1. Three mixed numbers from the set below will produce a WHOLE number when added.

$1 \frac{1}{6}$	$3 \frac{1}{4}$	$2 \frac{1}{2}$	$2 \frac{1}{3}$

What are the three numbers?

Looking at the fraction part of the numbers:
$\frac{1}{6}, \frac{1}{4}, \frac{1}{2}, \frac{1}{3}$

These fractions are equivalent to:
$\frac{2}{12}, \frac{3}{12}, \frac{6}{12}, \frac{4}{12}$ respectively.

Looking at the numerators, the three numbers that add to give 12 are 2, 6 and 4 .
Therefore,

$$
\begin{aligned}
1 \frac{1}{6}+2 \frac{1}{2}+2 \frac{1}{3} & =1+2+2+\frac{1}{6}+\frac{1}{2}+\frac{1}{3} \\
& =1+2+2+\frac{2}{12}+\frac{6}{12}+\frac{4}{12} \\
& =1+2+2+\frac{12}{12} \\
& =1+2+2+1 \\
& =6
\end{aligned}
$$

mwsuma
 HUB

Answer: $1 \frac{1}{6}, 2 \frac{1}{2}, 2 \frac{1}{3}$
2. A bucket holds $7 \frac{3}{4}$ litres of water. Patty uses $2 \frac{1}{6}$ litres to wash the dishes and $3 \frac{1}{2}$
litres to mop the floors. How much water is left in the bucket?

Amount of water used $=2 \frac{1}{6}+3 \frac{1}{2}$

$$
\begin{aligned}
& =2+3+\frac{1}{6}+\frac{1}{2} \\
& =5+\frac{2}{12}+\frac{6}{12} \\
& =5+\frac{8}{12} \\
& =5+\frac{2}{3} \\
& =5 \frac{2}{3} \text { litres }
\end{aligned}
$$

Amount of water left in bucket $=7 \frac{3}{4}-5 \frac{2}{3}$
Now, $7-5=2$
And $\frac{3}{4}-\frac{2}{3}=\frac{9}{12}-\frac{8}{12}$

$$
=\frac{1}{12}
$$

So, the amount of water left in bucket $=2+\frac{1}{12}$

$$
=2 \frac{1}{12} \text { litres }
$$

Answer: $2 \frac{1}{2}$ litres

3. (a) Write in the box below the sign, $>$ or $<$, that CORRECTLY completes the number sentence.

$$
\frac{2}{3} \square \frac{3}{5}
$$

$\frac{2}{3}=\frac{10}{15}$
$\frac{3}{5}=\frac{9}{15}$

Since $10>9$, then $\frac{2}{3}>\frac{3}{5}$.

Answer: $\frac{2}{3}>\frac{3}{5}$
(b) Find the difference between $\frac{2}{3}$ and $\frac{3}{5}$.

Difference $=\frac{2}{3}-\frac{3}{5}$

$$
\begin{aligned}
& =\frac{10}{15}-\frac{9}{15} \\
& =\frac{1}{15}
\end{aligned}
$$

Answer: $\frac{1}{15}$
4. One third of a number is 21 . What is $\frac{4}{7}$ of the same number?
$\frac{1}{3}$ of a number is 21 .
1 part $=21$
3 parts $=3 \times 21$

$$
=63
$$

Now,
$\frac{4}{7} \times 63=\frac{4}{7} \times \frac{63}{1}$
$\frac{4}{7} \times 63=36$

Answer: 36
5. Chris had a piece of tape that was $4 \frac{5}{6} \mathrm{~m}$ long. He used $2 \frac{2}{3}$ of it in an art project. What is the length of the remaining piece of tape?

Length of remaining piece of tape $=4 \frac{5}{6}-2 \frac{2}{3}$

Now, $4-2=2$

$$
\begin{aligned}
\text { And } \begin{aligned}
\frac{5}{6}-\frac{2}{3} & =\frac{5}{6}-\frac{4}{6} \\
& =\frac{1}{6}
\end{aligned},=\frac{1}{2}
\end{aligned}
$$

Length of remaining piece of tape $=2+\frac{1}{6}$

$$
=2 \frac{1}{6} \mathrm{~m}
$$

Answer: $2 \frac{1}{6} \mathrm{~m}$
6. The product of two numbers is 7 . One of them is $4 \frac{1}{5}$.

What is the other number?

The product of two numbers $=7$
One number $=4 \frac{1}{5}$

$$
=\frac{21}{5}
$$

The other number $=7 \div \frac{21}{5}$

$$
\begin{aligned}
& =7 \times \frac{5}{21} \\
& =\frac{5}{3} \\
& =1 \frac{2}{3}
\end{aligned}
$$

Answer: $1 \frac{2}{3}$
7. Diana's weekly allowance is $\$ 80$. She spent $\frac{1}{4}$ of it on stationery, $\frac{2}{5}$ of it on candy and saved the remainder.
(a) What fraction did she spend on the stationery and candy together?

$$
\begin{aligned}
\text { Fraction of money spent } & =\frac{1}{4}+\frac{2}{5} \\
& =\frac{5}{20}+\frac{8}{20} \\
& =\frac{13}{20}
\end{aligned}
$$

Answer: $\frac{13}{20}$
(b) How much money did she save?

Fraction of money saved $=1-\frac{13}{20}$

$$
\begin{aligned}
& =\frac{20}{20}-\frac{13}{20} \\
& =\frac{7}{20}
\end{aligned}
$$

Amount of money saved $=\frac{7}{20} \times 80$

$$
=\$ 28
$$

8. The bakery cuts 9 pies into EIGHTHS. Kylie gets $\frac{1}{4}$ of ONE pie.
(a) How many EIGHTHS of pie does she get?
$\frac{1}{4}=\frac{2}{8}$

Answer: 2 eighths of pie
(b) How many EIGHTHS of pie does the bakery have remaining.

9 pies $=9 \times 8$

$$
=72 \text { eighths }
$$

Kylie received 2 eighths of pie.

Number of eighths of pie remaining $=72-2$

$$
=70
$$

Answer: 70 eighths of pie
9. At a diner, $\frac{1}{5}$ of the customers drank ginger tea, $\frac{2}{3}$ of the remainder drank coffee and the others drank water.
(a) What fraction of the customers drank coffee?
$\frac{1}{5}$ of the customers drank ginger tea.

$$
\begin{aligned}
\text { Remainder } & =1-\frac{1}{5} \\
& =\frac{5}{5}-\frac{1}{5} \\
& =\frac{4}{5}
\end{aligned}
$$

$\frac{2}{3}$ of the remainder drank coffee.
Fraction of customers who drank coffee $=\frac{2}{3} \times \frac{4}{5}$

$$
=\frac{8}{15}
$$

Answer: $\frac{8}{15}$
(b) If there are 60 customers at the diner, how many customers drank water?

Fraction of customers that drank water $=1-\left(\frac{1}{5}+\frac{8}{15}\right)$

$$
\begin{aligned}
& =1-\left(\frac{3}{15}+\frac{8}{15}\right) \\
& =1-\frac{11}{15} \\
& =\frac{15}{15}-\frac{11}{15} \\
& =\frac{4}{15}
\end{aligned}
$$

Number of customers that drank water $=\frac{4}{15} \times 60$

$$
=16
$$

Answer: 16 customers
10. If $\frac{3}{4}$ of a number is 39 . What is $\frac{2}{13}$ of the same number?
$\frac{3}{4}$ of a number is 39 .
The number is $=39 \div \frac{3}{4}$

$$
\begin{aligned}
& =39 \times \frac{4}{3} \\
& =52
\end{aligned}
$$

$\frac{2}{13}$ of the number $=\frac{2}{13} \times 52$

$$
=8
$$

Answer: 8
11. Danny shared a bag of marbles with his two friends. He gave $\frac{2}{5}$ to Mark and $\frac{1}{6}$ of the remainder to Alex.
(a) What fraction of the marbles did Alex get?

Mark got $\frac{2}{5}$ of the marbles.
The fraction of marbles remaining $=1-\frac{2}{5}$

$$
\begin{aligned}
& =\frac{5}{5}-\frac{2}{5} \\
& =\frac{3}{5}
\end{aligned}
$$

Alex $\operatorname{got} \frac{1}{6}$ of the remainder.
The fraction of the marbles Alex got $=\frac{1}{6} \times \frac{3}{5}$

$$
=\frac{1}{10}
$$

Answer: $\frac{1}{10}$
(b) What fraction of the marbles did Danny give his friends?

Mark got $\frac{2}{5}$ of the marbles.
Alex got $\frac{1}{10}$ of the marbles.

The fraction of the marbles Danny gave to his friends $=\frac{2}{5}+\frac{1}{10}$

$$
=\frac{4}{10}+\frac{1}{10}
$$

$$
=\frac{5}{10}
$$

Answer: $\frac{1}{2}$
12. Paige has 315 cupcakes of two different flavours: chocolate and vanilla. There are twice as many chocolate cupcakes as there are vanilla.
(a) How many vanilla cupcakes are there?

There are twice as many chocolate cupcakes as there are vanilla.
So, $\frac{1}{3}$ of the cupcakes are vanilla.

Number of vanilla cupcakes $=\frac{1}{3} \times$ Total number of cupcakes

$$
\begin{aligned}
& =\frac{1}{3} \times 315 \\
& =105 \text { cupcakes }
\end{aligned}
$$

Answer: 105 vanilla cupcakes
(b) $\frac{3}{5}$ of the vanilla cupcakes have icing and the other have sprinkles. How many vanilla cupcakes have sprinkles?

Fraction of vanilla cupcakes that have icing $=\frac{3}{5}$

Fraction of vanilla cupcakes that have sprinkles $=1-\frac{3}{5}$

$$
\begin{aligned}
& =\frac{5}{5}-\frac{3}{5} \\
& =\frac{2}{5}
\end{aligned}
$$

Number of vanilla cupcakes that have sprinkles $=\frac{2}{5} \times 105$

$$
=42 \text { cupcakes }
$$

Answer: 42 vanilla cupcakes
(c) A container can hold 15 cupcakes. How many containers are needed to pack ALL the chocolate cupcakes?
[2]

Number of chocolate cupcakes $=315-105$

$$
=210 \text { cupcakes }
$$

Number of containers needed $=210 \div 15$

$$
=14 \text { containers }
$$

Answer: 14 containers
$\frac{2}{5}$ of a number $=28$
The number is $=28 \div \frac{2}{5}$

$$
\begin{aligned}
& =28 \times \frac{5}{2} \\
& =70
\end{aligned}
$$

Half of the same number $=\frac{1}{2} \times 70$

$$
=35
$$

Answer: 35
14. Consider the fractions $\frac{2}{5}$ and $\frac{2}{3}$. The numerators are the same but the denominators are different. Using words or diagrams to explain your answer, are the two fractions equal to each other?

Numerator	\rightarrow tells us how many of the parts we are considering
Denominator	\rightarrow tells us how many parts the whole is divided into

So, $\frac{2}{5}$ means we are looking at two parts of a whole divided into 5 parts.
$\frac{2}{3}$ means we are looking at two parts of a whole divided into 3 parts.

The diagrams show that $\frac{2}{53}$ is not equal to $\frac{2}{3}$.
In general, if we have the same numerators but different denominators, then the fractions will not be the same.

Answer: The two fractions are not equal to each other
15. A company discovered $\frac{1}{3}$ of the bulbs bought were not working. They also noticed that $\frac{2}{5}$ of the working bulbs were blue. If 48 of the working bulbs were blue, how many bulbs did the company buy?

Fraction of bulbs that are not working $=\frac{1}{3}$

Fraction of bulbs that are working $=1-\frac{1}{3}$

$$
\begin{aligned}
& =\frac{3}{3}-\frac{1}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

Now, $\frac{2}{5}$ of the working bulbs were blue.
Fraction of blue working bulbs $=\frac{2}{5} \times \frac{2}{3}$

$$
=\frac{4}{15}
$$

Since 48 of the working bulbs were blue, then
$\frac{4}{15}$ of the bulbs $=48$
Total number of bulbs the company bought $=48 \div \frac{4}{15}$

$$
\begin{aligned}
& =48 \times \frac{15}{4} \\
& =180 \mathrm{bulbs}
\end{aligned}
$$

Answer: 180 bulbs
16. A roll of string was used to make jewellery. Rebecca used $\frac{5}{8} \mathrm{~m}$, Lucy used $\frac{1}{6} \mathrm{~m}$ and Kim used $\frac{1}{12} \mathrm{~m}$ of the roll of string. Calculate the difference in length between the shortest and longest pieces of string used.

$$
\frac{5}{8}=\frac{15}{24} \quad, \quad \frac{1}{6}=\frac{4}{24} \quad \frac{1}{12}=\frac{2}{24}
$$

The longest piece of string is $=\frac{5}{8}$
The shortest piece of string is $=\frac{1}{12}$

Difference $=\frac{5}{8}-\frac{1}{12}$

$$
=\frac{15}{24}-\frac{2}{24}
$$

$$
=\frac{13}{24}
$$

Answer: $\frac{13}{24} \mathrm{~m}$

17. Henry used $\frac{1}{4}$ of his stickers in a project and lent $\frac{2}{9}$ of the remaining stickers to his friend. He now has 21 stickers remaining. How many stickers did Henry have at first?

Fraction of stickers used in a project $=\frac{1}{4}$
Fraction of remaining stickers after project $=1-\frac{1}{4}$

$$
\begin{aligned}
& =\frac{4}{4}-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

He lent $\frac{2}{9}$ of the remaining stickers to his friend.
Fraction of stickers lent to his friend $=\frac{2}{9} \times \frac{3}{4}$

$$
=\frac{1}{6}
$$

Fraction of stickers he remains with $=1-\left(\frac{1}{4}+\frac{1}{6}\right)$

$$
\begin{aligned}
& =1-\left(\frac{3}{12}+\frac{2}{12}\right) \\
& =1-\frac{5}{12} \\
& =\frac{12}{12}-\frac{5}{12} \\
& =\frac{7}{12}
\end{aligned}
$$

Now,

$\frac{7}{12}$ of the stickers $=21$
Number of stickers he had at first $=21 \div \frac{7}{12}$

$$
\begin{aligned}
& =21 \times \frac{12}{7} \\
& =36
\end{aligned}
$$

Answer: 36 stickers
18. There are red, blue and yellow beads in a jar. $\frac{1}{4}$ of the beads are blue. $\frac{2}{3}$ of the remainder are yellow. What fraction of the beads are red?
$\frac{1}{4}$ of the beads are blue.

$$
\begin{aligned}
\text { Remainder } & =1-\frac{1}{4} \\
& =\frac{4}{4}-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

$\frac{2}{3}$ of the remainder are yellow.
Fraction of yellow beads $=\frac{2}{3} \times \frac{3}{4}$

$$
=\frac{1}{2}
$$

Fraction of red beads $=1-\left(\frac{1}{4}+\frac{1}{2}\right)$

$$
\begin{aligned}
& =1-\left(\frac{1}{4}+\frac{2}{4}\right) \\
& =1-\frac{3}{4} \\
& =\frac{4}{4}-\frac{3}{4} \\
& =\frac{1}{4}
\end{aligned}
$$

Answer: $\frac{1}{4}$
19. A recipe for 3 servings use $1 \frac{5}{6}$ cups of corn flour. How much corn flour will be used for 12 servings?

3 servings use $1 \frac{5}{6}$ cups of corn flour.
1 serving will use $=1 \frac{5}{6} \div 3$

$$
\begin{aligned}
& =\frac{11}{6} \div 3 \\
& =\frac{11}{6} \times \frac{1}{3} \\
& =\frac{11}{18} \text { cups of flour }
\end{aligned}
$$

Now,
12 servings will use $=12 \times \frac{11}{18}$

$$
\begin{aligned}
& =\frac{22}{3} \\
& =7 \frac{1}{3} \text { cups of corn flour }
\end{aligned}
$$

Answer: $7 \frac{1}{3}$ cups of flour
20. A recipe required $\frac{3}{8}$ cup of sugar to make a cake. The chef made 12 cakes.
(a) What is the total amount of sugar used?

1 cake requires $\frac{3}{8}$ cup of sugar.
Amount of sugar required for 12 cakes $=12 \times \frac{3}{8}$

$$
\begin{aligned}
& =\frac{9}{2} \\
& =4 \frac{1}{2} \mathrm{cups}
\end{aligned}
$$

Answer: $4 \frac{1}{2}$ cups
(b) Between which two whole numbers does your answer lie?

The number $4 \frac{1}{2}$ lies between 4 and 5 .

Answer: 4 and 5

