is

$$
\begin{aligned}
56 \div \frac{4}{9} & =56 \times \frac{9}{4} \\
& =126
\end{aligned}
$$

Together, they have 126

$$
+56
$$

182

Answer \qquad 182 seashells \qquad
24. The diagram below shows Alex and Bob in a race. Alex is at the finish line whereas Bob is $13 \frac{3}{7}$ metres behind Alex.

What is the total distance from the start to the finish line?

Distance from start to finish $=46 \frac{4}{7}+13 \frac{3}{7}$

$$
\begin{aligned}
& =46+13+\frac{4}{7}+\frac{3}{7} \\
& =59+1 \\
& =60 \mathrm{~m}
\end{aligned}
$$

Answer \qquad 60 m \qquad
25. The prices of three different clothing items are shown below.

Pants
\$70.00

T-Shirt
\$25.00

Dress
\$85.00

Fiona bought the clothing items shown in the table below. Complete the table.

Clothing Item	Quantity	Total Cost
Pants	$\frac{2}{}$	$\$ 140.00$
T-Shirt	3	$\$ 75.00$
Dress	2	$\$ 170.00$
	TOTAL	$\$ 385.00$

Total Cost $=\$ 385$
Cost of the T-Shirt(s) $=\$ 385-\$ 140-\$ 170$

$$
=\$ 75
$$

One T-Shirt costs \$25.

So, the number of T-Shirts bought $=\frac{\$ 75}{\$ 25}$

$$
=3
$$

One pair of pants costs $\$ 70$.
So, the number of pairs of pants bought $=\frac{\$ 140}{\$ 70}$

$$
=2
$$

26. Mr. Singh gave the following question to his students.
$0.7+0.3=\square$
Paul wrote $0.7+0.3=0.1$
Sam wrote $0.7+0.3=1.0$
Using words or diagrams, explain whose answer is correct.

0.7
$+\quad 0.3$
1.0

Alternatively,
$0.7+0.3=\frac{7}{10}+\frac{3}{10}$
$=\frac{7+3}{10}$
$=\frac{10}{10}$
$=1$ which is a whole or 1.0

So, Sam is correct.
Paul's answer is incorrect because when we add two numbers, the result is always larger than any one of the numbers. Paul's answer, 0.1 is smaller than 0.7 and also smaller than 0.3.

Therefore, Sam's answer is correct but Paul is incorrect.

Answer \qquad Sam is correct \qquad
27. Consider the fractions $\frac{2}{3}$ and $\frac{2}{5}$. The numerators are the same but the denominators are different. Using words or diagrams to explain your answer, are the two fractions equal to each other?

Numerator	\rightarrow tells us how many of the parts we are considering
Denominator	\rightarrow tells us how many parts the whole is divided into

So, $\frac{2}{3}$ means we are looking at two parts of a whole divided into 3 parts. $\frac{2}{5}$ means we are looking at two parts of a whole divided into 5 parts.

The diagrams show that $\frac{2}{3}$ is not equal to $\frac{2}{5}$.
In general, if we have the same numerators but different denominators, then the fractions will not be the same.

Answer \qquad No, the two fractions are not equal to each other \qquad
28. A jar contains red and blue beads. In the jar, 65% of the beads are blue. All of the blue beads and 60% of the red beads were used in an art project.

Calculate the percentage of beads that were used in the project.

Percent of blue beads in jar = 65\%
So, the percent of red beads in jar $=(100-65) \%$

$$
=35 \%
$$

60% of the red beads $=\frac{60}{100} \times 35 \%$

$$
=21 \%
$$

So, the percent of beads that were used in the project $=65 \%+21 \%$

$$
=86 \%
$$

Answer \qquad 86\% \qquad
29. Harry read a book over a period of 6 days. The number of pages read follows a pattern as shown in the table below. The numbers of pages read on Day 5 and Day 6 is not shown.

Day	1	2	3	4	5	6
Number of pages read	54	45	37	30		

How many pages were read altogether for the 6 days?

The number of pages read appears to be decreasing by 1 more than the difference from the previous day.
$54-9=45$
$45-8=37$
$37-7=30$

So, we would expect $30-6$ pages to be read on Day 5 which is 24 .
And $24-5$ pages to be read on Day 6 which is 19 .

The total number of pages read $=54+45+37+30+24+19$

$$
=209
$$

Answer \qquad 209 pages \qquad
30. The diagram below shows two poles and a wooden plank

How much of the wooden plank is needed to reach pole B ?

Distance between poles $=6 \mathrm{~m}$
Length of wooden plank $=5 \mathrm{~m} 45 \mathrm{~cm}$
So, the additional length of wooden plank needed to reach Pole B is

m	cm
6	00
5	45
	55

Answer \qquad 55 cm \qquad
31. Complete the shape using $\boldsymbol{A B}$ as the line of symmetry.

32. Two quadrilaterals are shown below.

Write two differences in the properties of Shape A and Shape B.

Shape A appears to be a square.
Shape B appears to be a kite.

Answer: The four angles of Shape A are all right angles and none of the angles in Shape B are right angles. Shape A has two pairs of parallel sides while Shape B has no parallel sides.
33. Bill and Maxwell played a game where they both turned in an anticlockwise direction. Bill started the game facing South whilst Maxwell started the game facing North. Bill made quarter turns while Maxwell made half turns.

Complete the table below to show the direction each boy faced after each turn. [3]

Turn Number	Bill	Maxwell
$\mathbf{0}$ (Start)	South	North
1	East	South
2	North	North
3	West	South
4	South	North

34. The bar graph below shows the number of concert tickets sold by 4 stalls.

The total number of tickets to be sold was 800.

Giving a reason for your answer, which Stall should be given more tickets to sell? [2]

Stall 1 sold the most tickets.
Total number of tickets sold $=350+100+200+50$

$$
=700
$$

Number of unsold tickets $=800-700$

$$
=100
$$

Answer: Stall 1 should be given more tickets to sell. Stall 1 appears to have good salesmen and are likely to sell off the remaining 100 unsold tickets.
35. The average number of runs a cricket player makes in 5 innings is 52 . He wants to increase his average by 4 runs.

How many runs must he make in the $6^{\text {th }}$ inning?

The average number of runs after 5 innings is 52.
So, the total number of runs scored in 5 innings $=52 \times 5$

$$
=260
$$

If his average is to increase by 4 , then it will be $52+4=56$.
After 6 innings, his total should be $56 \times 6=336$.

In the $6^{\text {th }}$ inning, the cricket player needs to score $336-260=76$ runs.

Answer \qquad 76 runs \qquad
36. Jason bought some notebooks and pens for school. Each notebook cost $\$ 5.00$ and each pen cost $\$ 2.00$. He bought 6 more pens than notebooks and his total bill is \$96.00.

Calculate the number of pens he bought.

Jason spent a total of $\$ 2.00 \times 6=\$ 12.00$ on the 6 pens.
Therefore, he would have spent the remaining $\$ 96.00-\$ 12.00=\$ 84.00$ on an equal number of notebooks and pens.

Now, 1 notebook and 1 pen cost $\$ 5.00+\$ 2.00=\$ 7.00$

Number of notebooks and pens bought with $\$ 84$ is $\frac{\$ 84}{\$ 7}=12$.
So, $\$ 60$ will get him 12 notebooks $(12 \times \$ 5.00=\$ 60.00)$
And $\$ 24$ will get him 12 pens $(12 \times \$ 2.00=\$ 24.00)$

Hence,
Number of notebooks bought $=12$ notebooks
Number of pens bought $=12+6$

$$
=18 \text { pens }
$$

Answer \qquad 18 pens \qquad

Section III
37. Mrs. Jones took her three daughters to the mall. Here is a list of the different items that she bought.

The total bill was $\$ 175.00$. Each daughter received a teddy bear. Calculate the number of pairs of shoes and dresses Mrs. Jones bought.

Cost of 3 Teddy Bears $=3 \times \$ 15$

$$
=\$ 45
$$

So, the cost of the pairs of shoes and dresses $=\$ 175-\$ 45$

$$
=\$ 130
$$

2 pairs of shoes at $\$ 35$ cost $\$ 70$
1 dress cost \$60

> | Now, |
| :--- |
| $\$ 70$ |
| $+\$ 60$ |
| $\$ 130$ |

Answer \qquad 2 pairs of shoes and 1 dress \qquad
38. Identical candles are being placed on a straight line at an equal distance from each other, as shown below. The total distance from the first candle to the fourth candle is 22 cm . Each candle has a width of 2.5 cm .

What is the total distance from the $3^{\text {rd }}$ candle to the $10^{\text {th }}$ candle?

The space between each candle $=\frac{22-(4 \times 2.5)}{3}$

$$
\begin{aligned}
& =\frac{22-10}{3} \\
& =\frac{12}{3} \\
& =4 \mathrm{~cm}
\end{aligned}
$$

From the $3^{\text {rd }}$ to the $10^{\text {th }}$ candle will have 7 spaces and 8 candles.
So, the total distance from the $3^{\text {rd }}$ to the $10^{\text {th }}$ candle $=(8 \times 2.5)+(7 \times 4)$

$$
\begin{aligned}
& =20+28 \\
& =48 \mathrm{~cm}
\end{aligned}
$$

Answer \qquad 48 cm \qquad
39. Sticks are used to make the pattern below.

(a) How many sticks will be used to build a pattern with 5 squares?

A pattern with 1 square requires 8 sticks.
A pattern with 2 squares requires 15 sticks.

A pattern with 3 squares requires 22 sticks.
A pattern with 4 squares requires 29 sticks.

A pattern with 5 squares requires 36 sticks.

$$
8 \xrightarrow[+7]{ } 15 \xrightarrow[+7]{ } 22 \xrightarrow[+7]{ } 29 \xrightarrow[+7]{\longrightarrow} 36
$$

Answer \qquad 36 sticks \qquad
(b) If 64 sticks are used to build a similar pattern, how many triangles will the pattern have?
$29 \xrightarrow[+7]{4^{\text {th }}} 36 \xrightarrow[+7]{5^{\text {th }}} 43 \xrightarrow[+7]{6^{\text {th }}} 50 \xrightarrow[+7]{7^{\text {th }}} 57 \xrightarrow[+7]{8^{\text {th }}} 64$

Therefore, $9^{\text {th }}$ pattern will have 64 sticks.
The $9^{\text {th }}$ pattern will consist of 9 squares.

So, the number of triangles in the $9^{\text {th }}$ pattern $=9 \times 2$

Answer \qquad 18 triangles \qquad
40. Nick has 320 marbles, Jack has 370 marbles, Gary has 280 marbles and Wade has 70 marbles.

How many marbles must Nick, Jack and Gary give to Wade such that the 4 boys will have the same number of marbles?

$$
\begin{aligned}
& \text { Total number of marbles }= 320 \\
& 370 \\
& 280 \\
&+\quad 70 \\
& \hline 1040 \\
& \hline
\end{aligned}
$$

To have the same number of marbles, each boy must have $\frac{1040}{4}=260$ marbles.

So, Nick must give $320-260=60$ marbles to Wade and remain with 260 marbles.

Jack must give $370-260=110$ marbles to Wade and remain with 260 marbles.

And Gary must give $280-260=20$ marbles to Wade and remain with 260 marbles.

So, Wade will then have $70+60+110+20=260$ marbles.

Answer: Nick gives 60 marbles
Jack gives 110 marbles
Gary gives 20 marbles

