

Sample Exam 7: Fractions Worksheet - Solutions

Session 7

Total: 52 marks

[2]

1. Three mixed numbers from the set below will produce a WHOLE number when added.

$1\frac{1}{6}$	$3\frac{1}{4}$	$2\frac{1}{2}$	$2\frac{1}{3}$

What are the three numbers?

Looking at the fraction part of the numbers:

 $\frac{1}{6}$, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{3}$

These fractions are equivalent to:

 $\frac{2}{12}$, $\frac{3}{12}$, $\frac{6}{12}$, $\frac{4}{12}$ respectively.

Looking at the numerators, the three numbers that add to give 12 are 2, 6 and 4.

Therefore, $1\frac{1}{6} + 2\frac{1}{2} + 2\frac{1}{3} = 1 + 2 + 2 + \frac{1}{6} + \frac{1}{2} + \frac{1}{3}$ $= 1 + 2 + 2 + \frac{2}{12} + \frac{6}{12} + \frac{4}{12}$ $= 1 + 2 + 2 + \frac{12}{12}$ = 1 + 2 + 2 + 1= 6

Answer: $1\frac{1}{6}$, $2\frac{1}{2}$, $2\frac{1}{3}$

2. A bucket holds $7\frac{3}{4}$ litres of water. Patty uses $2\frac{1}{6}$ litres to wash the dishes and $3\frac{1}{2}$ litres to mop the floors. How much water is left in the bucket? [2]

 (a) Write in the box below the sign, > or < , that CORRECTLY completes the number sentence.

 $\frac{2}{3} = \frac{10}{15}$ $\frac{3}{5} = \frac{9}{15}$

Since 10 > 9, then $\frac{2}{3} > \frac{3}{5}$.

- Answer: $\frac{2}{3} \ge \frac{3}{5}$
- (b) Find the difference between $\frac{2}{3}$ and $\frac{3}{5}$.

15

[3]

Difference =

4. One third of a number is 21. What is $\frac{4}{7}$ of the same number?

5. Chris had a piece of tape that was $4\frac{5}{6}$ m long. He used $2\frac{2}{3}$ of it in an art project. What is the length of the remaining piece of tape? [2]

Length of remaining piece of tape = $4\frac{5}{6} - 2\frac{2}{3}$

Now, 4 - 2 = 2

And $\frac{5}{6} - \frac{2}{3} = \frac{5}{6} - \frac{4}{6}$ $= \frac{1}{6}$

Length of remaining piece of tape = 2 + 2

 $= 2\frac{1}{6}m$

Answer: $2\frac{1}{6}$ m

6. The product of two numbers is 7. One of them is $4\frac{1}{5}$.

What is the other number?

[3]

The product of two numbers = 7One number = $4\frac{1}{5}$ $=\frac{21}{5}$ The other number = $7 \div \frac{21}{5}$ $=7 \times \frac{5}{21}$ $=\frac{5}{3}$ $=1\frac{2}{3}$ Answer: $1\frac{2}{3}$

- 7. Diana's weekly allowance is \$80. She spent $\frac{1}{4}$ of it on stationery, $\frac{2}{5}$ of it on candy and saved the remainder.
 - (a) What fraction did she spend on the stationery and candy together? [1]

Fraction of money spent = $\frac{1}{4} + \frac{2}{5}$ $=\frac{5}{20}+\frac{8}{20}$ $=\frac{13}{20}$ Answer: $\frac{13}{20}$ (b) How much money did she save? [1] Fraction of money saved = 13 20 $\frac{7}{20}$ Amount of money saved $=\frac{7}{20} \times 80$ = \$28

8. The bakery cuts 9 pies into EIGHTHS. Kylie gets $\frac{1}{4}$ of ONE pie.

(a) How many EIGHTHS of pie does she get? [1]

 $\frac{1}{4} = \frac{2}{8}$

Answer: 2 eighths of pie

(b) How many EIGHTHS of pie does the bakery have remaining.

[2]

9 pies = 9×8

= 72 eighths

Kylie received 2 eighths of pie.

Number of eighths of pie remaining = 72 - 2

= 70

Answer: 70 eighths of pie

[1]

- 9. At a diner, $\frac{1}{5}$ of the customers drank ginger tea, $\frac{2}{3}$ of the remainder drank coffee and the others drank water.
 - (a) What fraction of the customers drank coffee?

 $\frac{1}{5}$ of the customers drank ginger tea. Remainder = $1 - \frac{1}{5}$ $=\frac{5}{5}-\frac{1}{5}$ $=\frac{4}{5}$ $\frac{2}{3}$ of the remainder drank coffee. Fraction of customers who drank coffee = 2 3 $=\frac{8}{15}$ Answer

(b) If there are 60 customers at the diner, how many customers drank

 $=1-\left(\frac{3}{15}+\frac{8}{15}\right)$

11

 $=1-\frac{11}{15}$

 $=\frac{15}{15}$

= 16

water?

[2]

Fraction of customers that drank water = $1 - \left(\frac{1}{5} + \frac{8}{15}\right)$

Number of customers that drank water $=\frac{4}{15} \times 60$

Answer: 16 customers

10. If $\frac{3}{4}$ of a number is 39. What is $\frac{2}{13}$ of the same number?

[2]

- 11. Danny shared a bag of marbles with his two friends. He gave $\frac{2}{5}$ to Mark and $\frac{1}{6}$ of the remainder to Alex.
 - (a) What fraction of the marbles did Alex get?

Mark got $\frac{2}{5}$ of the marbles. The fraction of marbles remaining = $1 - \frac{2}{5}$ $=\frac{5}{5}$ 2 5 $=\frac{3}{5}$ Alex got $\frac{1}{6}$ of the remainder. The fraction of the marbles Alex got 10 Answer:

(b) What fraction of the marbles did Danny give his friends?

Mark got $\frac{2}{5}$ of the marbles. Alex got $\frac{1}{10}$ of the marbles. The fraction of the marbles Danny gave to his friends $=\frac{2}{5}$ + 10 10 Answer: $\frac{1}{2}$

[1]

- 12. Paige has 315 cupcakes of two different flavours: chocolate and vanilla. There are twice as many chocolate cupcakes as there are vanilla.
 - (a) How many vanilla cupcakes are there?

There are twice as many chocolate cupcakes as there are vanilla.

So, $\frac{1}{3}$ of the cupcakes are vanilla.

Number of vanilla cupcakes $=\frac{1}{3} \times$ Total number of cupcakes

 $=\frac{1}{3} \times 315$

= 105 cupcakes

Answer: 105 vanilla cupcakes

 $(b)\frac{3}{5}$ of the vanilla cupcakes have icing and the other have sprinkles. How many

vanilla cupcakes have sprinkles?

[2]

Fraction of vanilla cupcakes that have icing $=\frac{3}{5}$

Fraction of vanilla cupcakes that have sprinkles = $1 - \frac{3}{5}$

$$=\frac{5}{5}-\frac{3}{5}$$
$$=\frac{2}{5}$$

Number of vanilla cupcakes that have sprinkles $=\frac{2}{5} \times 105$

= 42 cupcakes

Answer: 42 vanilla cupcakes

(c) A container can hold 15 cupcakes. How many containers are needed to pack ALL

the chocolate cupcakes?

[2]

Number of chocolate cupcakes = 315 - 105

= 210 cupcakes

Number of containers needed = $210 \div 15$

= 14 containers

Answer: 14 containers

13. Two-fifths of a number is 28. What is **half** of the same number?

14. Consider the fractions $\frac{2}{5}$ and $\frac{2}{3}$. The numerators are the same but the denominators are different. Using words or diagrams to explain your answer, are the two fractions equal to each other? [3]

Numerator \rightarrow tells us how many of the parts we are consideringDenominator \rightarrow tells us how many parts the whole is divided into

So, $\frac{2}{5}$ means we are looking at two parts of a whole divided into 5 parts.

 $\frac{2}{3}$ means we are looking at two parts of a whole divided into 3 parts.

The diagrams show that $\frac{2}{53}$ is not equal to $\frac{2}{3}$.

In general, if we have the same numerators but different denominators, then the fractions will not be the same.

Answer: The two fractions are not equal to each other

15. A company discovered $\frac{1}{3}$ of the bulbs bought were not working. They also noticed that $\frac{2}{5}$ of the working bulbs were blue. If 48 of the working bulbs were blue, how many bulbs did the company buy? [3]

Fraction of bulbs that are not working $=\frac{1}{3}$

Fraction of bulbs that are working = $1 - \frac{1}{3}$

Now, $\frac{2}{5}$ of the working bulbs were blue.

Fraction of blue working bulbs = $\frac{2}{5} \times \frac{2}{5}$

Since 48 of the working bulbs were blue, then

 $\frac{4}{15}$ of the bulbs = 48

Total number of bulbs the company bought = $48 \div \frac{4}{15}$

$$=48 \times \frac{15}{4}$$

= 180 bulbs

Answer: 180 bulbs

16. A roll of string was used to make jewellery. Rebecca used $\frac{5}{8}$ m, Lucy used $\frac{1}{6}$ m and Kim used $\frac{1}{12}$ m of the roll of string. Calculate the difference in length between the shortest and longest pieces of string used. [3]

17. Henry used $\frac{1}{4}$ of his stickers in a project and lent $\frac{2}{9}$ of the remaining stickers to his friend. He now has 21 stickers remaining. How many stickers did Henry have at first? [3]

Fraction of stickers used in a project $=\frac{1}{4}$ Fraction of remaining stickers after project $=1-\frac{1}{4}$

He lent $\frac{2}{9}$ of the remaining stickers to his friend.

Fraction of stickers lent to his friend $=\frac{2}{9}\times$

Fraction of stickers he remains with $= 1 - \left(\frac{1}{4} + \frac{1}{6}\right)$

 $= 1 - \left(\frac{3}{12} + \frac{2}{12}\right)$ $= 1 - \frac{5}{12}$ $= \frac{12}{12} - \frac{5}{12}$ $= \frac{7}{12}$

Now,

The second

Number of stickers he had at first = $21 \div \frac{7}{12}$

 $= 21 \times \frac{12}{7}$

= 36

Answer: 36 stickers

18. There are red, blue and yellow beads in a jar. $\frac{1}{4}$ of the beads are blue. $\frac{2}{3}$ of the remainder are yellow. What fraction of the beads are red? [2]

Answer: $\frac{1}{4}$

19. A recipe for 3 servings use $1\frac{5}{6}$ cups of corn flour. How much corn flour will be used for 12 servings? [2]

3 servings use $1\frac{5}{6}$ cups of corn flour. 1 serving will use = $1\frac{5}{6} \div 3$ $=\frac{11}{6} \div 3$ $=\frac{11}{6}\times\frac{1}{3}$ $=\frac{11}{18}$ cups of flour Now, 12 servings will use = $12 \times \frac{11}{18}$ cups of corn flour Answer: $7\frac{1}{2}$ cups of flour

20. A recipe required $\frac{3}{8}$ cup of sugar to make a cake. The chef made 12 cakes.

(a) What is the total amount of sugar used? [1]

 $=\frac{9}{2}$

 $=4\frac{1}{2}$ cups

1 cake requires $\frac{3}{8}$ cup of sugar.

Amount of sugar required for 12 cakes = $12 \times \frac{3}{8}$

Answer: $4\frac{1}{2}$ cups

(b) Between which two whole numbers does your answer lie?

[1]

The number $4\frac{1}{2}$ lies between 4 and 5.

Answer: 4 and 5